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Pressure-induced Anderson-Mott transition
in elemental tellurium
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Elemental tellurium is a small band-gap semiconductor, which is always p-doped due to the

natural occurrence of vacancies. Its chiral non-centrosymmetric structure, characterized by

helical chains arranged in a triangular lattice, and the presence of a spin-polarized Fermi

surface, render tellurium a promising candidate for future applications. Here, we use a the-

oretical framework, appropriate for describing the corrections to conductivity from quantum

interference effects, to show that a high-quality tellurium single crystal undergoes a quantum

phase transition at low temperatures from an Anderson insulator to a correlated disordered

metal at around 17 kbar. Such insulator-to-metal transition manifests itself in all measured

physical quantities and their critical exponents are consistent with a scenario in which a

pressure-induced Lifshitz transition shifts the Fermi level below the mobility edge, paving the

way for a genuine Anderson-Mott transition. We conclude that previously puzzling quantum

oscillation and transport measurements might be explained by a possible Anderson-Mott

ground state and the observed phase transition.
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E
lemental tellurium at ambient pressure is a small-band-gap
semiconductor with a gap size Δ ≈ 330 meV. Recently, the
material and its allotropes received great attention: tell-

urium might possess Weyl-nodes within the valence band (VB)1,
it has been proven to show extremely unusual direction-
dependent magnetoresistance (interpreted as being due to the
magnetochiral effect)2, it is considered to be an excellent
thermoelectric3,4, its helices in nanotubes might help to extend
Moore’s law5, and its spin-texture allows a current-induced bulk
magnetization6.

Due to a strong spin–orbit coupling (SOC), the top of the VB in
tellurium has a double maximum and possesses a radial spin
texture7,8. This is particularly important, since tellurium is natu-
rally doped by vacancies, turning chemically pure samples into a
p-type semiconductor exhibiting extrinsic resistivity curves9–11.

It is well established that under the application of hydrostatic
pressure, tellurium’s band gap narrows12, and the double max-
imum turns continuously into a single maximum between 15 and
20 kbar13. Recent density functional theory (DFT) calculations
suggest transitions to topologically interesting phases below 30
kbar14,15. However, the only previous experimental study in the
respective pressure range is at odds with a gap closing at a
pressure below the crystal phase transition at 40 kbar16. On the
other hand, a recent quantum oscillations study has been inter-
preted as being more consistent with these calculations17.

In our pressure-dependent study of the electrical transport
properties of a high-quality tellurium single crystal, we find that
the chemical potential enters the top of the VB when the tem-
perature is lowered to around 1 K, which has been suggested
previously13. Below this temperature and above a temperature at
which the conductivity saturates, the material exhibits variable
range hopping (VRH) behavior with the associated characteristic
Mott-temperature scale T0 ~ 10 mK. Such a low T0 indicates that
the hopping occurs between Anderson-localized states, of a rather
large localization length. At about 17 kbar, the material undergoes
a phase transition to a disordered metal ground state with
characteristic

ffiffiffiffi

T
p

dependence of the conductivity. Due to the
SOC, again, the conductivity saturates at very low temperatures.
The phase transition manifests itself in all measured and analyzed
physical quantities and occurs at the critical pressure linked to the
disappearance of the double maximum of the VB.

Naturally, the disappearance of the double maximum coincides
with a Lifshitz transition, drastically changing the density of states
(DOS) at the Fermi level. Consequently, the Fermi level passes
through the mobility edge and the material demonstrates a
quantum phase transition from an Anderson–Mott insulator to a
disordered metal. Close to the critical point, the system exhibits a
conductivity varying with temperature as σ∝ T1/3. This is well
known to be a signature of an Anderson–Mott-critical regime and
is reminiscent of the universality between the Anderson–Mott
transition in d= 3 and random-field magnets18. Furthermore, the
magnetoresistance changes from a VRH-typical negative mag-
netoresistance to a strong positive magnetoresistance as is the
case for weakly anti-localized systems. The characteristic resis-
tivity saturation at low temperature is a manifestation of the fact
that at low temperatures the spin–orbit relaxation length exceeds
the localization length. From the characteristic Mott temperature
T0, one can deduce the critical exponent of the correlation length.
As the transition is related to the Anderson–Mott insulator-to-
metal quantum critical point, all other critical exponents are
correctly deduced from a straight-forward theoretical framework
on the basis of quantum interference effects. To further illuminate
the nature of the transition, we have performed DFT calculations,
demonstrating the claimed Lifshitz transition, which ultimately
coincides with the Anderson–Mott quantum critical point.

This study has identified and highlighted the importance of the
quantum critical point in tellurium and provides an under-
standing of the ground state of high-purity tellurium crystals. It
also addresses the intriguing theoretical predictions on the pos-
sible emergence of topologically interesting phases in chiral non-
centrosymmetric tellurium. Furthermore, it demonstrates a
unique scenario, in which pressure tunes an Anderson–Mott
insulator-to-metal phase transition across a Lifshitz transition
and therefore exhibits completely different characteristics from
systems which undergo a true Lifshitz phase transition as in
refs. 19,20.

