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ABSTRACT

The method of matched asyrnptotic expansions is used to investl-gate the be-
havior of a collapsing bubble near a solid wall. Cases are studied in which
the ratio e between the initial spherical bubble radius and its distance from
the wa11 is small. Expansions in powers of e lead to a simple system of dif-
ferential equations which is solved numerically. The bubble shape, the velocity
potential and the pressure field are determined as functi-ons of time. The
deformat ion of  the bubble is  a s ingluar perturbat ion of  the pressure f ie ld
around i t .  A decrease in the value of  e augments the pressure on the sol id wal l
by orders of magnitude. The influence of surface tension and the proximity of
the wal l ,  gas content  and i ts  1aw of  compression,  are invest igated.  The resul ts
are compared to previous investigati.ons. One advantage of the method employed
is the fact  that  i t  leads to a nwner ical  solut ion which costs very l i t t le  com-
puter t ime. In addi t ion,  i t  can be extended very easi ly  to more complex cases
such as mul t i -bubble conf igurat i -ons or  to wal ls  coated wi th e lastomeric coat ings.

NOMENCLATURE

80, d l  ,  . . . .  an spher ical  contr ibut ions to the bubble wal l  equat ion

b(t)  d istance between the f ixed and the moving coordi"nate system
fz,  f ,  ampl i tude of  non-spher ical  perturbat i .ons of  type cos0 of

F ( 0 ,  t )

BE arnpl i tude of  non spher ical  perturbat ion of  type Pr(cos0) of  .R

hr,  hg ampl i tude of  non spher ical  perturbat ion of  type cos0 of  Q

K3 a1pl i tude of  non spher ical  perturbat j .ons of  Eype Pr(cos0)
of .R

K polytropic coef f i -c ient
9" in i t ia l  bubble center  to wal l  d istance

o
p ( r , O , t )  p r e s s u r e  f i e l d
'P-(t) imposed ambient pressure

P initial ambient pressure
o

P vapor pressure
v

P^(t)  noncondensable gas pressure
ts

AP character is t ic  value of  the imposed pressure AP = P*"*  -  Po
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9e'  91 '  . .  . .  .  qn strengths of  f i rs t  and successive spher ical  sources

spher ical  coordinate-
( r ' +  49 ,2  -  4 r l , coso ) f
initial bubble radius

t ime
charac te r i s t i c  t ime  sca le  T  =  R ,6 lM
(P -P ) /AP 

o
o v

Legendre polynonial of order n

bubbl-e wall equation
l iquid densi ty
surface tension
R /9"  << 1

o o
velocity potential in the movlng system
successive expansions of Q

character is t ic  veJ-oci ty potent ia l

R  .  LP /2y
o

t ime di f ferent iat ion
non dimensional outer variable
non dimensional inner variable

INTRODUCTION

The modeling of cavitation erosion and noise, as well as the related scaling
effects reguires the knowledge of individual and collective bubble behavior.
Most presently used modeling approaches are of a statistical nature and are based
on a spherical bubble collapse theory developed by Rayleigh. This spherical
model was extended by Plesset (1) to the case of a gas and vapor fi l led spheri-
cal bubble moving along with the surrounding fluid. However, in practical situ-
ations where cavitation is harmful, collective bubble collapse and the presence
of nearby sol id boundar ies are fundamental .  Observat ions of  non-spher ical  bubble
collapse have been made experimentally using high-speed photography (!-1!). A
high-speed re-entering jet is seen to be formed at the final stage of co11apse.
Pressure waves of higher maximr:m aruplitude than those obtained in the spherical
case are expected to be generated and to contrlbute to the jet damaging effect.

