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Pressure-induced anomalous 
valence crossover in cubic YbCu5-
based compounds
Hitoshi Yamaoka1, Naohito Tsujii  2, Michi-To Suzuki3, Yoshiya Yamamoto4, Ignace Jarrige5, 

Hitoshi Sato6, Jung-Fu Lin7,8, Takeshi Mito9, Jun’ichiro Mizuki4, Hiroya Sakurai10, Osamu 

Sakai10, Nozomu Hiraoka11, Hirofumi Ishii11, Ku-Ding Tsuei11, Mauro Giovannini  12 & Ernst 

Bauer13

A pressure-induced anomalous valence crossover without structural phase transition is observed 

in archetypal cubic YbCu5 based heavy Fermion systems. The Yb valence is found to decrease with 

increasing pressure, indicating a pressure-induced crossover from a localized 4f13 state to the valence 

fluctuation regime, which is not expected for Yb systems with conventional c–f hybridization. This 

result further highlights the remarkable singularity of the valence behavior in compressed YbCu5-

based compounds. The intermetallics Yb2Pd2Sn, which shows two quantum critical points (QCP) under 

pressure and has been proposed as a potential candidate for a reentrant Yb2+ state at high pressure, was 

also studied for comparison. In this compound, the Yb valence monotonically increases with pressure, 

disproving a scenario of a reentrant non-magnetic Yb2+ state at the second QCP.

Material properties strongly correlate to the spin, orbital, and charge degrees of freedom of the electrons. In 
intermetallic rare-earth compounds, valence �uctuations provide an additional degree of freedom to pressure or 
temperature-driven ground states. Physical properties in the valence �uctuation systems can be understood in 
terms of a competition between the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction and the Kondo e�ect, 
both are originated by interaction between f and conduction (c) electrons1, 2. Pressure is a powerful and clean 
tool to directly tune the Kondo temperature or c–f hybridization strength. In Yb compounds, commonly the 
magnetic Yb3+ state is favored at high pressures due to its smaller ionic radius compared with Yb2+. Interestingly, 
the rare-earth metal theory predicts a return to the divalent state or to the valence �uctuation region with further 
increase of the pressure up to a few hundreds GPa (Mbar range)3, which has not been observed experimentally 
yet, despite trials up to 202 GPa in Yb metal4. Figure 1 shows schematic of the pressure-temperature phase dia-
grams and pressure dependence of 4f electron numbers for Yb and Ce systems, together with a sketch of the crys-
tal structure of cubic YbCu5

5. In Ce systems, pressure induces a non-magnetic ground state, while in Yb systems, 
a return to the Yb2+ state at high pressures would be consistent with the increase of Kondo temperature (TK).

YbCu5 -based intermetallic compounds are well known archetypal f-electron heavy-fermion systems. A wide 
diversity of interesting physical phenomena was reported upon Cu-site substitution in the cubic YbMCu4 sys-
tems (M = In, Ag, Au, etc.)6, 7, such as a temperature-induced �rst-order valence transition in YbInCu4, Kondo 
lattice e�ects in YbAgCu4, and antiferromagnetic order in YbAuCu4

8–10. In the mother material cubic YbCu5, 
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the low-temperature physical properties have been described employing a Kondo lattice with a heavy Fermi 
liquid ground state11–13. �e rich variety of physical properties seems to stem primarily from the intermediate 
valent ground state of Yb6. However, pressure-induced changes in the electronic structure of YbCu5 are still unex-
plored. It is notably that the Yb valence distinctly depends on its crystal structure: cubic and hexagonal YbCu5 
exhibit Yb valences of nearly 3+ (ref. 11) and ~2.5 (ref. 14), respectively. On the other hand, as a novel ternary Yb 
heavy-fermion compound, Yb2Pd2Sn is known to exhibit two pressure-driven quantum critical points (QCPs)15, 16.  
A scenario based on the single impurity Anderson model (SIAM) taking into account a pressure-induced 
enhancement of valence �uctuations at low pressure and suppression at high pressure was suggested to explain 
the two QCPs17. Yb2Pd2Sn possesses a tetragonal crystal structure with two types of layers that alternatively stack 
along c-axis. Another scenario based on the geometrical frustration forming the Shastry-Sutherland lattice18 has 
been proposed, beyond the normal framework of competition between the RKKY interaction and the Kondo 
e�ect19. Still, the precise origin of the two QCPs in Yb2Pd2Sn is not fully elucidated.

