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Integrative Physiology

Pressure-Overload–Induced Subcellular
Relocalization/Oxidation of Soluble Guanylyl Cyclase in the

Heart Modulates Enzyme Stimulation

Emily J. Tsai, Yuchuan Liu, Norimichi Koitabashi, Djahida Bedja, Thomas Danner,
Jean-Francois Jasmin, Michael P. Lisanti, Andreas Friebe, Eiki Takimoto, David A. Kass

Rationale: Soluble guanylyl cyclase (sGC) generates cyclic guanosine monophophate (cGMP) upon activation by

nitric oxide (NO). Cardiac NO–sGC-cGMP signaling blunts cardiac stress responses, including pressure-

overload–induced hypertrophy. The latter itself depresses signaling through this pathway by reducing NO

generation and enhancing cGMP hydrolysis.

Objective: We tested the hypothesis that the sGC response to NO also declines with pressure-overload stress and

assessed the role of heme-oxidation and altered intracellular compartmentation of sGC as potential mechanisms.

Methods and Results: C57BL/6 mice subjected to transverse aortic constriction (TAC) developed cardiac

hypertrophy and dysfunction. NO-stimulated sGC activity was markedly depressed, whereas NO- and

heme-independent sGC activation by BAY 60–2770 was preserved. Total sGC�1 and �1 expression were

unchanged by TAC; however, sGC�1 subunits shifted out of caveolin-enriched microdomains. NO-stimulated

sGC activity was 2- to 3-fold greater in Cav3-containing lipid raft versus nonlipid raft domains in control and

6-fold greater after TAC. In contrast, BAY 60–2770 responses were >10 fold higher in non-Cav3 domains with

and without TAC, declining about 60% after TAC within each compartment. Mice genetically lacking Cav3 had

reduced NO- and BAY-stimulated sGC activity in microdomains containing Cav3 for controls but no change

within non–Cav3-enriched domains.

Conclusions: Pressure overload depresses NO/heme-dependent sGC activation in the heart, consistent with

enhanced oxidation. The data reveal a novel additional mechanism for reduced NO-coupled sGC activity related

to dynamic shifts in membrane microdomain localization, with Cav3-microdomains protecting sGC from

heme-oxidation and facilitating NO responsiveness. Translocation of sGC out of this domain favors sGC

oxidation and contributes to depressed NO-stimulated sGC activity. (Circ Res. 2012;110:295-303.)

Key Words: hypertrophy � soluble guanylyl cyclase � caveolae � signaling � cardiomyocyte

Heart failure affects more than 6 million patients in the

United States alone, and its prevalence continues to rise

despite recent diagnostic and therapeutic advances. A leading

risk factor for the disease is chronic pressure overload due to

arterial hypertension, which afflicts nearly a third of the

world’s population. Such sustained stress often induces path-

ological hypertrophy of the chamber wall and can lead to

depressed function and electric instability. Current treatment

reduces the pressure load and suppresses neurohormones that

contribute to maladaptive remodeling. However, clinical

outcome remains poor, and as a consequence, novel ap-

proaches to leverage intrinsic negative modulators of hyper-

trophy are garnering increasing attention.

One such pathway involves the second messenger cyclic

guanosine monophosphate (cGMP).1–3 Cyclic GMP is gener-

ated by either the particulate guanylyl cyclase (pGC) linked

to the natriuretic peptide receptor, or “soluble” GC (sGC),

activated by nitric oxide (NO). Once generated, cGMP can

modulate cardiomyocyte function by interacting with phos-

phodiesterases (PDEs) that regulate cAMP and its associated

pathways, or by activating its primary target kinase, protein

kinase G (PKG, also called cGK-1). Cyclic GMP-PKG
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activation plays a key role in modulating vascular tone and

