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ABSTRACT

The method of matched asymptotic expansions is used to investigate the be-
havior of a collapsing bubble near a solid wall. Cases are studied in which
the ratio € between the initial spherical bubble radius and its distance from
the wall is small. Expansions in powers of € lead to a simple system of dif-
ferential equations which is solved numerically. The bubble shape, the velocity
potential and the pressure field are determined as functions of time. The
deformation of the bubble is a singluar perturbation of the pressure field
around it. A decrease in the value of € augments the pressure on the solid wall
by orders of magnitude. The influence of surface tension and the proximity of
the wall, gas content and its law of compression, are investigated. The results
are compared to previous investigations. One advantage of the method employed
is the fact that it leads to a numerical solution which costs very little com-
puter time. In addition, it can be extended very easily to more complex cases
such as multi-bubble configurations or to walls coated with elastomeric coatings.

NOMENCLATURE

I - spherical contributions to the bubble wall equation

b(t) distance between the fixed and the moving coordinate system

£,, f3 amplitude of non-spherical perturbations of type cosf of
R(B,t)

g, amplitude of non spherical perturbation of type P,(cos6) of R

h,, h3 amplitude of non spherical perturbation of type cos® of ¢

K, amplitude of non spherical perturbations of type Pz(cose)
of R

K polytropic coefficient

Eo initial bubble center to wall distance

p(r,6,t) pressure field

.Pw(t) imposed ambient pressure

Po initial ambient pressure

Pv vapor pressure

Pg(t) noncondensable gas pressure

AP characteristic value of the imposed pressure AP = Pmax - PO -
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Qg5 Qg5 ccev- q strengths of first and successive spherical sources

r spherical coordinate
r' (r? + 482 - 4rlcosd)
R initial bubble radius

[
t time
T characteristic time scale T = R_ vVp/AP
P = (P -P_)/AP °
o v

Pn(cose) Legendre polynomial of order n
R(6,t) bubble wall equation
[ liquid density
Y surface tension
€ = R/, << 1

o o
¢(r,0,t) velocity potential in the moving system
¢0,¢l,...¢n successive expansions of ¢
3, characteristic velocity potential
Wé = R0 * AP/2y
Superscripts
. time differentiation
- non dimensional outer variable
~ non dimensional inner variable
INTRODUCTION

The modeling of cavitation erosion and noise, as well as the related scaling
effects requires the knowledge of individual and collective bubble behavior.
Most presently used modeling approaches are of a statistical nature and are based
on a spherical bubble collapse theory developed by Rayleigh. This spherical
model was extended by Plesset (1) to the case of a gas and vapor filled spheri-
cal bubble moving along with the surrounding fluid. However, in practical situ-
ations where cavitation is harmful, collective bubble collapse and the presence
of nearby solid boundaries are fundamental. Observations of non-spherical bubble
collapse have been made experimentally using high-speed photography (2-4). A
high-speed re-entering jet is seen to be formed at the final stage of collapse.
Pressure waves of higher maximum amplitude than those obtained in the spherical
case are expected to be generated and to contribute to the jet damaging effect.

Despite its great practical importance, non-spherical bubble dynamics
studies are not very advanced due to the complexity of the free boundary problem
involved. Analytical solutions are unlikely at present. However, several im-
portant contributions do exist (5-8) which are either purely numerical or numeri-
cal with some analytical simplifications. These investigations succeeded in
describing the re-entering jet formation, as well as its early evolution.- The
final stage of collapse could not be obtained due, either to numerical instabi-
lities or to failure of the analytical mode. These calculations are very time
consuming; thus they have not been extended to investigate the influence of dif-
ferent parameters, or to study complex configurations. 1In previous publications
(4,9), we proposed then used matched asymptotic expansions to study the problem
when the bubble radius is small compared to its distance from nearby boundaries.
The behavior in the more complicated case where the two lengths are of the same
order of magnitude, can be at least qualitatively deduced from the behavior of
the solution when the small parameter approaches unity. This method is used
here for the analysis of the collapse of an isolated bubble near a solid wall.