Despite i.ts great practical importance, non-spherical bubble dynamics
studies are not very advanced due to Ehe complexity of the free boundary problem
involved. Analytical solutions are unlikely at present. However, several im-
portant contributions do exist (:-q) which are either purely numerical or numeri-
ca1 with some analytical simplifTcations. These investigations succeeded in
describing the re-entering jet formation, as well as its early evolution.. The
final stage of collapse could not be obtained due, either to numerical instabi-
l it ies or to failure of the analytical mode. These calculations are very time
consuming; thus they have not been extended to investigate the influence of dif-
ferent parameters, or to study complex configurations. In previous publications
(4,2), lte proposed then used maLched asyuptotic expansions to study the problem
when the bubble radius is snall compared to its distance from nearby boundaries.
The behavior in the more compli.cated case vrhere the two 1-engths are of the same
order of magnitude, can be at least qualitatively deduced from the behavior of
the soLution when the sma1l parameter approaches unity. This nethod is used
here for the analysis of the collapse of an isolated bubble near a solid wa11.
A moving coordinate system attached to the bubble allows following the bubble
defonnatlon during the collapse for a long period of time. The potential f low
is determined and then used to describe the pressure field evolution around the
collapsing bubble. One attractive advantage of the method is its small computer
run time. Less than fourty seconds of a Univac 1110 are needed to describe the
whole bubble col lapse as wel l  as the pressure f ie ld.

FORMULATION OF THE PROBLEM

Let us consider the classical
cal bubble near a solid wal1. *o

t
T
P =

P (cos0)
n -

F ( 0 ,  t )
v

Y
e =

Q  ( r , 0  ,  t )
Q s  ' 0 1 , .  . . 0 o
;f,

W =e

*rersslpt"

problen of the collapse of an initially spheri-
is the initial radius of the sphere and .to is
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the initial distance from its center to the solid wall-. Due to a change ln the

ambient pressure P_(t), the bubble shape changes. Our aim ls to determlne, at a

subsequent t ime t ,  the equat ion of  the bubble wa11-, .R(Ort) ,  as wel l  as,  Ehe pres-

sure f ie ld around l t ,  p(r ,O,t ) .  To do so,  let  OoXoYoZbe the in i t ia l "  coordinate

system and OffZ a coordinate system movlng in the z direction. If b(t) is the

distance OOor the distance fron the ori-gin to the wall at the time t is glven by

[(r) = Lo - b(r). A point M on Lhe bubble surface is defined by the ang]-e 0

( f ie.  1)  and the distance ,R(0rt )  f rom O.

FICURE I  -  DEFINIT ION OF DIFFERENT CHARACTERISTIC LENGTHS
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F I C U R E  2  .

SHRPE OF THE EUBBLE RT OIFFERINT TIfNES

If  the f lu id is  assumed to be invisc id
exists a velocity potential Q such that the
If the fluid is ln addition incompresslble'

A 0 = o

0.00t 0.5an L00t l-501 2-0q, 2.500 !.000 tjd) rl/xn

F I C U R E  3  -

SHFPE OF THE BUBBLT FT DIFFERENT TIMES

and the flow irrotationnel- there
veloci.ty field is given by V = VQ.
it satisfies the LaPlace equatlon,

(1)

To determine the bubble wal1 motion one has to solve (1) subjected to the fol1ow-

ing kinematic and dynarnical conditions on the bubbl-e surface and on the solid

wal l :

v O . s l r = B ( o , r ) = 1 6 . 9 r + t ' g ) . L  Q )

p t 6  -  i = ,  ! O + t l Y O l ' J . = B ( 0 , r )  = r - ( t )  - P s ( t )  - P . r *  2 t c ( Q , t )  ( 3 )

! 0 ' g l r = o ( r ) / c o s o = 0 ,  ( 4 )

where C and n are respectively the curvature of the bubble surface and its unlt

normal vectoi at the point M(O,t). Y ls the surface tension and dots denote time

differentiation. Q and the operator V are sxpfessed in the moving system 0)ff2.

P_, P*, and Po are the lmposed ambient pressure, the vapor Pressure and the pres-

sure 6f the pas insLde the bubble. If we assume a poLytropic behaviorr P, is



related to ies initial value by the equation

R 3 k
Ps(t) = tro 

tb

where 7(t) Ls the volume of the bubble at the time t, and k is
coef f ic ient  (1 < k < cn/c.r ) .