Results
Semiconducting behavior. Fig. 1a and b show how the resistivity
ρ depends on the temperature T. One can see that for all measured
pressures, the sample displays dρ/dT < 0 over the whole tem-
perature range. The over-all resistivity curves are typical for an
extrinsic semiconductor, which is consistent with studies of other
high-purity tellurium samples (see for example, refs. 9–11,21).
Above 150 K, over the whole pressure range, the sample exhibits
intrinsic semiconductor behavior, which allows the extraction of
the effective band gap between the conduction and the VB, Δ, by
applying the relation

ρðTÞ / e
� Δ

kBT ; ð1Þ
with kB being the Boltzmann constant. The extracted pressure-
dependent Δ(P) is plotted in the inset in Fig. 1b. As shown in the
figure, linear extrapolation of our data leads to a theoretical critical
pressure for band closure above 40 kbar, in stark contrast to the
relatively low pressure for band gap closure, which has been
suggested by several other groups14,15,17. The data suggests that it
is unlikely that tellurium undergoes a transition to a topologically
insulating state or a Weyl semimetal before the crystal phase
transition at 40 kbar. Our finding is consistent with previously
published experimental results12,16,22.

Anderson localization and disordered metallic behaviour.
When lowering the temperature, the resistivity behavior can no
longer be described with the model associated with an intrinsic
semiconductor. The entrance into the extrinsic regime is generally
associated with the shift of the chemical potential, which at some
point enters the impurity band, while the divergent resistivity
close to zero temperature is normally associated with carrier
freeze-out. However, in the case of a sufficiently high carrier
density, the impurity band lowers and broadens until it hybridizes
with the VB.

At low temperatures, we observe two anomalies at character-
istic temperatures Ta1 and Ta2, which we determined by the
position of a local maximum in the first derivative of ρ(T). For
selected curves, the anomalies are marked in Fig. 1c and d by
small black arrows (for a more detailed look on the resistivity data
around the anomalies, see Supplementary Fig. 1). We believe the
first anomaly to be the same, which has been reported before by
Takita et al. 10 for chemically pure samples with low hole
concentrations.

Below Ta1 and above the temperature at which the conductivity
approaches a saturated value δσ and below 16 kbar, the
conductivity follows (see Fig. 1c)

σðTÞ ¼ σvrh exp � T0

T

� �1
4

" #

; ð2Þ

which is typical for Mott-VRH behavior in three dimensions.
In Fig. 2a, we see the extracted values of T0. This value of about

10 mK is at least five orders of magnitude lower than for doped
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Fig. 1 Transport and magnetotransport data. a and b ρ(T) curves over the whole temperature and pressure range. Inset in a: characteristic temperatures

of the two anomalies. Above 20 kbar, both anomalies seemingly disappear (or smear out). Inset in b: Development of the band gap with extrapolated fit.

c Conductivity plots to demonstrate the VRH with σ / exp T0=T
� �1=4

. The first anomaly is marked by small black arrows for two pressures. Inset: plot of

the development of the anomaly under small magnetic fields at 13.81 kbar. d Conductivity plots to demonstrate σ /
ffiffiffi

T
p

. Again, the two anomalies are

marked by arrows for one pressure. Inset: Plot of the conductivity at 16.22 kbar. The σ∝ T1/3 law indicates critical behavior. e Magnetoconductance

measurements at 500mK for all pressures. In the lower and middle panel, curves are fitted by using the fitting function described by Eqs. (13) and (14).

Fig. 2 Characteristic physical quantities and how they either vanish or diverge. The critical pressure is determined to be Pc= 17.43 kbar. The red dashed

lines represent fits with the mentioned critical pressure and critical exponents as they come out from the theory. The black dashed line represents the

hypothetical Ioffe–Regel limit. The inset in panel c shows the 2K magnetoconductance data in the insulating phase to demonstrate the parabolic behavior at

very low fields. The data point marked with a red circle in panel f refers to the critical regime. In the critical regime δσ does not fully vanish, as due to a

Fermi energy ϵF > 0, the spin–orbit relaxation length remains finite.
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semiconductors, where the hopping occurs between localized
donor or acceptor states. This is a strong indication that the
hopping occurs between Anderson-localized states such as
reported in refs. 23–26, which all exhibit a similarly low T0.
Therefore, we assume that the observed anomaly can be
associated with the entrance of the Fermi level in the localized
tails of the VB. This is consistent with the interpretation of the
anomaly by Takita et al.10 and with the kink in the resistivity
curves of Averkiev et al.27, which can be found roughly at the
same temperature but as the doping is higher, their sample
demonstrates truly metallic behavior in the respective tempera-
ture range.

Ta1 increases with pressure, consistent with its association to
the entrance of the chemical potential into the VB. Under the
application of a magnetic field, the anomaly smears out, as shown
in the inset of Fig. 1c. Again, this is consistent with the fact that it
is associated with the entrance of the chemical potential into the
band, as under the application of a magnetic field along the z-
direction, the two band maximums degenerate.

At 16.22 kbar, the second anomaly appears. As will become
clearer further below, this coincides with the entrance in the
critical regime, where the camel-back shaped top of the VB,
becomes a single maximum. Below the characteristic temperature
Ta2 at 16.22 kbar, the conductivity follows a T1/3-behavior (see
inset of Fig. 1d), which is characteristic for the critical regime of
the Anderson–Mott transition28.

For higher pressures, the conductivity below Ta2 follows:

σ ¼ σ0 þm �
ffiffiffiffi

T
p

; ð3Þ

with σ0 being the theoretical metallic zero temperature con-
ductivity and m being a characteristic quantity. Therefore, we
conclude that the second anomaly is associated with the passing
of the chemical potential through the mobility edge, as this low
temperature resistivity behavior has been associated with
disordered metals29.