confers antifibrotic effects. Newer studies support a potent

role in suppressing cardiomyocyte pathobiology, including

blunting in vivo pressure-overload–induced hypertrophy and

protecting against ischemia-reperfusion injury and myocyte

apoptosis.4–11 However, in chronic pressure overload, myo-

cardial NO synthesis and secondary signaling through cGMP

is itself depressed9,12–16 probably contributing to the patho-

physiology. The latter appears related in part to an increase in

cGMP hydrolysis by targeting phosphodiesterases such as

PDE1 and PDE5.9,15,16

Another key component of this signaling pathway is sGC

itself, yet no prior studies have examined its activity or

potential modulators of activity in cardiac hypertrophy. Al-

though sGC-derived cGMP is mostly thought to accumulate

in the cytosol, some NO-stimulated cGMP production is

detectable at the plasma membrane.17–19 In endothelial cells,

endothelial NO synthase (NOS3) and PKG colocalize with

caveolin, an integral membrane scaffolding protein that

compartmentalizes and concentrates signaling molecules

within specialized regions of the plasma membrane. This has

suggested that caveolae, small (50–100 nm) flask-like lipid-

and protein-rich invaginations of the plasma membrane, may

serve as microdomains for optimized NO-sGC-cGMP signal-

ing.20 In this regard, sGC has been found at the plasma

membrane in rat neurons, rat vascular endothelial cells,

human and rat skeletal myocytes, rat cardiac myocytes, and

human platelets.19–23 The importance of this localization and

whether it is impacted by heart disease to contribute to altered

sGC function is unknown.

The present study tested the hypothesis that sustained

pressure overload depresses NO-stimulated sGC activation

and explored mechanisms for such change including loss

of NO- and heme-dependent activity and shifts in microdo-

main localization. We reveal novel evidence for both,

revealing a shift of sGC out of caveolae-enriched mem-

brane microdomains after sustained pressure overload,

with enhanced sGC oxidation, and net depression of

NO-stimulated cGMP generation.

Methods
Full details can be found in the Methods section of the Online Data

Supplement at http://circres.ahajournals.org.

Animal Model
Male C57BL/6 mice (age, 9–12 weeks, Jackson Labs, Bar Harbor,

ME) were used. Pressure overload was produced by transverse aortic

constriction (TAC) as previously described.9 Left ventricular (LV)

cardiac tissue of caveolin-3 null24 (Cav3 KO background strain

C57BL/6 mice) and littermate controls (wild-type [WT]) mice were

provided by JF Jasmin (Thomas Jefferson University).25 All animals

received humane care according to National Institutes of Health

guidelines, and all animal protocols were approved by the respective

IACUCs of Johns Hopkins University and Temple University.

Physiological Study
Cardiac function was assessed in conscious and isoflurane-anesthe-

tized mice by transthoracic, 2D, M-mode echocardiography (Acuson

Sequoia C256, Siemens at Johns Hopkins and Vevo660, Visual

Sonics at Temple) with a 15-MHz linear-array transducer. M-mode

LV end-systolic and end-diastolic dimensions were averaged from 3

to 5 beats. LV percent fractional shortening (FS) and mass were

calculated as described previously.9

Immunofluorescent and Confocal Microscopy
Immunohistochemical analysis was performed on paraffin-

embedded, 10% formaldehyde gravity-perfused LV tissue. LV

tissue slices were imaged with a Nikon C-1 PLUS confocal

microscope system.

Cell Fractionation
Protein was prepared from snap-frozen heart tissue, and membrane-

cytosol fractionation was performed as previously described.9,26

Isolation of Caveolin-Enriched Lipid Raft Fraction
Caveolin-enriched lipid raft fractions (Cav3�LR) were prepared

from freshly harvested and snap-frozen LV tissue, using a discon-

tinuous 35–5% sucrose density gradient ultracentrifugation method

as previously described,27 with some modifications.

Western Blot Analysis
Protein extracts from LV tissue homogenate and above mentioned

subfractions were run on SDS-PAGE gels and transferred to nitro-

cellulose membranes. Immunoblot analysis was performed using

primary antibody probes as detailed in the Online Data Supplement.

sGC Activity and cGMP Measurement
Baseline and agonist-stimulated cGMP levels of total LV, Cav3�LR,

and nonenriched fractions (NLR) from Sham, TAC, WT, and Cav3

KO hearts were measured by direct cGMP ELISA kit from New East

Biosciences (Malvern, PA).