A moving coordinate system attached to the bubble allows following the bubble
deformation during the collapse for a long period of time. The potential flow
is determined and then used to describe the pressure field evolution around the
collapsing bubble. One attractive advantage of the method is its small computer
run time. Less than fourty seconds of a Univac 1110 are needed to describe the
whole bubble collapse as well as the pressure field.

FORMULATION OF THE PROBLEM

Let us consider the classical problem of the collapse of an initially spheri-
cal bubble near a solid wall. Ro is the initial radius of the sphere and Zo is
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the initial distance from its center to the solid wall. Due to a change in the
amblent pressure Pw(t), the bubble shape changes. Our aim is to determine, at a

subsequent time t, the equation of the bubble wall, R(6,t), as well as, the pres-
sure field around it, p(r,6,t). To do so, let ooxoYoZ be the initial coordinate

system and OXYZ a coordinate system moving in the z direction. If b(t) is the
distance 000, the distance from the origin to the wall at the time t is given by

2(t) = lo -~ b(t). A point M on the bubble surface is defined by the angle ©
(Fig. 1) and the distance R(8,t) from O.
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FIGURE 1 - DEFINITION OF DIFFERENT CHARACTERISTIC LENGTHS
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If the fluid is assumed to be inviscid and the flow irrotationnel there
exists a velocity potential ¢ such that the velocity field is given by V = V¢.
If the fluid is in addition incompressible, it satisfies the Laplace equation,

A =0 . ' (¢))]

To determine the bubble wall motion one has to solve (1) subjected to the follow-
ing kinematic and dynamical conditions on the bubble surface and on the solid
wall:

¥+ nf| _ RGO,t) = (R-e +b- el " (2)

Pl = be, + Vo + 3|90%], | peg gy = Pul®) = By(6) - B+ 27 C(B,8) (D)

% - EIr = 2(t)/cosb =0, )

where C and n are respectively the curvature of the bubble surface and its unit
normal vector at the point M(8,t). Y is the surface tension and dots denmote time
differentiation. ¢ and the operator V are expressed in the moving system OXYZ.
P, PV and P are the imposed ambient pressure, the vapor pressure and the pres-

sure of the gas inside the bubble. If we assume a polytropic behavior, Pg is
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related to its initial value by the equation

R 3k
[}

P ) =P 5
LAY @

where V(t) is the volume of the bubble at the time t, and k is the polytropic
coefficient (1 < k < cp/cv).

To these conditions, we have to add the initial condition and the boundary
condition at infinity:

$(r,0,0) = 0

g v

2
P() =P =P +P -l (6)
[¢] [o]

lim ¢(r,0,t) = 0

r >

The pressure field is then determined by the Bernoulli equation which can
be written in the fixed system OOXOZ as follows:

H 2
p(r,t) = ¢, - 3[V0.[* + P (1) o
In the moving system this expression becomes:

p(r,t) = -b+b e - U - 2[V0|* + P (D) ™

With no further simplifications or assumptions, this general problem is not
easily solved analytically. As mentioned above, numerical computations, can be
used, the most attractive ones being based on a variational formulation. How-
ever, when the ratio R /% is small, analytical calculations using matched asymp-
totic expansions dramagicglly simplify the problem leading to a low time-consuming
numerical resolution.

MATCHED ASYMPTOTIC PROBLEM

When the orders of magnitude of Ro and lo are different (i.e., RO/R,0 = g<<1),

the problem has two different characteristic lengths, and depending on whether
one is interested in the vicinity of the bubble "inner region", or in the vicinity
of the solid wall "outer region", Ro or Zo should be respectively choosen as the

length scale, L. By doing so, the problem (1) to (6) is divided into two easier
subproblems, the "inner" (L = Ro) and the "outer" (L = 20), with matching condi-

tions in between. Before giving the details let us notice that, to the first
order of approximation (€ = 0) in the inner problem the solid wall is effectively
at infinity. The bubble reacts to a change Pm(t) in the ambient pressure as if