In the upper panel of Fig. 1e, we see the magnetoconductance
data at 500 mK in the insulating regime. We see a small feature of
positive magnetoconductance at very low fields, which can very
likely be associated with weak-antilocalization (WAL), due to
SOC. Above the critical pressure, there is a strong change in
magnetoconductance with a pronounced WAL feature.

Critical behaviour and the quantum phase transition. From our
data, we extract six characteristic quantities to describe the pre-
viously discussed behavior: The characteristic temperature T0 and
the prefactor σvrh from VRH, the prefactor of the parabolic
magnetoconductance behavior at low fields, the difference
between the extrapolated zero temperature conductivity and the
saturation conductivity δσ, and m and σ0 from the quantum
interference conductivity. Their pressure dependence is plotted in
Fig. 2. Before extensively discussing the results in the next section,
we point out that the data suggests that all of these either diverge
or disappear at a critical pressure of 17.43 kbar.

The respective Mott–Anderson transition coincides with the
pressure-induced Lifshitz transition in p-type tellurium13,17. As
will be established below, at the point of the Lifshitz transition the
Fermi level is pushed below the mobility edge, leading to an
Anderson–Mott quantum critical point. The Lifshitz transition is
illustrated in Fig. 3d–i, which exhibits the results from DFT
calculations considering SOC in tellurium systems with different
lattice parameters. Due to the interplay of van-der-Waals and
covalent forces, band calculations of tellurium differ strongly
among different groups. However, as we are only interested in the
well-established qualitative change of the top of the VB, we
believe that our qualitative statements remain valid.

In Fig. 3g–i, we see the structure of the top of the tellurium VB
around the H-point for three different pressures. The Fermi level
refers to a theoretical charge carrier density of 1 × 1016 cm−3. This
value is two orders of magnitude higher than the one we have
measured by Hall. However, as the calculations serve mainly an
illustrative purpose (meaning: they show the existence of a Lifshitz
transition), we chose to use a higher charge carrier density. If we
had used the measured charge carrier density, the necessary
resolution for the DFT calculation would simply be too high to
justify the time of calculation and moreover, the actual change of
topology of the Fermi surface would be much more difficult to
visually access in the figure. In Fig. 3d–f, we see the respective cuts
through k-space with the respective Fermi surface cross-sections
and the related spin texture. Fig. 3e and h represent the critical
pressure at which one identifies the Lifshitz transition. One can
recognize immediately how the spin texture qualitatively explains
that the WAL feature is much more pronounced on the metallic
side (the side with one closed Fermi surface). On the insulating
side mainly two opposite spin directions exist and the magnetic
field cannot easily lift the suppressed enhanced backscattering,
while on the metallic side of the transition this can occur easily for
a relatively huge fraction of the charge carriers as the strength of
the spin polarization is significantly lower.

Discussion
All measured quantities presented above and discussed below
indicate that the insulator–metal transition (IMT) is of the
Anderson–Mott manifold18. However, differently from most
cases, where the tuning parameter for such a transition is the
dopant density30, here the tuning parameter is the hydrostatic
pressure. The transition occurs for a constant dopant density and
a pressure-induced Lifshitz transition, which pushes the chemical
potential below the mobility edge, paving the way for an
Anderson–Mott IMT, as shown in Fig. 3. This can be easily
visualized, when visually comparing the Fermi energies between
Fig. 3g and i.

As the data suggests and the following theory further corro-
borates, an Anderson–Mott IMT does indeed occur around the
critical pressure associated with the Lifshitz transition, where the
Fermi surface changes its topology. Thus we shall name this
transition a Lifshitz–Anderson–Mott transition (LAMT). It is
important to note that, although the transition occurs due to a
topological change of the Fermi surface, it is actually of the
Anderson–Mott manifold and obeys all its universal character-
istics. This becomes particularly clear, when recognizing that on
both sides of the transition, transport is clearly dictated by
quantum interference corrections and in the critical regime, the
Anderson–Mott typical σ= σ0+AT1/3 is observed. The uni-
versality between the Anderson–Mott transition in d= 3 and
random-field magnets18 allows us to identify the dynamic expo-
nent z, from the AT1/z critical behaviour which, according to
Wegner’s scaling, z= βδ/ν, for β= ν and δ= 318, should be fixed
to z= 3, in agreement with our data, and markedly different from
the z= 4 exponent expected from a true Lifshitz phase transition.
Furthermore, as the bandwidth scales roughly linearly with
pressure, we would expect the closeness to the mobility edge also
scales linearly with pressure and therefore there is no overlying
critical dependence from the true Lifshitz transition.