Statistical Analysis
All values are expressed as mean�SEM. Statistical analyses were

performed using Student t test, 1-way ANOVA followed by Tukey

test when comparing multiple groups, or 2-way ANOVA when

determining interaction of conditions. For data sets with unequal

variances, a Welch t test was used. Statistical significance was

defined as P�0.05.

Non-standard Abbreviations and Acronyms

Cav3 caveolin-3

cAMP cyclic adenosine monophosphate

cGMP cyclic guanosine monophosphate

cGK cyclic GMP-dependent protein kinase

DEA/NO diethylamine NONOate

FS fractional shortening

IBMX 3-isobutyl-1-methylxanthine

KO knockout

LR lipid raft

LV left ventricle

NLR nonlipid raft

NO nitric oxide

NOS3 endothelial NO synthase

ODQ 1H-[1,2,4] oxadiazolo[4,3-a] quinox-alin1-one

PDE phosphodiesterase

PKG protein kinase G

pGC particulate guanylyl cyclase

sGC soluble guanylyl cyclase

TAC transverse aortic constriction

WT wild-type
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Results

Cardiac sGC Activity Declines in Hypertrophied

Myocardium Despite Preserved Overall

Myocardial sGC�1 and �1 Expression
C57BL/6J mice subjected to 3 weeks of transverse aortic

constriction (TAC)9 developed LV hypertrophy, systolic

dysfunction, and dilatation (Figure 1A), as previously

reported.9,28 The capacity to stimulate myocardial sGC was

assessed by the change in cGMP generation before and

after exposure to NO, using the NO-donor diethylamine

NONOate (DEA/NO, 1 �mol/L) in the presence of the

broad PDE inhibitor IBMX (3-isobutyl-1-methylxanthine,

0.75mmol/L). Mean baseline cGMP was �40% lower after

TAC (Table 1), but this disparity was markedly amplified

on DEA/NO stimulation (Figure 1B), with a 10-fold higher

NO-stimulated response in sham versus TAC. As a control,

tissue extracts were pretreated with the selective, irrevers-

ible, heme-site sGC inhibitor 1H-[1,2,4] oxadiazolo[4,3-

a]quinoxalin1-one (ODQ at 10, 30, and 90 �mol/L), which

blocked NO-stimulated cGMP by 80 –90% (Online

Figure I).

Because TAC induces myocardial oxidative stress13 and

oxidation of the sGC heme moiety suppresses its

NO-stimulated activity,29 we tested whether this may have

contributed to the response in TAC hearts. sGC was activated

in an NO- and heme-independent manner by BAY 60–2770

(0.1�mol/L)30 in the presence of IBMX (Figure 1B). BAY

60–2770 induced similar cGMP production as with DEA/NO

in sham controls but also triggered this response in TAC heart

lysate. This indicates that the depressed DEA/NO response in

TAC probably is not related to reduced sGC expression per se

but rather to sGC heme-oxidation.

To confirm whether sGC expression was in fact unal-

tered by TAC, immunoblots were performed using specific

column-purified antibodies to the �1-subunit31 or �1-

subunit. Functional sGC exists as a heterodimer with an �

(73– 82 kDa) and � subunit (70 kDa), the latter reportedly

expressed diffusely within cells and necessary for NO

responsiveness.32,33 The �1�1 isoform is the most ubiqui-

tously expressed across tissue types and the only isoform

in myocardium.34 Negative controls were provided using

heart tissue from mice genetically lacking either sGC�1
35

or sGC�1
31 (Figure 1C). We found expression of sGC �1-

and �1-subunits, relative to GAPDH, was unaltered by

TAC (Figure 1D).