it were in an infinite medium. It therefore behaves spherically, its wall motion
ao(t) being given by the Rayleigh-Plisset (2) equation. To the same order of

approximation, in the outer problem the bubble appears as a single point and the
boundary conditions on its surface are to be replaced by the matching conditions
with the inner problem. That is to say, the value of the potential when r(=r/lo)

tends to zero, is equal to the limit of the inner potential, where §(=r/R0) tends

to infinity. Thus the bubble agpears in the outer problem, as a spherical sin-
gularity of strength qo(t) =a, (t) - éo(t) centered at 0. The outer problem is

then that of a source in the presence of a solid wall. The solution is easily
obtained by the use of the method of images: The total flow is that due to the
superposition of two sources — one the actual source at O and the other an
identical one symmetrical to O with respect to the wall. Turning back to the
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inner problem we can now solve the second order of approximation. Here the at-
infinity conditions are given by the matching condition with the first order of
approximation of the outer solution (details below), and by the application of
the principle of less degeneracy. The successive order of approximation are
solved in a similar manner in the two regions, the solutions being subjected to
the following matching condition

lim ¢ . = lim ¢ )
= _ out ~ in
r= r/JLo s 0 ¥ = t/R0 +>

NON-DIMENSIONALIZATIONS

In order to make asymptotic expansions (and thus to compare orders of magni-
tudes) an accurate choice of characteristic scale variables is fundamental. For
the length scales the choice is obvious: R0 in the inner problem, Zo in the outer.

The time scale has to be the same for the two problems and, since we are interest-
ed in the collapse history, the Rayleigh time based on Ro and the characteristic

value of the imposed pressure perturbation, Ap, is taken as this time scale:

T =R, vp/AP . (9)
Ap, which is also taken as the characteristic scale for the pressures, can be
defined as the difference between the maximum value of Pw(t) and the initial”

value P (o) = Po

AP = P -P . (10)
max o

If surface tension is neglected and if the cavity contains only liquid vapor,
then Po = Pv and T is the classical Rayleigh time. In the more general case con-
sidered here Po is given by (6).

The only variable left is the characteristic velocity potential Qo' As we

have mentioned before, in both regions the flow in the first approximation is
due to the presence of a source (and its image for the outer problem) of strength
qo(t) (characteristic scale ROSIT). Then, the velocity potential has the scale

qo(t)/r. That is to say, Qo = ROZ/T for the inner problem and ¢o = Roa/loT for
the outer problem.

With these characteristic scales, non-dimensional variables all of order
unity are introduced through the following definitions, where bars denote outer
non-dimensional variables and tildes inner ones.

r= r/Ro ; r = r/!Z.°
= 2, Y = 2
§=¢1/R > ¢ =¢€¢ T/R
- _= _ _ P
p(t) = p(t) = (p(t) - P)/A an
t=1t-= t/R Yo/ bP

z

2/10

ol

= b/R0 s b= b/f,o

Each of the unknowns is then expanded in power series of € as follows:

- —p= -
¢0 t+ed, + e, + e, + ...

§, + b, + e, + €%, + ...

R ot
] ]
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B=5 +eb +¢e2b +¢e’ + ...
o 1 2 3

~

= 3 n 23 3R
R =3 +¢eR, +¢e’R, + R, + ...

ANALYTICAL SOLUTION

First Order of Approximation (e°)

As stated befofe, the bubble behaves spherically to the first order of
approximation, and its radius is given by the following non-dimensional Rayleigh-
Plesset equation:

~ = 332 _ ~ix ~ =3k -1, -3k _~ -1
a5 % + 279 ° —g}t) + P(ao -+ Wé (ao % ) a2
where
Wé =R« AP/2y
P (13)
P = EQ___EX = _EQ Rt 7 w1
AP AP e g, e

The parameter P is a measure of the initial non-dimensional gas pressure inside
the bubble. The potential flow in the inner problem can then be written:

325, -3,®
$O = OE o = g , (14)