To these conditions, we have to add the initial condition
conditlon at infinitv:

0  ( r , 0 ,  o )  =  0

P - ( o ) = P  - p  + p  - q  ( 6 )- o  - g o  
v  R o

l i l o  0 ( r r0 , t )  =  0
r + o

The pressure field is then deteruined by the Bernoulli eguation which can
be written in the fixed system 0oXoZ as follows:

p( r , t )  =  -6 r  -  * l y ro f l2  +  r - ( t )  (7 )

In the moving system this expression becomes:

p( r , r )  =  -6+  i  9z  yO -  + lyO l '  +  P_( r )  (7 )

With no further sinplif ications or assunptions, this general problern is not
easily solved analytieally. As mentioned above, numerieal computations, can be
used, the most attractive ones being based on a variational fomulation. How-
ever, when the ratio R^/t,^ is small, analytical calculati-ons using matched asymp-
totic expansions drana8i"Sffy sirnplify the problem leading to a low tine-consuming
numerical resolution.

MATCHED ASYMPTOTIC PROBLEI,T

When the orders of  magni tude of  Ro and l ,o are di f ferent  ( i .e. ,  Ro/go = e((1) ,

the problem has two different characteristic lengths, and depending on whether
one is interested in the vicinity of the bubble "inner regiont', or in the vicinity
of the solid wall "outer region", Ro or Lo should be respectively choosen as the

length scale, L. By dolng so, the problern (1) to (6) is divided into two easier
subproblems, the "inner" (L = Ro) and the "outer" (L = [o), with matchi.ng condi-

tions in between. Before giving the details 1et us notice that, to the first
order of approximation (e = 0) in the inner problern the solid wall- is effectively
at infinity. The bubble reacts to a change P-(t) in the ambient pressure as if

it were in an infinite medium. It therefore behaves spherically, its wall motion
ao(t) being gi.ven by the Rayleigh-Pltsset (2) equation. To the same order of

approxiruation, in the outer problem the bubble appears as a single point and the
boundary conditions on its surface are to be replaced by the matchj.ng condi-tions
with the inner problem. That is to say, the value of the potential when i(=r/[o)

tends to zero, is equal to the linit of the inner potential, where i(=r/Ro) tends

to infinity. Thus the bubble appears in the'outer problem, as a spherlcal sin-
gular i ty  of  st rengan go(t )  = "o2{t )  .  io( t )  centered at  0.  The outer  problem is

then that of a source in the presence of a scil id wall. The solution is easily
obtained by the use of the method of images: The total flow is that due to the
superposition of two sources - one the actual source at 0 and the other an
identical- one syumetrlcal to 0 with respect to the wal1. Turning back to the

( 5 )

the polytropic

and the boundary
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inner problem Itre can now solve the second order of approximation. Here the at-
lnfinity conditions are given by the matchlng condLtion $.tth the first order of
approxlmatlon of the outer solution (detalls below), and by the application of
the principle of less degeneracy. The successive order of approximation are
solved in a sinil-ar manner in the tr.m reglons, the solutions belng subjected to
the folloraing matching condition

l tn 0o.r ,  = 1T 6.  (8)
i = r / 9 "  r  = r / R  - + 6  

' l n
' o - + o  o

NON-DI},IEN S IONALI ZATIONS

In order to make asymptotic expansions (and thus to compare orders of rnagni-
tudes) an accurate choice of characteristic scal-e variables ls fundamental. For
the length scales the choice is obvious: Ro in the inner problem, .to in the outer.

The tine scale has to be the same for the two problems and, slnce lre are interest-
ed in the col-lapse history, the Raylelgh time based on Ro and the characteristic

value of the imposed pressure perturbati.on, Ap, is taken as this time scale:

r = Ro 6iM (e)

Ap, whf-ch is also taken as the characteristic scale for the pressures, can be
defined as the difference between the maximum val-ue of P_(t) and the inltial

v a l u e P ( o ) = P
o

N = P*r* - to (10)

If surface tension is neglected and if the cavity contains only l iquid vapor,
then P_ = P and T is the classical Rayleigh time. In the more general case con-o v
s ide red  he re  P ,  i s  g i ven  by  (6 ) .

o
The only variable left is the characteristic velocity potential 0o. As we

have mentioned before, in both regions the flow in the first approximation is
due to the presence of a source (and lts image for the outer problern) of strength
qo(t)  (character is t ic  scale Ro3/T).  Then, the veloci ty  potent ia l  has the scale

q^(t ) / r .  That  is  to say,  O- = R^2/T for  the inner problem and 0^ = R^3 /9.- ' t  for- o -  - '  o  o  o  o '  o
the outer problem.