Myocardial sGC Localizes in Cytosolic and

Membrane Compartments
Given unchanged protein expression, we next questioned

whether TAC alters the subcellular distribution of either or

both sGC subunits. LV extracts from sham and TAC mice

were subfractionated into cytosol and membrane compart-

ments and analyzed by immunoblot (Figure 2A).36 GAPDH

and Cav3 served as markers for cytosol and membrane

fractions, respectively. In both sham and TAC hearts, the total

cytosol-to-membrane ratio of sGC�1 expression was similar,

with approximately 66% in cytosol, 33% in the membrane

(Figure 2B). This is consistent with prior studies performed in

rat myocardium19 and frog cardiomyocytes.18 In contrast,

sGC�1 distribution was slightly altered by TAC. In sham

hearts, sGC�1 was nearly equally divided between cytosol

and membrane fractions (47�3.4% in cytosol, 53�3.4% in

membrane). In TAC hearts, sGC�1 distribution was predom-

inantly cytosolic, with about 60% of total sGC�1 localized in

the cytosol and 40% in the membrane fraction (P�0.018

versus sham).

Figure 1. Hypertrophied hearts have
reduced sGC activity despite
unchanged expression levels of sGC�1

and �1 subunits. A, LV mass, fractional
shortening, and LV end-diastolic diameter
of sham (n�31) and TAC (n�48) mice at
baseline and 3 weeks after surgery as
measured by echocardiography. LV mass
to body weight ratio: *P�0.0002 versus
baseline; †P�0.002 versus respective
sham; ‡P�0.00001 versus sham. B, sGC
activity of total protein from sham and
TAC hearts in response to NO-donor
DEA/NO 1 �mol/L (n�15 for sham, 14 for
TAC) and NO- and heme-independent
sGC activator BAY 60–2770 0.1 mmol/L
(n�7 for sham, 6 for TAC). *P�0.01 ver-
sus respective DEA/NO; †P�0.00001 ver-
sus respective sham. C and D, Western
immunoblots and normalized densitome-
try analysis of total sGC�1 and sGC�1

expression in sham (n�9 for �1, n�6 for
�1) and TAC (n�10 for �1, n�6 for �1).
Data are mean�SEM.

Table 1. Baseline cGMP Levels

Sham TAC P

Total 170.1�24.8 102.8�8.1 0.02

Cav3�LR 1220.2�209.6 754.4�86.8 0.08

NLR 199.4�34.1* 297.8�88.7* 0.3

Values are mean�SEM (fmol/�g).

*P�0.05 on paired Student t test versus respective Cav3�LR.
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Confocal immunohistochemistry of formaldehyde

perfusion-fixed LV tissue revealed colocalization of sGC�1

with Cav-3 in sham hearts at both plasmalemma and

T-tubular membranes (Figure 2C). In TAC hearts, sGC�1

remained present at both membrane sites though colocaliza-

tion with Cav3 appeared slightly disrupted. By contrast,

sGC�1 was distributed diffusely throughout the myocardium

in a longitudinal pattern, displaying some colocalization with

Cav3. This did not appear altered by TAC.

Pressure Overload Stress Alters Membrane

Microdomain Localization of sGC�1 Subunit
To more directly examine whether sGC localization within

plasma membrane compartments is altered by TAC, we

determined the distribution of sGC�1 and sGC�1 in microdo-

mains of sham and TAC hearts (Figure 3). Sham and TAC

LV homogenates were subjected to detergent-free, discontin-

uous 35–5% sucrose density gradient centrifugation to sepa-

rate caveolae-enriched lipid raft microdomains (F4 and F5,

Cav3�LR) from nonenriched domains (F11, NLR). Each

sucrose density gradient fraction was run in equal volume on

SDS-PAGE electrophoresis (Figure 3B). Protein concentra-

tions determined by Bradford assay confirmed that total

protein distribution was weighted toward heavier fractions

(F6 and higher) lacking Cav3 in both control and TAC hearts

(Figure 3C). In sham controls, sGC�1 and sGC�1 were

detected in caveolae-enriched and nonenriched microdo-

mains. In sham controls, the distribution of sGC�1, sGC�1,

and Cav3 across fractions revealed sGC�1 and sGC�1 to be

relatively higher in Cav3�LR after normalizing to total

protein within the respective fraction. However, in TAC

hearts, the proportion of sGC�1 present in Cav3�LR declined

(Figure 3D and 3E).