To fully establish the nature of the LAMT, we now describe the
transport properties of elemental tellurium within the framework
of the relative corrections to conductivity, δσ, arising due to
quantum interference effects. As it will become clear shortly, this
framework is found to be valid throughout the entire phase
diagram: from the insulating (hopping), through the critical (bad
metal/bad insulator), and up to the metallic (diffusive) regimes.
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For P < Pc, the system is in the insulating regime, where all elec-
trons are strongly localized and their wavefunctions fade away within
distances of the order of the localization length, ξL. In this case, the
conductivity is determined by the exponential tails of the wave-

functions, σ Tð Þ / exp �LφðTÞ=ξL
n o

, and its temperature depen-

dence is set by the inelastic dephasing length Lφ Tð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffi

τφ Tð Þ
q

. The

inelastic scattering time, τφ(T), in turn, is calculated from the inverse
transition rate, τφ~ Γ−1, via Fermi’s golden rule as Γ �
R

dR R2
R

d Δϵð Þ Mj j2 exp �2R=ξL � Δϵ=kBTf g, where M is the
pre-exponential factor. Now, if phase coherence is destroyed over
optimal hopping distances, R � r, that are usually accompanied
by large energy variations, Δϵ≫ kBT, then one must include a
constraint connecting r to n ϵFð Þ, the density of randomly dis-
tributed states per volume per energy, rdn ϵFð Þ � const . In this
case one finds Lφ ~ T−b, with b= 1/(d+ 1), and, at low tem-
peratures, one obtains Mott’s VRH law (eq. (2))31, which is
therefore characterized by two quantities: the pre-exponential
conductivity

σvrhð�rÞ ¼ e2nðϵFÞ νph �r2; and T0ðξLÞ ¼
4νc

kBnðϵFÞξ3L
;

ð4Þ

the Mott temperature32. Here, e is the elementary charge, νph is a
measure of the (constant) phonon density of states and νc is a
geometrical constant of the order of unity associated with the
percolating hopping network of random resistors32. As

demonstrated in Fig. 1c, for P < Pc, we observe clear VRH
behavior from which we can extract the evolution of the above
two quantities, T0 and σvrh, as a function of pressure, as the
LAMT is approached from the left (displayed in Fig. 2a and b,
respectively).

Concerning the evolution of Mott temperature, T0(P), let
us remark that the anisotropic envelope wave-function of
acceptors in tellurium can be written as ψðx; y; zÞ �
exp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx2 þ y2Þ=ξ2xy þ z2=ξ2z

qn o

. As a result, in the expression

for Mott’s temperature in Eq. (4) one should actually replace
ξ3L ! ξ2xyξz

33. As demonstrated in Fig. 2a, our data suggests that
T0 vanishes linearly with the distance to the LAMT critical point,
T0 ~ ∣P − Pc∣. Since in tellurium, the LAMT is dominated by the
divergence of ξz with pressure

ξz � jP � Pcj�νz ; ð5Þ

while ξxy is somewhat robust and remains finite across the tran-
sition, the linearity of T0 thus implies that νz= 1. As a result, the

localization length of acceptors, ξL ¼ ðξ2xyξzÞ
1=3

, should diverge
with a critical exponent ν= νz/3= 1/3.

Analogously, the divergence of the pre-exponential con-
ductivity, σvrh, as P→ Pc, should be associated, according to
universality, to the divergence of the static dielectric polariz-
ability, χ30,34. Indeed, when transport occurs via hopping, the
static polarizability is proportional to the square of the optimal
hopping distance, χ / �r2, which becomes the appropriate mea-
sure of the oscillator strength within the insulator. Now, if we

Fig. 3 Theoretical calculations of the band structure and the spin texture around the H-point for different pressures. a and b Schematic representation

of the tellurium atomic structure with the hexagonal Bravais lattice vectors, a1, a2 and c and the internal atomic position parameter u. The three tellurium

atoms are placed at (u, 0, 0), (0, u, 1/3) and (−u, −u, 2/3) in units of the crystal lattice. c Reciprocal lattice (b1, b2, and b3) and cartesian (kx, ky, and kz)

direction vectors of the hexagonal Bravais lattice as well as the special points. d–f Two-dimensional plot of the valence band in the kx × kz plane together for

three pressure points: P < Pc (subfigure d), P≈ Pc (subfigure e), and P > Pc (subfigure f) (further information in Supplementary Note 1). The white arrows

display the calculated spin texture. The black line represents the Fermi contour for a hypothetical charge carrier density of 1016 cm−3. g–i Electronic energy

dispersion of the valence band along of the K-H-K path of the Brillouin Zone for the same pressure points. The dashed line represents the Fermi energy for

the same charge carrier density.
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recall that in Mott’s law the pre-exponential σvrhð�rÞ � �r2, we
conclude that σvrh∝ χ. Furthermore, for interacting electrons
χ � ξ2L

34 and we thus conclude that the pre-exponential con-
ductivity should diverge as, σvrh ~ ∣P− Pc∣−2/3, as indeed observed
in Fig. 2b. For further universality arguments fixing all the above
critical exponents see Supplementary Notes 4, 5, and Supple-
mentary Fig. 6.

Surprisingly, however, the data fitted with Mott’s VRH

exp �ðT0=TÞ1=4
n o

law points towards saturation of the con-

ductivity as T→ 0 (see Fig. 1c), in clear contradiction with a true
insulating ground state. Concerning the origin of such con-
ductivity saturation, we can rule out possible self-heating, finite-
size effects, and deem it unlikely to originate from a surface state
as described by Li and Appelbaum35 (for a deeper discussion on
these points, we refer to Supplementary Note 3). Alternatively, we
recall that conductivity saturation does occur naturally in insu-
lators with spin–orbit interaction, since it delocalizes electrons
when their localization length, ξL, becomes comparable to the
associated spin–orbit relaxation length, Ls.o.. As discussed in
detail in the Supplementary Note 4, this occurs due to a shift of
the mobility edge, for ξL ~ Ls.o., towards the top of the VB36,37.
Now phase coherence is destroyed over non-optimal hopping
distances, R ~ Ls.o., that are, instead, associated to a thin energy
layer of thickness Δϵ ~ kBT around the Fermi level38, and one
concludes that Lφ � Ls:o: �

ffiffiffiffiffiffiffiffi

τs:o:
p

. Since spin-flip scattering time
does not depend on the temperature, we conclude that non-
optimal hopping transport produces a correction to the con-
ductivity below Pc given by