In this paper we report a comparative study of the pressure-induced valence crossover in cubic YbAgxCu5−x 
(x = 0, 0.5, and 1.0) and Yb2Pd2Sn. Electron probe microanalyses showed chemical compositions according to 
Yb0.98Cu5.02, Yb0.984Ag0.504Cu4.51, and Yb0.99Ag0.93Cu4.08. External pressure is advantageous in that the Kondo tem-
perature can be controlled uniformly, whereas chemical pressure can easily induce local distortions. We employ 
x-ray absorption spectroscopy in the partial �uorescence yield mode (PFY-XAS) and resonant x-ray emission 
spectroscopy (RXES) to derive the Yb valence as a function of pressure20. �e results are combined with x-ray 
di�raction (XRD) measurements. We �nd an anomalous pressure-induced decrease of the valence in cubic 
YbCu5-based compounds followed by a valence increase at higher pressures, without structural phase transition. 
In Yb2Pd2Sn, the Yb valence increases monotonically with pressure at low temperature, disproving a return to the 
Yb2+ state at the second QCP.

Results and Discussion
Figure 2 shows the XRD and PFY-XAS measurements for cubic YbAgxCu5−x (x = 0, 0.5, and 1.0). �e XRD pat-
terns in Fig. 2(a) evidence a cubic crystal structure of YbCu5; no pressure-induced structural transitions were 
observed for the three YbCu5-based compounds in the pressure range measured. �e volume of the three com-
pounds monotonically decreases with pressure as shown in Fig. 2(b). �is behavior is consistent with previous 
reports21. Figure 2(c) and (d) show the pressure dependence of the PFY-XAS at 12 K for YbCu5. �e pressure 
dependence of the mean Yb valence derived from the �ts of the PFY-XAS spectra is shown in Fig. 2(e) and (f). 
In YbCu5 the Yb valence at 300 K decreases when the pressure is increased up to around 10–15 GPa, and show 
an increasing trend with further increase of the pressure, although the change in the valence is within the experi-
mental errors. �is increasing trend of the Yb valence at high pressures is observed clearly in YbAg0.5Cu4.5 above 
10 GPa. Valence �uctuations in YbCu5 become enhanced at 12 K, keeping the same trend as that at 300 K as shown 
in Fig. 2(f). In YbAg0.5Cu4.5 and YbAgCu4 similar pressure-induced changes in the Yb valence are observed and 
the pressure dependent minima of the Yb valences occur around 10 and 5 GPa, respectively. �e RXES spectra 
were measured at hv = 8938 eV, which corresponds to the Yb2+ resonance incident photon energy, where the the 
intensity of Yb2+ is highest (see supplementary information). �e intensity ratio between Yb3+ and Yb2+ in the 
RXES spectra closely follows the trend consistent with the Yb valence as a function of pressure. �is isostructural 
valence change, which has never been reported in the literature for any other valence �uctuating compound, 
is highly anomalous, since the smaller-radius Yb3+ ion is expected to be favored under high pressure. We note 
that a pressure-induced reentrant transition to a lower valence state had been previously reported in EuO, albeit 

Figure 1. Schematic of the pressure-temperature phase diagrams and pressure dependence of 4f electron 
numbers for Yb and Ce systems, where TN, TK, and AF are Néel temperature, Kondo temperature, and 
antiferromagnetic ordered sate, respectively3, 5. In the Yb system, two quantum critical points (QCPs) are 
possibly observed. An image of the crystal structure of cubic YbCu5 is also shown.
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accompanied by a structural transition22. �is transition, well described by �rst-principle band calculations23, is 
therefore di�erent in nature compared to the isostructural transition in YbCu5.

In cubic YbCu5 the electrical resistivity at ambient pressure follows the Fermi liquid power law ρ(T) = ρ0 + AT2 
below the temperature TFL ≈ 40 K13; ρ0 is the residual resistivity and A is the quadratic term coe�cient. �e pres-
sure dependence of A below 4 GPa was reported to show a divergent behavior with pressure; above 5 GPa a 
non-Fermi liquid state was predicted13. �is suggests that there might be a QCP in cubic YbCu5 around 5–6 GPa. 
In YbCu2Si2 (ref. 24) and YbNiGe3 (ref. 25), the Yb valence increases with pressure and shows a pronounced 
change in the slope around the QCP. Our results in YbCu5 show that the valence stabilizes around 5 GPa and 
decreases slightly at 5–15 GPa. �e resistivity was measured up to 4 GPa13 and measurements at higher pressures 
con�rm the presence of a QCP.

�e calculated e�ective magnetic moment of cubic YbCu5, assuming a total angular momentum j = 7/2, is 
4.53 µB. Curie-Weiss �t to the magnetic susceptibility of cubic YbCu5 for T > 150 K reveals a Weiss temperature 
of -26 K and an e�ective magnetic moment of 4.43 µB

11. �is indicates a nearly trivalent Yb state and supporting 
the above results at ambient pressure. �e increase of the Yb valence above 5–15 GPa in Fig. 2(f) seems to demon-
strate a return to the region where the Yb3+ state is stable as shown in Fig. 1. In Yb compounds, the SIAM or the 
Anderson lattice model (ALM) has successfully explained various phenomena related to the c–f interaction for 
now several decades. In our previous study of the temperature dependence of the Yb valence in cubic YbCu5 at 
ambient pressure, the experimentally-derived valences were compared with estimations based on the SIAM14. �e 
SIAM was found to reproduce satisfactorily the temperature dependent Yb valence. However, our high-pressure 
study of cubic YbCu5 cannot be understood with a simple scenario based on the Anderson model.