In the outer problem, the potential flow is that due to the superposition
of two symmetrical sources relative to the wall (Fig. 1) and can be written:

T = (li,L
¢, = -9, (t) l:; + E'] . (15)
To this order, due €o the spherical symmetry of the problem, no bubble motion

occurs and if we fix the origim of coordinates to the bubble we can write:

lo =1 , bo =0 (16)

Second Order of Approximation (e!): Lengthening Effect

The matching condition (8) shows that the first correction to the order-zero
inner solution (14) is of order €. Definitions (11) being taken into account,
Equation (8) can be written:

lim G, + ¥, +....) =€ lim b, + by + ...0)

r > ® r &+ ©

which with (15) implies the already-known condition,

1lim $° =0 ,

¥+ oo
as well as
q,(®
1lim $l =3 . a”n
r >

51 has to satisfy the Laplace equation, as well as the boundary conditions on the
bubble wall (the contribution to order € of the expansion of (2) and (3) non-
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dimensionalized).
To this order all boundary conditions are spherical so that the solution 61

can be written as:

§,=-—-2 (18)

where io and il are functions of time. ao has been defined earlier, (14), and

§, =37 +2533 . (19)
The first spherical correction, 51, of the bubble radius is obtained by solving
the following differential equation.

-1 2
. - 22 ~ = 2We gO qo 20
+ - + = -
aoax 3aoal + al ag 32 3k T+ 1 2 20)
(] a
o
R,(8,%) = a, (D)

1If the surface tension and the pressure of noncondensable gas are mneglected,
Equations (20) and (12) can be integrated to give the corrected period of oscil-
lation of the bubble, which can be written:

1

I=71 I = £ I3 at
T To + €T, 0.91511 + 7 J{;odt . (21)

o
where ?O is the nondimensional time needed for a spherical void to collapse. A

solid wall is therefore seen to have a lengthening effect on the bubble collapse
time (a free surface gives a shortening effect). This result has been predicted
by energy considerations by Herring (10) as early as 1941.

The outer solution of the problem is obtained by the use of the method of
images, which consists of adding a symmetrical image to the correction-source,

to give:
5.=-q |L+1 (22)
1 Mr or

2 =b =0 (23)

Third Order of Approximation (e2): Motion and First Non-Spherical Deformation

The first non-spherical term in the equations appears to the order ez, in
the expansion of the matching condition (8). This term varies as cosO. Since
the non spherical terms involving the motion of the origin of coordinates in
the boundary conditions on the bubble ((2) and (3)) are also of the form cosf,
the principle of less degeneracy leads to the choice,

Ap =0 (24)
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3% - T
—2 = 2R, 2+R, +b, cosb + F,(a;,a.) (25)
or | _ -~ a
= o
o
%, 3¢, N A %R, 2a 2
-a — . =z =R a + 2 R, +— cotgh + -
CoE BE(p_g °° &? 2 o)
o (26)
aob2 cosf + Fz(al, a, ngk)
- q, . q,
1lim ¢2=—T cosd + —- @27

r > ™

where F  and F, are known functions of 51, 50, k and P .
o
This problem is more complex than those already solved in the two preceding
orders. A solution can be obtained by means of an infinite spherical harmonic
series expansion of ¢,. Fortunately, due to the condition (27) and to the initial
condition ¢,(r,0,0) =0, all the térms of the expansion are shown to be identi-
cally zero except the following ones:

. a, (h 3§ §
¢2=-72+<——+—° f')cose——L . (28)
r 2 4 2
This leads to,
R,(0,t) = a,(t) + £,(t) cosb . (29)
52 and Ez are given by the following differential equations:
-1 2
2K q
~ % L2 ~ < e 3 3k Y 1 ~ -13
aa,+ 3a°a2 +3, a - -~ Pg oo ol i S Fa(ao,al, W, ,Pgo,k)
[
(30)
s Eo+aif -ab -3t -3Gg +3d) (31)
3 *t2 2ot 2 3572 T P8P, T g (a9, 3%
Once 52 and f2 are known,Ei2 and 52 are given by the following relations,
a a a .
5 =21 A N P
9, =2-—gq, +-(2 - 3= :)qo +aa (32)
a a a
o o [
- az? . i’ : s
h, = -4, T+ £, - > (f2 + b2) . (33)