δσ�ðT ! 0Þ ¼ σvrhðL2s:o :Þ; ð6Þ

which shows saturation at the lowest temperatures σ T ! 0ð Þ≠0,
and, in this case, the ground state, even for P < Pc, becomes truly
delocalized due to the spin–orbit interaction, with δσ(P→ Pc)
diverging with the same critical exponent as σvrh, when Ls.o.(P→
Pc) ~ ξL(P→ Pc)→∞ (see Fig. 2f).

For P > Pc, the material is in the so-called disordered metallic
(diffusive) regime. The conductivity, σðTÞ ¼ σ0 þm

ffiffiffiffi

T
p

, in such
weak-localization diffusive regime should then be fully char-
acterized by two quantities, when represented as a straight line in
a σðTÞ ´

ffiffiffiffi

T
p

plot: a small T→ 0 intercept, σ0, and a constant
slope, m. Surprisingly, however, the data shown in Fig. 1d is
characterized by a T→ 0 intercept that is larger than the expected
σ0. This occurs in disordered metals with strong SOC when the
main dephasing mechanism at low temperatures becomes
dominated by spin-flip scattering, τφ→ τs.o.. In this case, and
recalling that τs.o. is temperature independent, one expects a
saturation of the conductivity above Pc as the temperature is
further reduced

δσþðT ! 0Þ ¼ e2

_

1

Ls:o:
; ð7Þ

and the correction to the conductivity becomes a direct measure
of the spin–orbit relaxation length, Ls:o: �

ffiffiffiffiffiffiffiffi

τs:o:
p 39. This is indeed

what Fig. 1d shows: a clear deviation from the
ffiffiffiffi

T
p

law as T→ 0
towards saturation.

Before we proceed to the analysis of the slope m, let us remark
on a fundamentally important universality between Eqs. (6) and
(7). As demonstrated by Götze40, or simply by using consistent
dimensionality arguments, one sees that the divergence of a
localization length scale squared, ξ2L , which enters the saturation
conductivity within the insulator, δσ� / σvrh / χ � ξ2L , as
P ! P�

c , is the counterpart to the divergence of a correlation
length, ξ, which enters the saturation conductivity within the

metal, δσ+ ~ ξ−1, as P ! Pþ
c . This may be expressed as

δσ�ðP ! P�
c Þ /

1

δσ2þðP ! Pþ
c Þ

: ð8Þ

Thus, once the critical exponent of either one of these two
quantities is determined, the corresponding counterpart is
immediately fixed. Indeed, we have found previously that ξL
diverges with an exponent ν

−
= 1/3. According to universality,

this should be the same critical exponent for the correlation
length, ξ � jP � Pcj�νþ , at the metallic side of the transition,
ν+= ν

−
= 1/3. Since δ+σ ~ 1/ξ above Pc and since according to

Götze δσ� / 1=δσ2þ
40, one concludes that δσ

−
∝ σvrh ~ ∣P− Pc∣−μ

should diverge at the transition with a critical exponent of
μ= 2ν+= 2/3. This is exactly what one obtains from the
experimental data within the insulating regime, P < Pc. We have
verified that the above universality extends from the insulating,
through the critical, up to the diffusive metallic regimes, including
the divergence of σ0= (e2/ℏ)ξ−1, with exponent ν+= 1/3, as seen
in Fig. 2d, breaking, however, beyond the Ioffe–Regel limit kFℓ=
1, with ℓ being the electronic mean free path of the diffusive,
metallic phase, where σ0 ¼ ðe2=_ÞðkF‘Þ2=‘, and the scaling of δσ+
with pressure is no longer governed by ξ.

Returning now to the analysis of the σðTÞ ¼ σ0 þm
ffiffiffiffi

T
p

con-
ductivity, one observes that the slope, m, is not constant, but
exhibits a marked dependence on pressure, m(P), vanishing
precisely at the critical point of the LAMT (Fig. 2e). We were able
to trace this back to the competition between exchange and
Hartree contributions to the conductivity, as pressure is varied.
Indeed, when further corrections due to interactions, disorder,
anisotropies, and multi-valley structure in low-emperature
semiconductors in d= 3 are taken into account39, the slope

m ¼ 0:915´ S0 ´
e2

_

� �

1

4π2

� �

λðj¼0Þ � 3

2
γλðj¼1Þ

� �

ffiffiffiffiffiffi

1

_D

r

: ð9Þ

Here λ(j=0)= 4/d is the exchange contribution due to electron–
hole pairs (diffusion) in the singlet channel with total spin j= 0,

while λðj¼1Þ ¼ 32=ðd d � 2ð ÞÞ½1þ dF=4� 1þ F=2ð Þd=2�=F, for
d= 1, 3 with F ¼ 2ln 1þ xð Þ=x, and x ¼ 4k2F=κ

2 (κ being the
Thomas–Fermi screening wavevector, or inverse screening
length), is the sum of the three Hartree contributions due to
electron–hole pairs (diffusion) in the triplet channel with total
spin j= 1, each carrying a weight of 1/2 (the coefficient 3/2 being
thus connected to the multiplicity m= 2j+ 1 of the j= 1 state)39.
The factor S0 accounts for valley anisotropies41. All other effects,
such as the intravalley scattering, anisotropies in the dielectric
(screening) properties, or yet the spin–orbit interaction, are
known to modify the Hartree terms only, λ(j=1), reducing it with
respect to the more robust, unaltered, and dominant exchange
contribution, λ(j=0). This is encoded into a single renormalization
parameter γ < 1 for the Hartree contribution.