Recently, anomalous temperature dependences of the Yb valence have been also reported for the Yb com-
pounds like YbxFe4Sb12

20 and YbMn6Ge6−xSnx
26. For the latter case, a scenario based on the presence of mag-

netically ordered Mn moments and on an Anderson Hamiltonian with a Zeeman term modeling the magnetic 
interactions was proposed to explain the unusual temperature dependence26. Note that in cubic YbCu5 such 
magnetically ordered moments do not exist.

We performed density functional theory (DFT) calculations at 0, 10, and 20 GPa for cubic YbCu5. Details are 
summarized in the supplementary information. Increasing pressure results in a broadening of the conduction 
band and of the Yb 4f states around the Fermi level through hybridization typically in the orbital density of sates 
(DOS) at the Fermi level of Cu2. �e electron numbers in the Mu�n tin sphere decrease with pressure, which, 
however, does not explain the present results. While the change in the DOS under pressure reduces the f electron 

Figure 2. �e experimental results of cubic YbAgxCu5−x (x = 0, 0.5, and 1.0) at 300 K are shown. (a) X-ray 
di�raction patterns measured with λ = 0.6888 Å for YbCu5. (b) Pressure dependence of the volume for 
YbAgxCu5−x (x = 0, 0.5, and 1.0). Solid lines are �ts with the equation of state. (c) Pressure dependence of PFY-
XAS spectra at 12 K for YbCu5. (d) Enlarged view of (c) for the quadrupole (QP) and Yb2+ components. (e) Yb 
valence estimated from the �t to the PFY-XAS spectra for cubic YbCu5 at 300 and 12 K. (f) Pressure dependence 
of the Yb valence for YbAgxCu5−x (x = 0, 0.5, and 1.0) at 300 K.
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number within the approximation as commonly expected, the broadening of the band width together with the 
c–f hybridization can cause a stabilization of the nonmagnetic f 14 states as discussed below. Calculations using the 
large degeneracy expansion method suggested that the characteristic temperature related to the Kondo e�ect, T0, 
can be expressed as27:

= ∆
−T Dg e D( / ) , (1)

g
0

1/6 1/6 8/6

where D, ∆ are the width of the conduction band and the energy of the spin-orbit coupling, respectively. Also, 
g = Γ/π|εf|, where Γ is the hybridization strength for the f and conduction electrons, and εf is the energy of the 
f level. �is relation is valid for degeneracy N = 6 systems like Ce3+ Kondo lattices. Here, we assumed that the 
spin-orbit coupling ∆ is much larger than T0. In this relation, the characteristic temperature T0 can increase 
through the bandwidth D and the hybridization strength Γ. Although the actual change of the Kondo tempera-
ture with pressure can be more complex, this pressure-induced enhancement of T0, which stabilizes the nonmag-
netic f 14 state, may be one possible explanation for the decrease of the Yb valence in YbCu5-based compounds 
under pressure. First-principles calculations considering the local dynamical correlation may reproduce the situ-
ation, and a study based on DFT + dynamical mean �eld theory considering the strong spin-orbit coupling e�ect 
with the accurate impurity solver is a future task.

We emphasize that the interplay of the f states with peculiar features of the band structure near the Fermi level 
can cause a variety of intriguing phenomena beyond the understanding of the conventional c–f hybridization 
framework. For example, the anomalous valence transition in YbxFe4Sb12 and YbMn6Ge6 were not understood by 
a normal Kondo-lattice picture. Instead, it was necessary taking into account the e�ect of distinct band structure 
features or of magnetism related to d electrons. In pure rare-earth metals, the re-entrance pressure to Yb2+ state is 
extremely high, but in rare-earth compounds this value is possibly reduced to lower pressures. Here, we stress that 
the Yb valence started to decrease already at much lower pressure. �us, the anomalous valence change induced 
by pressure in YbCu5-based compounds also calls for more detailed experimental and theoretical studies.