The only remaining unknown, needed to solve equations (30) and (31) is the
imposed motion of the origin of coordinates b,(t). The aim of this arbitrary
motion, as stated before, is to provide at each time t a system of coordinates
which can describe the bubble wall equation correctly. With no motion of 0, the
part of the bubble surface farthest from the wall can reach 0 early in the col-
lapse history. For subsequent times, O is outside the domain bounded by the
bubble surface and the spherical coordinate system used (r,9,$) is no longer
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adequate to describe this surface. Therefore, the coordinate motion should be
chosen in order to delay this limit, if not to avoid it. The first idea which
comes to mind is to attach O to the center of gravity G of the bubble by writing
its equation of motion. This motion is such that the net pressure thrust on the
massless moving bubble is zero. The equation obtained is not an additional one
and gives again (3) (or to this order (30) and (31)). Thus, the position of G
is known once the whole problem is solved. An iterative procedure can be used
by taking the position of the center of gravity of the bubble, at a given time
step, as the new origin for the following step. Another approach has been used
here because it appeared more practical. If a cavity is assumed to remain
spherical while oscillating near a solid wall as a source of strength ﬁo(t), its

center moves toward the wall with the velocity b (f) given by:

[0}

(34)

e

ZaOBs + 6a°5s = -4 G 734,

An equivalent equation has been used in the literature to determine the bubble
motion. To obtain (34), only the source-image relative to the wall is taken

into account. The images relative to the bubble wall are neglected and hence
the conditions (3,4) on the bubble surface are not satisfied. A motion of the
origin of coordinates proportional to Es’ such that 52 = Dep . Es’ is applied

and gives good results for 1 < A < 1.5.
Order €® and Following

As we have seen above, the choice of b is somewhat arbitrary. We will then
restrict the motion of the origin to b (t) and treat the following orders of
approximation with no correction of this motion. One can show that to each
order, as for the preceeding orders, the radius Rn(e,t) is of the form:

Rn(e,f) = En(f) + fn(f)cose + én(f) P,(cosb) +....§n(E)Pn_l(cosﬁ)

where Pn(cose) is the Legendre polynomial of order n. For n = 3, we have:
R,(0,t) = 53(E) + T, (E) cosB + g,(t) + (3 cos?0 - 1)/2 (35)

53(5), fa(E) and éa(E) are obtained by solving the following differential

equations:
ai +0ai +3,G - la Texe o-a %
[ o o e “o g o
1~ ° (36)
= Fu(ao’ a;, a,, We . Pg )
o
~"+:.' = ~ ~
aofs 3a0f3 Fs(ao, a., EZ) €7))
.~ 2L ~ =1 =20 o oWl ~ 3% 2
ag, + 330g3 - gs(a0 - 12We a, ) = S(a0 a, + 4ao a, )/8 (38)

where F, and Fg are known functions of variables determined in the preceding
orders of approximation. For the sake of concisness the complete expressions
are not given here but can be found along with more details of the calculations
in (11).

Pressure Field

To sum up, the velocity potential in the outer problem can be written as
follows:

v —1)

-~ -~ —_— -2
+ (€3h2 + E"hs)(r 2cos6 - T' cosf ") (39)

- - - -~ -~ ~ -1 -
$(7,0,t) = =(q, +eq, +e?q, + 33, + ') (T + 1

+ 5“23(;_3P2(c030) + ;'—3P2(cose') + 0(e*)
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The pressure field is obtained by replacing 5 by its value in the Bernoulli
equation to give:

P = A [eﬁo + ezﬁl +e’q, + e“ﬁs] - e“[(ﬁolz +3.%) E+

(40)
. _2 . -~ hd ~ s . -~
Ez(cose sr ° - B) + qolzcose A, - qolzslne Ap t qozAp] + 0(e")
where

A = 1yt 3 A, = T (r - 2 cosB) 3
E = 2(2-F) cos - £'73 i A =20 - T2 (41)

- _= ==3 . _ 2 2
B (2 -1 cosB) r' 5 Ap = (Ae + AF )/2

Once the evolution of the surface of the bubble and the velocity potential are
determined, (41) allows a complete description of the pressure fleld and of its
evolution with time.