In elemental tellurium, one observes that m(P > Pc) > 0, since
the exchange is always larger than the Hartree contributions,
λ(j=0) > λ(j=1). Nevertheless, one also observes that m vanishes at
the Lifshitz point m P ! Pcð Þ ! 0, which implies that

λðj¼0Þ � ð3=2Þγλðj¼1Þ P ! Pcð Þ ¼ 0. This occurs exactly at the
point where the Fermi surface goes through a reconstruction, a
topology change, and thus kF P ! Pcð Þ ! 0 or x P ! Pcð Þ ! 0,
exactly where F is maximal. Let us then set

γ ¼ ð8=9Þðλðj¼1Þ P ! Pcð ÞÞ�1
, and expand m around x= 0 to

obtain m P ! Pcð Þ � k2F=κ
2

� �

. The Lifshitz transition occurs for
a correlation length, ξ, that becomes comparable to the
average distance between electrons, 1/kF. In other words, kF ~ 1/ξ.
As a result we conclude that, since in elemental tellurium
the exponent of the correlation length is ν= 1/3, the coefficient
m of the

ffiffiffiffi

T
p

term in the conductivity should scale as
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m � k2F � 1=ξ2 � P � Pcj j2=3, in agreement with the data shown
in Fig. 1e.

Finally, for P ~ Pc, and/or in the opposite limit of higher
temperatures, one arrives at the critical (bad metal/bad insulator)
regime. In this regime, the electron diffusion becomes comparable
to the inelastic dephasing length, Lφ ¼ ffiffiffiffiffiffiffiffi

Dτφ
p

, and, as a result, the
diffusion coefficient, D, acquires a T dependence as determined
by Einstein’s relation, σ(T)= e2N(ϵF)D(T), where N(ϵF) is the
electronic density of states at the Fermi level. The scaling of the
conductivity with temperature then crosses over to42

σðTÞ ¼ σ0 þ βT1=3; ð10Þ

with σ0= (e2/ℏ)ξ−1 and β ¼ ðe2=_ÞNðϵFÞ1=3, characterizing the
weak-localization critical regime. This is exactly what can be
observed in the inset of Fig. 1d, for P ~ Pc.

Next we shall consider the magnetic field dependence of δσ.
Here, quantum interference also governs the magneto-transport
properties in elemental tellurium throughout the entire phase
diagram. For P < Pc the relative corrections to the conductivity
associated to quantum interference effects arising between the
possible different paths for variable range hopping is described
by43

δσ�ðHÞ
σð0Þ �

R1
σð0Þ=σvrh ½ln ðzσð0Þ=σvrhÞ�

2dþ2½FHðzÞ � F0ðzÞ�dz
½ln ðσvrh=σð0ÞÞ�2dþ1

;

ð11Þ
and the functions F0(z) and FH(z) are given in ref. 43. At low
enough fields, the numerator of Eq. (11) gives us δσ

−
(H) ~ ([σvrh/

σ(0)]I3/2 − I1/2)H2 and the magneto-conductance is quadratic
with a sign that can be either positive or negative, depending on
the ratio σvrh/σ(0). A positive quadratic behavior for the magne-
toresistance in elemental tellurium at small fields, δσ

−
(H)/σ(0) ~

BH2 with B > 0, can be clearly seen in the upper panel of Fig. 1e,
which corresponds to the insulating (hopping) regime, P < Pc.
However, at low temperatures, even in the insulating phase, as

previously mentioned, the magnetoconductance displays a
quantum interference contribution in form of WAL features at
very low fields. Therefore, the divergence of the coefficient B is
better analyzed using our magnetoconductance curves at 2 K (see
inset Fig. 2c), where the quantum spin–orbit-induced WAL is less
predominant. The respective curves are displayed in Fig. 2c and
as P ! P�

c , B(P) is governed, in turn, by the denominator of Eq.
(11)43

BðP ! P�
c Þ � ln

σvrh
σð0Þ

� �� ��ð2dþ1Þ
� ξ

3ð2dþ1Þ=ðdþ1Þ
L ; ð12Þ

for σð0Þ � σðT;H ¼ 0Þ ¼ σvrh exp � T0=Tð Þ1=ðdþ1Þ
n o

and

T0 � ξ�3
L . Since ξL � jP � P�

c j
�ν� , we obtain

B � jP � P�
c j

�3ν�ð2dþ1Þ=ðdþ1Þ. As a result, the magnetotransport
within the insulating regime, and at small fields, is characterized
by a quadratic coefficient, B, that diverges with a critical exponent
equal to 3ν

−
(2d+ 1)/(d+ 1)= 7/4, in d= 3 (and recalling that

ν
−
= 1/3), in agreement with the data shown in Fig. 2c.
For P > Pc, the corrections to conductivity in the disordered

metallic (diffusive) regime in the presence of a magnetic field are
given by41

δσþðHÞ � e2

_

1

2π2

eH

_

� �d=2�1
3

2
f d

H

Hs:o:

� �

� 1

2
f d

H

Hφ

 !( )

;

ð13Þ
Hφ ¼ ð_c=4eDÞτ�1

φ and Hs:o: ¼ ð_c=4eDÞðτ�1
φ þ 4τ�1

s:o :=3Þ. Once
again, at high enough temperatures τ�1

φ � τ�1
s:o : one ends up with

a single Kawabata function which in d= 3 behaves like f3(x) ~ x3/2

for x≪ 1 and f3(x) ~ const for x≫ 1. One would thus expect the
magneto-conductance to be positive, behaving as H2 at low fields,
while exhibiting a

ffiffiffiffi

H
p

behavior at large fields in d= 3. However,
at lower temperatures τ�1

s:o : can no longer be ignored and the
magneto-conductance changes sign due to anti-localization effects
associated to the spin–orbit interaction. This is seen in both the
middle and lower panels of Fig. 1e, which correspond, respectively,
to the nearly critical and highly diffusive metallic regimes.

Furthermore, for the particular case of tellurium, it has been
shown by Averkiev et al. 27 that the magneto-conductance is
better fitted provided we replace

� 1

2
f d

H

Hφ

 !

! f d
H

H
ν

� �

þ 1

2
f d

H

Hγ

 !

� 1

2
f d

H

Hφ

 !

; ð14Þ

and, for the case d= 3, the function f3(x) can be found in ref. 44.
As shown in Fig. 1e, the magnetoconductance can be fitted very
well with this function. Unfortunately, the structure of the
function includes that the characteristic fields Hν and Hγ cannot
be very well determined by a fit, as they are highly correlated.
However, we can meaningfully extract the proportionality factor
from the magnetoconductance fitting function and Hφ, at least for
the highest two pressures 21.04 and 22.05 kbar (for details see
Supplementary Figs. 3–5, Supplementary Tables 1–7, and Sup-
plementary Note 2). For both of these pressures, Hφ increases
linearly with temperature, as one would expect from dephasing
from Johnson-like thermal fluctuations. When assuming that

HφðTÞ ¼ AφT; ð15Þ
we determine and Aφ= 4.8 and 5.8 mT/K for 22.05 and 21.24
kbar, respectively. For plots and a slightly deeper discussion (see
Supplementary Note 2 and Supplementary Fig. 5).

Our considerations lead to a speculative phase diagram, as
demonstrated in Fig. 4 (black circles represent the positions of the
anomaly, which coincides with the respective change of slope in
the R–T curves). Two different effects lead to the critical range

Fig. 4 Speculative phase diagram of the LAMT in tellurium. The violet

area represents the area, where the chemical potential is not situated in the

band. AI: Anderson insulator (Ls.o. > ξL). SOD: spin–orbit delocalization. DM:

disordered metal. The green area represents the critical regime. The black

circles mark the positions of the anomalies, which coincide with the

temperature to which VRH and/or σ= σ0+ A ⋅ Tb is a good fit. Thus, the

red dashed line marks roughly the temperature at which we expect that the

fermi level enters the localized states of the valence band.
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displaying a pressure dependence: on the one hand, as can be seen
in Fig. 3, the Fermi energy shifts quicker on the metallic side of
the transition. On the other hand, the pressure-induced band-
width enhancement leads to the critical regime being shifted to
higher pressures for comparably high temperatures. The low
temperature delocalized spin–orbit phase has been determined by
rough optical estimation.

Finally, we would like to discuss an apparent inconsistency: the
charge carrier density from Hall measurements was determined
to be around 6 × 1014 cm−3. This leads to an average distance of
vacancies of roughly 100 nm. To have delocalized states with such
low carrier concentration would suggest a dielectric constant of
about 1000, while the literature suggests a room temperature
dielectric constant in the order of 5045. However, this actual
delocalization of acceptor states is common in the literature:
Bresler et al. 46 and von Klitzing and Landwehr47 measure a clear
Fermi surface at ambient pressure at charge carrier densities of
3 × 1015 cm−3 and around 1014 cm−3, respectively. This has led to
the idea that there exists an accumulation layer close to the
surface, which von Klitzing and Landwehr related to their surface
treatment. However, the dielectric constant naturally diverges at
an Anderson–Mott transition and, therefore, we would expect the
dielectric constant to be much higher in the low temperature
range and further increase under pressure. This is also supported
by historical measurements48.

One should mention that Rikken’s results2 suggest that Hall
measurements on tellurium might lead to wrong conclusion, due
to a non-trivial magnetoelectric response function.

Our data combined with our theoretical considerations
strongly suggest the existence of a LAMT under the application of
modest pressure in high purity tellurium single crystals. The well-
established pressure-induced band bending leads to a change
from the double-maximum camel-back like top of the VB to a
single maximum. In samples with low carrier concentrations the
related Lifshitz point will naturally coincide with a transition
from an Anderson–Mott insulator to a disordered metal. The
localization length diverges in only one direction (which coin-
cides with the direction related to the neck-disrupting Lifshitz
point or the divergent direction of the effective mass tensor).
However, due to the strong spin polarization, the charge carriers
remain delocalized at very low temperatures due to the
temperature-independent spin–orbit relaxation length. The
identification of this transition is of great consequence for the
interpretation of many puzzling experimental results.