Figure 3 shows various results of Yb2Pd2Sn at temperatures from 20 to 300 K. Due to technical limitations 
of the membrane-driven DAC in our cryostat, the lowest temperature reached in this study is is well above 0 K, 
where the QCP-related behavior dominates. �e Yb valence decreases slightly with temperature down to 23 K 

Figure 3. �e experimental results of Yb2Pd2Sn are shown. (a) Temperature dependence of the PFY-XAS 
spectra at ambient pressure. Arrows in (a) correspond to the direction to decrease the temperature. (b) 
Temperature dependence of the Yb valence estimated from the �ts to the PFY-XAS spectra (closed circle) and 
the RXES spectra (open square) at hv = 8938 eV. (c) Pressure dependence of the PFY-XAS spectra at 20 K. (d) 
Pressure dependence of the Yb valence estimated from the �ts to the PFY-XAS spectra (closed circle) and the 
RXES spectra (open square). In (d) we also show the pressure dependence of the Néel temperature as a yellow-
colored area, where the data are taken from the literature16. (e) Crystal structure of Yb2Pd2Sn.
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as shown in Fig. 3(a) and (b)28; the hybridization, however, is stronger at low temperatures. �is decrease is 
expected to be prolonged also below 20 K as the hybridization strength just slightly increases. Based on the pres-
sure dependence of the PFY-XAS spectra in Fig. 3(c) and RXES spectra (not shown here), the Yb valence is found 
to monotonically increase with pressure as shown in Fig. 3(d). Pressure thus suppresses the valence �uctuations 
of the Yb ions, driving them towards a Yb3+ state, which results in a decrease of the Kondo temperature. �e 
two-QCP scenario suggests that the c–f hybridization is enhanced beyond the second QCP at high pressure, 
resulting in an increase of TK

17, and hinting here at a return into a valence �uctuation region. Our results actually 
deny this possibility, leaving the geometrical frustration as a more plausible scenario for the origin of the two 
QCPs of Yb2Pd2Sn. �is result further stresses the uniqueness of the valence behavior in cubic YbCu5-based 
compounds under pressure.

In conclusion, a highly anomalous isostructural pressure-induced decrease of the valence was observed in 
YbCu5-based compounds. �e result cannot be explained within the framework of the common c–f hybridization 
mechanism. In contrast, the pressure dependence of the Yb valence in Yb2Pd2Sn shows a smooth increase of the 
Yb valence with pressure which makes a reentrant valence �uctuation scenario unlikely to explain the second 
QCP. Low-temperature data for the Ag-substituted systems may be helpful to understand the pressure-induced 
anomalous valence transition of the Yb systems and the Kondo physics under pressure.

Methods
Cubic YbCu5 sample was prepared by argon arc melting and subsequent annealing at 850°C for 2 hours under high 
pressure of 6 GPa11. �e chemical composition of YbCu5 was Yb0.98Cu5.02 as determined by electron probe microa-
nalysis (EPMA). Polycrystalline samples of YbAgCu4 and YbAg0.5Cu4.5 were prepared by melting in an argon arc 
furnace and subsequent annealing at 800 °C in evacuated silica tubes. Polycrystalline samples of Yb2Pd2Sn were 
prepared in a closed tantalum-tube with Ar atmosphere at 1300 °C for 1.5 hours by a high-frequency induction 
furnace and then annealed at 980 °C for 10 days.

�e pressure dependence of the x-ray di�raction patterns were measured at BL12B1, SPring-8, using a 3-pin 
plate diamond anvil cell (DAC, Almax Industries) with a CCD detection system at room temperature. We applied 
an arrangement of both incoming and outgoing x-ray beams passing through the diamonds with an incident 
photon energy of hv = 18 keV (λ = 0.6888 Å). A two dimensional image of the CCD system was integrated by 
using the FIT2D program29. �e di�raction patterns were analyzed by the Rietveld method using the RIETAN-FP 
program30, 31.

PFY-XAS and RXES measurements were performed at the Taiwan beamline BL12XU, SPring-8. Details of the 
experimental setup have been published elsewhere32. �e overall energy resolution was estimated to be about 1 eV 
around the emitted photon energy of 7400 eV from the elastic scattering. A closed-circuit He cryostat was used for 
the low-temperature measurements down to 20 K. �e high-pressure conditions were realized using a diamond 
anvil cell (DAC) with a Be-gasket; the pressure-transmitting medium was silicone oil. A membrane-controlled 
DAC was used for high pressure experiments at low temperatures. �e pressure was measured based on the 
Raman shi� of the ruby �uorescence.

�e Yb mean valence is estimated by integrating the area of each charge state of the PFY-XAS spectra. �e 
mean valence is de�ned to be v = 2 + I(3+)/(I(2+) + I(3+)), where I(n+) is the intensity of Ybn+ component. An 
example of such evaluations is shown in the supplementary information. �e error of the valence mainly comes 
from the statistics of the total counts and �t errors, which was of the order of less than 0.2–0.5%.

�e electronic structure calculations are implemented in the WIEN2k program code with the all-electron 
full-potential linear augmented plane wave method using the exchange-correlation functional proposed by 
Perdew, Burke, and Ernzerhof 33 for the cubic YbCu5 under the pressure at 0, 10, and 20 GPa. Detailed results are 
shown in the supplementary information.
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