With these characteristic scales, non-dimenslonal vari.ables all of order
unity are lntroduced through the followlng definiEions, where bars denote outer
non-dimensional variables and tildes inner ones.

i = r / R o  ;  i - t / L o

0 = O T / R . 2 ;  d = r 0 T / R o ,

F ( t )  =  p t t l  :  ( p ( t )  _  P o ) / A P  
( 1 1 )

i = i - r l R o , 6 7 t r

T = 9"/9.o

6 = U / n o  ;  6 = b l l o

Each of the unknorrrns is then expanded in porrer series of e as foLlows:

d  =  6 o  *  1 6 ,  *  E 2 6 z *  g t d r  +  . . .

0  =  0 ^  a  e $ r  +  e 2 6 z  1 e 3 0 r  +  . . .'  ' o
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5  =  5o  +  e5 ,  +  e2E . .  +  e3E ,  +  . . .

i = io + eil, + etfr., + e3fr., + .. .

ANALYTICAI SOLUTION

First Order of Approxirnatiog (eo)

As stated before, the bubble behaves spherically to the first order of
approximatlon, and lts radius is glven by the foll-owing non-dlmensional Rayleigh-
Plesset equation:

; ir* i iot = -LG) + p(ao-3k - 1) + nr.-l{ao-3n - to-t, (r2)
o (

where
H - = R _  . L p / Z " f

e o

p  - p  P ,  ( 1 3 )

p =  o .  
- v  6 0  - . - 1  

F  - V - Lr = - T I t - = l F - - " "  =  
, o  e

The parameter P is a measure of the initlal non-dimensional gas pressure inside
the bubble. The potenti.al flortr in the inner problem can then be written:

-a ' ;  - i  (E)
E  _  O  O  =  

' o ' '
' o  

i  i  '  ( 1 4 )

In the outer problem, the potential f low is that due to the superposition
of two syunetrical sources relative to the wall (Fig. 1) and can be written:

l-, 
-l

6o=- (o { r ,  l + .+ l  os )
L -  ' J

To this order, due to the spherical symetry of the problem, no bubble motlon
occurs and if we fix the origin of coordinates to the bubble we can write:

I o = 1  ,  6 o = O  ( 1 6 )

Second Order of Approxi-mation (et): Lengthening Effect

The matehiag condition (B) shows that the first correctlon to the order-zero
lnner solution (14) ls of order e. Definitlons (11) being taken Lnto account,
Equation (8) can be rritten:

l i E  ( 0 ^  +  1 6 ,  * . . . . )  =  e  l l g  ( d ^  + . 6 ,  * . . . . )
f - > 6  f - > @  

e

which with (15) i:np1les the already-known condition,

l i n  0 ^ = 0  ,-  ' o
r + @

1rg O, = U",t"

r + @

as well as

(17)

0, h"" to satlsfy the Laplace equation, as well as the boundary conditLons on the
bubble rrall (the contrlbution to order e of the expansion of (2) and (3) non-
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dimensionalized) .
To thLs order all boundary conditions are spherical so that the solution $,

can be r*rltten as:

where do ana {,

- 9 1 9 oo , = - T  ;  
( r 8 )

are frmctions of time. io t"r been defined earlier, (14), and

The first spherical correctLon, i ' of the bubble radlus

the followlng dlfferential equation.

i . ,  {0, t)  = i ,  ( i )

(1e)

is obtained by solving

(22)

motion is involved, and

(23)

(24)

i r = i o 2 i r + 2 a o ; o ; r

^ r r - 1  F  \  :

doi, * 3aoar * a, ( i^ - ' !=", * 31 ---e" l= - + (20)
t \ o  d o '  U o t n * t /

If the surface tension and the pressure of noncondensable gas are neglected,
Equations (20) and (12) can be integrated to gtve the corrected period of oscil-
lation of the bubble, which can be writtdn:

/ / \
t = r - + e T ,  = 0 . e 1 5 ( t . i  

/ u . u ,  )  
( 2 1 )

o r l

\ { /

where i is the nondimensional time needed for a spherical void to collapse. A
o

solid waII is therefore seen to have a lengthening effect on the bubble collapse
tlne (a free surface gives a shortening effect). Thls result has been predicted

by energy considerations by HerrinC (10) as early as 1941.
The outer solution of the problem is obtained by the use of the nethod of

images, wtrich consists of adding a symetrical image to the correction-source'
to g ive:

As the problen is sti l l spherical-

6 =' l

to

E

-q,

chls

I

[ t * r l
[ ;  ; 'J
order, no

6  = Q

Third Order of Approximation (e2) r Motion and Flrst Non:Spherical Deformation

The first non-spherical term in the equations appears to the order e2, in
the expansion of the matching condition (8). This term varies as cosO. Since
the non spherlcal terms involving the motion of the origin of coordlnates in
thq boundary conditions on the bubble ((2) and (3)) are also of the form cosO,
the prlnciple of less degeneracy leads to the choice,

6  =  e ' 6 ,  *  . . . .

The equations to this order takes then the fona:

A A  = Q
2
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a;
-  ' 2

- a
o ^ _

d t

l-im d^ =
u  

, Z

r + @

This leads to,

i, and i, ^t" given by

ai,  o, i ,  2r ,  ' \

t  *  
ao 

cotgo * 
nr '  , :  )*1 , -ao iuao+#("

i , { 0 , . )  =  l , ( r )  +  i , t . )  c o s o

the following differential equatlon

/.. zw^-L - \ :

. l a  -  =  + P  - J 5 - l = - 1 *
\ 

" io' 
- 

8o Zotn*'/ 2

+ l  = 2 f r , a * n , *
a i f -  -  ' "

F = " o  o

- ioi, coso + rr(ir, io, ir;u,

6"  cosO +  r r { i ' i o ) (2sl.

1zo)

1zt)

1ze)

F ,  ( i o ,  l ,  ,  n . - 1 ,  i r o ,  k  )

(ro;

(31)

(32)

(33)

where F, and F, are knol*n functions of ir, io, k and p
go

Thls problem is ruore complex than those already solved in the two preceding
orders. A solution can be obtained by means of an infinite spherical harmonic
series expansion of 02. Fortunately, due to the condition (27) and to the initl"al
condition 0.(r,0ro) = 0, all the terms of the expansion are shown to be identi-
cally zero except the following ones:

(28)

d o -  q r
- -4- r costr -t 

7-

-  a"  l ; '  E \  q
6 r = - * * [ j * -  i f c o s e - r-  i  \ ; '  4  I  2

; r - t ( i o i o + a o t o )
r o -

A  f  + 3 a f
o  z  0 2

a r l a r S ,

4 . = 2 ' E , + l z : - 3 '
r l

a \ a a
o ' o o

i i ^ + s i i - + i
O z  6 2  

- 2

O n c e i  a n d f  a r e
2 2

.^;
= - i t - - 3 i

o z  o

known. i and" 2 fr_ are given by the following relatlons,
2 -

do + ir io2

The only reurai.nlng unknown, needed to solve equatLons (30) and (31) 1s the
imposed motion of the origin of coordinates 6r(t). The aim of thls arbltrary
motion, as stated before, is to provlde at each tinne i a system of coordinates
whlch can describe the bubble wal1 equation correctly. With no motion of 0, the
part of the bubble surface farthest from the wall can reach 0 early ln the co1-
lapse history. For subsequent times, 0 ls outslde the domain bounded by the
bubble surface and the spherical coordlnate system used (r,0,S) ts no longer
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adequate to describe this surface. Therefore, the coordinate motion should be
chosen in order to delay this l irnit, if not to avoid it. The first i.dea which
comes to mind is to attach 0 to the center of gravity G of the bubble by writing
its equation of motion. Thls motion is such that the net pressure thrust on the
massl-ess moving bubble is zero. The equation obtained is not an additional one
and  g i ves  aga in  (3 )  (o r  to  th i s  o rde r  (30 )  and  (3 f11 .  Thus ,  the  pos i t i on  o f  G
is knor^m once the wtrole problem is solved. An iterative procedure can be used
by taking the position of the center of gravity of the bubble, at a given time
sLep, as the new origin for the following step. Another approach has been used
here because it appeared more practical. If a cavity is assumed to remain
spher ical  whi le osci l la t ing near a sol id wal l  as a source of  st rength Eo(t) ,  i ts

center moves toward Ehe wall with the velocity 6s(E) given by:

2aoBs + 6;08" = -aoio-aoio

An equivalent equation has been used in the literature to determine the bubble
motion. To obtain (34), only the source-image relative to the wall is taken
i.nto account. The images relative to the bubble wall are neglected and hence
the condi t ions (3,4)  on the bubble surface are not  sat is f ied.  A urot ion of  the
origin of coordlnates proportlonal to 6", such that t, = Dep . 5", is applied

and gives good resul ts for  1 < ) ,  < 1.5.

Order e3 and Following

As we have seen above, the choice of 5 is somewhat arbitrary. We will then
restrj-ct the motion of the origin to 5 (f) and treat the following orders of
approximation wi-th no correction of this motion. One can show that to each
order,  as for  the preceeding orders,  the radius Rn(Ort)  is  of  the form:

R n ( e , E )  =  i o ( E )  +  f n ( i ) c o s 0  *  E r , t t 1  P r ( c o s 0 )  + . . . . i r r t t ) P o _ r ( c o s 0 )

where Prr(cos0) is the Legendre polynomial of order n. For

R 3 ( 0 , t )  =  i : ( E )  +  1 3 ( E )  c o s O  +  E r t t )  .  ( 3  c o s 2 0

and [, (t) are obtained by solving the following; 3  ( i ) ,  r 3  ( f )

equat ions:

a a . +
o r

- 2 + : r i  . - - 3 k - 1 )
g o o

(34)

o =  3 ,  we have:

-  r )  /2  (3s)

di f ferent ia l

(  36)

(37 )

(38)

(3e)

d ;^  + a^( ;  -  zw 
-L;

o r 5 - o e o

t -  
- ]

=  F u  ( a o ,  d l ,  d *  I i e  
'

' P o )
oo

a f  + 3 a f
0 3  0 3

" 0 8 .  *  J t o 8 ,

=  F r ( i o ,  i r ,  t r )

-  Er t lo  -  Lzwre-r ; ' . ' )  =  -s( iou3o *  + ;o t io \ la

where Fu and F, are known functions of variables determined in the preceding
orders of approximation. For the sake of concisness the complete expressions
are not given here but can be found along with more details of the calculations
i n  ( 4 ) .

Pressure Fie ld

sum up, the velocity potential in the outer problem can be writ ten asTo
fol lows:

o ( i , o , r )  =  - ( d o  +  . d ,  *  . ' 4 ,  + . t i ,  *  e u E u ) ( t - 1  +  ; ' - 1 )

+  (e t [  +  eu l i  ) ( i - 2coso  -  i i 2 "o "0 ' )

+  eq i r ( i - 'P r ( coso )  +  i ' - ' p z ( cos€ ' )  +  o (e4 )

35



The pressure field
equat ion to g ive:

_ r
p = A ^ l e Q ^ +

O L

is obtained by replaci-ng d Uy its value in the Bernoulli

r 'd ,  *  . td .  *
. l  r .

. u A ,  l - . u l { d o r ,  *  i o i r )  E  +
r L _ ( 4 0 )

1r .o"0  A.  -  Eo i rs ino  \  +  Eo 'Ao l  +  o (e4)fr, {"o"0 . t-2 - B) + Eo

where a-  - t  - r - 1
A  e  r  

^  
*  r '  

-
s

i  =  z (2- i )  coso .  ; ' -3

n  =  (2  -  i  cosO)  f ' -3

(41)

Once the evolution of the surface of the bubble and the velocity potentia.l srs
determined, (aD al lows a conplete descr ipt ion of  the pressure f ie ld and of  i ts
evolution with time.

NT]MERICAL RESULTS

The  equa t ions  (12 ) ,  (20 ) ,  (30 ) ,  (36 )  to  (38 )  cons t i ru te  a  sys rem o f  seven
equations with seven unknowns. Each of these equations is a differentlal equa-
tion of the second order which can be solved numerically by a Runge-Kutta pro-
cedure. Particularily the Rayleigh Plesset equation (I2), and the origin of
coordinates moti-on equation (34) are independent and can be solved easily to
give io and 6r. Equations (20) and (38) which depend on io and equation (31)

whlch depend on in and 5, can then be solved by the same procedure. The results
are used to solve-the refraining equations. This "multi-Runge Kutta" procedure
is convergent and gives'in few seconds of run on a Univac 1110 computer the
collapse history of the bubble in some two thousands steps of time.