NUMERICAL RESULTS

The equations (12), (20),(30),(36) to (38) constitute a system of seven
equations with seven unknowns. Each of these equations is a differential equa-
tion of the second order which can be solved numerically by a Runge-Kutta pro-
cedure. Particularily the Rayleigh Plesset equation (12), and the origin of
coordinates motion equation (34) are independent and can be solved easily to

give @, and B,. Equations (20) and (38) which depend on 5 and equation (31)

which depend on ao and B can then be solved by the same procedure. The results
are used to solve the rqnalnlng equations. This "multi-Runge Kutta" procedure

is convergent and gives 'in few seconds of run on a Univac 1110 computer the
collapse history of the bubble in some two thousands steps of time.

The results are illustrated in Figures 2 and 3. 1In both figures the
initial bubble-center to wall distance is 1.5 Ro. This is a classical case

which was investigated in previous publications (5,6,7). The numerical results
of (5) were checked experimentally in (3). As can be seen from the comparison
between the two figures the influence of P is very important. P = 0.2
(] o
gives a cushionned collapse followed by a_rebound without the formation of a
re-entering jet. On the other hand when P = 0.1, a re-entering jet is clearly
()

1
formed. At the time-step following t = 0.977 (p/P -P )2 the motion of the jet

overtakes that of the origin of coordinates, and the method no longer describes
the bubble equation correctly. In order to investigate the influence of dif-
ferent parameters on the bubble wall motion, Figures 4 and 5 compare the motion
of the re-entering point on the bubble surface (point J in Figure 1) in dif-
ferent cases. Figures 6 and 7 compare the motion of the origin of coordinates
0. We can see from Figure 4, that decreasing the initial pressure of noncon-
densable gases inside the bubble P is as effective in increasing the violence
o

of the bubble collapse as decreasing the bubble wall distance. This result also
applies to the pressure field generated around the bubble, and thus to the
erosive effect of collapse. Such behavior is expected since the gas acts as a
spring cushioning the bubble implosion. The importance of the law of behavior
of this gas, showed analytically in (4), is remarkably illustrated in Figure 5
where the re-entering jet behavior is completely different between K = 1 and

= 1.4. However, the interpretation of the result is complicated: One would
expect a faster collapse for the isothermal law. This is the case for the first
order of approximation a. However, the corrections a,, a,, a,, which are in-

versely dependant on a, are greater than in the more realistic adiabatic case.

The isothermal collapse remains more energetic since the attraction of the
bubble towards the wall is much higher (Fig. 7). This is reflected in the re-
sults obtained for the pressure field. Let us note, however, that the solu-
tion in the isothermal case looses its validity earlier in the collapse history
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since the ratio of the bubble radius to its distance from the wall increases
rapidly.

The influence of the surface tension can be deduced from Figs. 5 and 7.
For high Weber numbers (We>100) the motion of the Te-entering point and of the

center of the bubble are not very sensitive to a change of We. These motions
become highly dependent on We for smaller values of this parameter. .Surface

tension effects are thus expected to become important with typical fluids for
very small values of (Ro * AP). A similar effect is known for spherical bubbles.