The anomaly, first observed by Takita et al. 10 arises from the
entrance of the chemical potential in the Anderson–Mott loca-
lized tail of the VB. This is consistent with their explanation in
terms of the vacancy acceptor level being located in the band tail.
Moreover, the closeness to the LAMT quantum critical point
naturally leads to an increased dielectric constant, creating a
measurable Fermi surface even at very low carrier concentration.
This resolves inconsistencies in historical quantum oscillation
experiments46,47.

Recently, the respective Lifshitz point has also been observed
by Ideue et al. 17 via quantum oscillation measurements. In their
study, they identified three distinct transitions: one at around 5
kbar, one in the pressure range of the LAMT, and one at around
20 kbar. While we can exclude the possibility of a transition to a
Weyl semimetal due to our measurements of the gap size, the
measured transitions are still valid. However, we can only spec-
ulate on the origin of these transitions, and as we do not have the
R(T) curves, we cannot reach a definitive conclusion.

Finally, we believe that the identification of the Anderson–Mott
phase in elemental tellurium will fundamentally change our view

on the low-temperature behavior of this exciting elemental
material.

Methods
Sample. Transport and magnetoresistance measurements have been performed on
a high-quality single crystal with 99.9999% chemical purity, purchased from
Princeton ScientificTM. Sample size is 3 × 1 × 0.5 mm. The sample has been care-
fully cleaned with ethanol and, subsequently, contacts for standard 4-wire tech-
nique have been attached with Sigma Aldrich silver paint using 25 μm
platinum wires.

Experimental set-up. The direction of the electrical current is perpendicular to the
c-axis (the screw axis of the helices), which is parallel to the external magnetic field
for magnetoresistance measurements. The sample was installed in a hydrostatic
piston cylinder pressure cell with a 1:1 mixture of FluorinertTM FC77/FC70 as the
pressure transferring medium. As a low-temperature pressure gauge, we used a
piece of lead and monitored the development of the superconducting transition.
Simultaneously, a manganin wire, installed within the cell, was used to estimate the
applied pressure at room temperature. The cell was cooled, using two different
adiabatic demagnetization refrigerators (ADRs) with base temperatures of 50 mK
(at CBPF in Rio de Janeiro) and 250 mK (at the Cavendish Laboratory in Cam-
bridge), respectively.

Hall measurements. Hall measurements have been performed on a separate piece
of the sample in a Quantum Design Dynacool at ambient pressure. The sample was
installed in the same manner as the main piece of the sample. The measured Hall
coefficient turned out to be 6 × 1014 cm−3 at 3 K (data included in Supplementary
Fig. 2). However, as we also argue at the end of the discussion section, we do not
deem this number as being particularly reliable, as recent measurements by Rik-
ken2 suggest that the Hall response of tellurium might be misleading, due to non-
trivial magnetoelectric effects.

DFT calculations. DFT calculations were performed in the generalized gradient
approximation (GGA) of the exchange-correlation effect. The QUANTUME-
SPRESSO package49 was used with ultrasoft Perdew–Burke–Ernzerhof pseudopo-
tentials. First, we relax the cell dimension and atomic positions of a hexagonal
crystal structure for each target pressure using a tellurium scalar relativistic
pseudopotential since noncollinear stress for GGA is not implemented in
QUANTUMESPRESSO package. In this calculation, we used a plane-wave cutoff
energy of 35 Ry and 3 × 3 × 4 Monkhorst–Pack k-point grid until a 0.1 kbar tol-
erance. With the optimum geometric parameters that we get for each pressure, we
did a self-consistent calculation in a very dense grid of 24 × 24 × 32
Monkhorst–Pack k-points and a plane-wave cutoff energy of 50 Ry, using full
relativistic pseudopotential and considering the SOC. After that we compute the
band structures and the spin texture in the small, but even more dense grid, with
37 × 37 × 33 k-points in the vicinity of the H point.

For the specific calculations, giving the results in Fig. 3, we relax the tellurium
hexagonal Bravais-lattice structure without the SOC, varying the target pressure
from −20 kbar to the +20 kbar. For each step of 5 kbar, we extract the in-plane
and out-of-plane lattice parameters, a and c, respectively, as well as the internal
atomic position parameter u, as shown in Fig. 3a and b, (with ∣a1∣= ∣a2∣= a).
After that, we included the SOC in a self-consistence calculation for each set of
geometric parameters, to compute the VB structures (Fig. 3b–d) and the two-
dimensional spin texture (Fig. 3f–h). We see that an equivalent pressure of −20
kbar reproduces the well know “camel-back-shape” (CBS) of the VB structure
along of the the K–H–K direction of the Brillouin zone14, as shown in Fig. 3c, with
minimum at the H point (see Fig. 3g) for the special points and reciprocal lattice
vectors). On the other hand, for a pressure of +10 kbar, the CBS vanishes and the
VB assumes a “dromedary-like shape” (DLS), as one can see in Fig. 3g. We assume
that the transition between the CBS and DLS cases occurs at an equivalent
pressure of −5 kbar, where a small local minimum can still be seen at the H point.
Further information on the specific calculations can be found in the
Supplementary Note 1.

Data availability
The raw data sets are available from the corresponing authors upon reasonable request.

Code availability
The code for the DFT calculations is available from author M.M. upon reasonable

request.
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