The results are il lustrated in Figures 2 and 3. In both figures the
in i t ia l  bubble-center  to wal l  d istance ls  1.5 Ro. This is  a c lassical  case

which was invest igated in previous publ icat ions ( I r6r7) .  The numerical  resul ts
of (5) were checked experimentally in (3): As can be seen from the comparison
between the two f igures the inf luence of  P is  very important .  P- = 0.2

8o 8o

gives a cushionned collapse followed by a rebound without the forrnation of a
re-enter ing jet .  On the other hand when F^ = 0.1,  a re-enEer ing jet  is  c lear ly

8 o a

formed. At  the t ime-step fo l lowing t  -  0.977 (p/Po-t . r ) ' ,  rhe mot ion of  the jet

overtakes that of the origin of coordinates, and-TfrffiEEftod no longer describes
the bubble equat ion correct ly .  In order to invest igate the inf luence of  d i f -
ferent parameters on the bubble wall motion, Figures 4 and 5 compare the motion
of the re-entering point on the bubble surface (point J in Figure 1) in dif-
ferent cases. Figures 6 and 7 compare the motion of the origin of coordinates
0. We can see from Figure 4, tha! decreasing the initial pressure of noncon-
densable gases inside the bubble P_ is as effective in increasing the violencego

of the bubble col lapse as decreasing the bubble wal1 distance.  This resul t  a lso
applies to the pressure field generated around the bubble, and thus to the
erosive ef fect  of  col1apse.  Such behavior  is  expected s ince the gas acts as a
spring cushioning the bubble implosion. The i-mportance of the law of behavior
of this gas, showed analytically in (4), is remarkably i l lustrated in Figure 5
where the re-entering jet behavior is completely different between K = I and
K = 1.4.  However,  the interpretat ion of  the resul t  is  compl icated:  One woul-d
exPect a faster collapse for the isothermal 1aw. This is the case for the first
order of  approximat ion ao.  However,  the correct ions ar ,  &2,  d3r which are in-

versely dependant ot "o, are greater than in the more realistic adiabatic case.

The isothermal collapse remains more energetic since the attraction of the
bubble towards the wal l  is  much higher (Fig.  7) .  This is  ref lected in the re-
sul ts obtained for  the pressure f ie ld.  Let  us note,  however,  that  the solu-
t ion in the isothermal  case looses i ts  val id i ty  ear l ier  in the col lapse history
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since the rat io of  the bubble radius to i ts  d istance f rom the wa1l  increases
rapidly.

The influence of the surface tension can be deduced from Figs. 5 and 7.
For high Weber numbers (tr rtOO) the motion of the re-entering point and of the

center of  the bubble are not  very sensi t ive to a chan1e of  W".  These mot ions

become highly dependent on ly'" for smaller values of this parameter. Surface
tension effects are thus expected to beco,me important with typical fluids for
very small val-ues of ("o AP). a slmilar effect is knor^rn for spherical bubbles.
The most interesti-ng result concerning nonspherical bubble dynamics is the in-
fluence of e (proxluity of the wall) on the behavj-or of the re-entering jet
and on the duration of collapse. As shown above, from consideratlons on the
spherical corrections of the Rayleigh Plesset solution, a lengthenlng effect
on the bubble collapse time is obtalned with presence of a solld wall: The in-
crease in the bubbl-e life is directly proportional to e. However, one would ex-
pect intuitlvely that the jet velocity would increase with e and that the time
needed for this jet to reach the opposite bubble wall can be smaller than the
time needed for a spherical bubble to attain its maximum radius. This reason-
ing has been confirmed experimentally (lrrg. Figure 4 (and in more detail,
F ig.  8)  shows th is ef fect :  Unt i l  the latest  stage of  co1lapse,  increasing e
increases' at a given time, the distance 0J (Fig. 1). This shows the tendancy
Eowards lengthening the bubble life. However, this tendency is reversed later.
The speed of the jet increases with t and the overall effect is to shorten the
time needed for the re-enteri-ng jet to pierce the bubble. At the same time the
at t ract ion of  the bubble towards the wa11 inereases (Fig.  6) .  The ef fect  of  e
on OoJ is greater than that on OJ since the effects on OJ and the wall distance
are then added. A similar shortenlng effect has been reported in the case of a
movlng spheri.cal bubble (_13) . In Fig. 8, the evolution with time of the dis-
tances OJ, OL, OS (Fig.  1)  as wel l  as the spher ical  solut ion,  a are plot ted
simultaneously. These lengths are respectively noted in the figure as RJ, RL,
RS and AO. The lengthening effect is clearly seen on RL and would be greater
if the curve represented OoL. On the contrary the collapse is faster for OS
and especia l ly  of  OJ,  even wi thout  taking into account the mot ion of  the or ig in.
Let  us note '  however,  that  th is is  an extreme case,  corresponding to Fig.  2.
For non-violent collapses (low values of e or high values of ito ) a lengthening