The most interesting result concerning nonspherical bubble dynamics is the in-
fluence of & (proximity of the wall) on the behavior of the re-entering jet
and on the duration of collapse. As shown above, from considerations on the
spherical corrections of the Rayleigh Plesset solution, a lengthening effect
on the bubble collapse time is obtained with presence of a solid wall: The in-
crease in the bubble life is directly proportional to €. However, one would ex-
pect intuitively that the jet velocity would increase with € and that the time
needed for this jet to reach the opposite bubble wall can be smaller than the
time needed for a spherical bubble to attain its maximum radius. This reason-
ing has been confirmed experimentally (4,12). Figure 4 (and in more detail,
Fig. 8) shows this effect: Until the latest stage of collapse, increasing €
increases, at a given time, the distance 0J (Fig. 1). This shows the tendancy
towards lengthening the bubble life. However, this tendency is reversed later.
The speed of the jet increases with € and the overall effect is to shorten the
time needed for the re-entering jet to pierce the bubble. At the same time the
attraction of the bubble towards the wall increases (Fig. 6). The effect of €
on OOJ is greater than that on OJ since the effects on 0OJ and the wall distance
are then added. A similar shortening effect has been reported in the case of a
moving spherical bubble (13). 1In Fig. 8, the evolution with time of the dis-
tances 0J, OL, 0S (Fig. 1) as well as the spherical solution, a are plotted
simultaneously. These lengths are respectively noted in the figure as RJ, RL,
RS and AO. The lengthening effect is clearly seen on RL and would be greater
if the curve represented OOL. On the contrary the collapse is faster for 0S
and especially of 0J, even without taking into account the motion of the origin.
Let us note, however, that this is an extreme case, corresponding to Fig. 2.
For non-violent collapses (low values of € or high values of Pg ) a lengthening
o
effect exists.

In the last four figures we consider the pressure field around the collaps-
ing bubble. This subject is a matter of concern, since earlier results seem to
be contradictory. Mitchell and Hammitt (6) found that the pressure between the
bubble and the wall was smaller than in an infinite medium. However Korovkin and
Levkoski (13) found, without taking into account the bubble deformation that the
maximum value of the pressure on the nearby wall can be much higher then in the
infinite medium case, if Pg is small. Here, we confirm this result without con-

o
tradicting that of (6). Fig. 9 shows the evolution with time of the pressure
on the wall (point W, Fig. 1) and at two other points at a distance 20 from

0 - one on the axis of symetry (noted VERT) and one in the plane parallel to
the wall and passing through O (noted HORZ). These pressures are compared to
that in an infinite medium (noted INFI). The presence of the wall greatly modi-
fies the pressure field especially at W where the maximum pressure is two orders
of magnitude higher than in the infinite medium. This maximum value drops
significantly for a less violent collapse: Fig. 10 shows that for ig = 0.2, it
o
is only three times that in an infinite medium. For t < 1, the pressure is re-
duced in the presence of the wall. This explains the results of (6) where the
largest time in the calculations is smaller than the limiting time after which
the pressures increase. These remarks are confirmed in Figs. 11 and 12. Where
the variations of the pressure perturbation p with r are represented for dif-
ferent angles 6, at two times (0.914 and 0.949);8 = 0 corresponds to the di-.
rection of the wall. We can see that in Fig. 11 the pressure field is smaller
than that in an infinite medium and is very similar to that presented in 6).
However at t = 0.949 (Fig. 12) the pressure in-the entire field is higher than
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in the infinite medium case.
CONCLUSION

1. The method of matched asympotic expansions is seen to be successful in des-
cribing the nonspherical bubble dynamics near a solid wall, including the gene-
rated pressure field during the bubble collapse. To study more complex boundar-
ies one need only change the second member of the differential equations solved

numerically.

2, The influence of the initial gas pressure and of its law of compression is
as important as the proximity of the wall (g). _

3. Higher jet velocities are obtained for greater € and smaller Pg . An over-

all shortening effect of the bubble collapse time is obtained for ~° intense
collapses. However this result should be moderated by the fact that for high €
the method loses its validity earlier in the collapse history.

4. Pressures, orders of magnitude higher then in the spherical case, are gene-
rated on the nearby wall when the bubble is very close to it.
5. An amelioration of the method can be obtained by a closer look at the last

stage of collapse. In particular, a change in the lengths and the time scales
1s needed, since the problem becomes singular in time at the end of the collapse.
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