oo

e f fec t  ex i s t s .
In the last four figures we consider the pressure field around the collaps-

ing bubble.  This subject  is  a matter  of  concern,  s ince ear l ier  resul ts seem Eo
be contradictory. Mitchell and Hamnitt (q) found that the pressure betneen the
bubble and the walI was smal-ler than in an infinite medium. However Korovkin and
Levkoski (13) found, without taking into account the bubble deformation that the
maxlmum value of the pressure on the nearby wall can be much higher then in the
infini-te medium case, if Fo is sma1l. Ilere, we confirm this result without con-

oo

tradicting that of (q). Fig. 9 shows the evolution with time of the pressure
on the wal1 (point W, Fig. 1) and at two other points at a distance [o from

0 - one on the axis of s5rmetry (noted VERT) and one in the plane parallel to
the wa1l and passing through 0 (noted I{ORZ). These pressures are compared to

that in an inf inite medium (noted INFI). The presence of the wall greatly rnodi-
fies the pressure field especially at W where the maximum pressure is two orders
of magnitude higher than in the infinite mediu . This uraximum value drops

signi f icant ly  for  a less v i .o lent  col lapse:  Fig.  10 shows that  for  Fo = 0.2,  i t
oo

is only three times that in an infinite medium. For 
- 

4 1, the pressure is re-
duced in the presence of  the wa1l .  This expla ins the resul ts of  (6)  where the
largest time in the calculations is smaller than Ehe liniting time after which
the pressures increase. These remarks are confirmed in Figs. 11 and 12. I{here
the var iat ions of  the pressure perturbat ion p-  wi th f  are represented for  d i f -
ferent  angles 0,  at  two t imes (0.914 and 0.949);0 = 0 corresponds to the di -
rect ion of  the wal l .  We can see that  in Fig.  11 the pressure f ie ld is  smal ler
than that in an infinite medium and is very similar to that presented ir (9).
However at  E = O.g4g (Fig.  12) the pressure in the ent i re f ie ld is  h lgher ?han
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in  the inf in i te medium case.

CONCLUSION

1. The method of matched asyrnpotic expansions is seen to be successful in des-
cribing the nonspherical bubble dynamics near a solid wall, including the gene-
rated pressure f ie ld dur ing the bubble col lapse.  To study more complex boundar-
ies one need only change the second member of the differentLal equatlons solved
nuuerlcally.

2. The influence of the initial gas pressure and of its law of compressi-on is
as important  as the proximity of  the wal l  (e) .

3._ Hlgher Jet  veloci t ies are obtained for  greater  e and smal ler  F-_.  An over-
all shortenlng effect of the bubble collapse tirne is obtained for 

-o 
ir,t.r,".

collapses. Ilowever this result should be moderated by the fact that for high e
the method loses lts validity earlier in the coll-apse history.

4. Pressures, orders of magnitude higher then in the spherical case, are gene-
rated on the nearby wall when the bubble is very close to it.

5. An anelloration of the nethod can be obtained by a closer look at the last
stage of collapse. In particular, a change in the lengths and the time scales
is needed, since the problem becomes singular in tiue at the end of the collapse.
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