Pressure-Overload Cardiac Stress Differentially

Reduces NO-Induced sGC Activity in

Caveolae-Enriched Lipid Raft and

Nonenriched Microdomains
To test whether membrane microdomain localization of sGC

influenced its functional response to NO, Cav3�LR and NLR

fractions were assayed for NO and BAY 60–2770–stimu-

lated cGMP generation (Figure 4). As before, measurements

were made in the presence of IBMX, so cGMP generation

could be stably detected. Baseline cGMP in respective

caveolae-enriched or nonenriched microdomains were similar

between sham and TAC (Table 1). However, cGMP levels

were �3-fold higher in caveolae-enriched microdomains

(P�0.01 for sham, P�0.04 for TAC). More strikingly,

NO-stimulated cGMP production was markedly greater in

caveolae-enriched versus nonenriched fractions, and this was

observed in sham and TAC similarly (note logarithmic scale).

However, NO-induced sGC activity was also uniformly

higher in sham Cav3�LR and NLR fractions compared to

corresponding domains in TAC hearts (P�0.05 on paired

Student t test for all NLR measurements versus respective

Cav3�LR). In contrast to NO stimulation, the sGC response

to BAY 60–2770 was �10-fold greater in NLR than

Cav3�LR fractions, and this held similarly for sham and TAC

hearts. In NLR fractions, the BAY 60–2770 response ex-

ceeded that to DEA/NO, whereas in Cav3�LR fractions, the

2 responses were similar. This pattern persisted after TAC.

BAY 60–2770 activates sGC in a heme-independent manner,

and this response is enhanced by heme-oxidation,30,37 sup-

porting greater sGC oxidation in NLR fractions, be they in

sham or TAC hearts. With TAC, the concordant reduction in

both NO and BAY 60–2770 responsiveness of Cav3�LR

fraction is consistent with a shift of sGC away from caveolae-

enriched into nonenriched microdomains. Two-way ANOVA

Figure 2. Submyocardial distribution of sGC subunits is differentially
altered by pressure-overload stress. A, Western blots of cytosol (C)
and membrane (M) fractions. B, Summary analysis of C-M distribution of
sGC�1 and �1 in TAC versus sham hearts (n�9 each for �1, n�5 each
for �1). *P�0.02 versus sham. C, Confocal imaging of LV tissue immu-
nostained for sGC�1 or sGC �1 (green) and Cav-3 (red). Images at
�100.

298 Circulation Research January 20, 2012

 at Thomas Jefferson Universi on July 31, 2012http://circres.ahajournals.org/Downloaded from 

http://circres.ahajournals.org/


of the cGMP responses to DEA/NO in the caveolae-enriched

and nonenriched microdomains of sham and TAC hearts

revealed that both pressure-overload and microdomain local-

ization affected sGC NO-responsiveness (P�0.001 for both),

with a borderline interaction effect (P�0.06). This disparity

is further quantified in Table 2. An increase in the BAY

60–2770–to–DEA/NO relative responses occurs with heme-

oxidation. Within Cav3�LR fractions, this relative response

ratio was unaltered by TAC; however, it dramatically rose in

NLR fractions.

Loss of Caveolin 3 Blunts sGC NO Responsiveness

Specifically in Lipid Raft Fractions
To further test whether caveolae represent enhanced microdo-

mains for NO-inducible sGC activity, we studied sGC re-

sponsiveness in hearts of caveolin-3 null (Cav3KO) mice.

The model develops spontaneous mild cardiac hypertrophy

by 4 months of age.38 For whole myocardial analysis, we

examined 6-month-old hearts, which had a �10% higher

LV/body weight ratio, well below that induced by TAC

(Figure 1A). Myocardial DEA/NO-induced sGC activity was

nearly 90% lower in Cav3KO versus WT (Figure 5A),

whereas the BAY 60–2770 response was identical between

groups (Figure 5A). This appeared similar to what we

observed with TAC, and supports greater sGC oxidation in

the absence of a Cav3-microdomain pool. There was a trend

toward reduced protein expression of sGC�1 in Cav3KO

(P�0.052), whereas sGC�1 was unchanged over controls

(Figure 5B). However, as the BAY 60–2770 response was

similar between groups, total sGC heterodimer probably was

unaltered. We next examined sGC activity in membrane

microdomains, using the same fractions F4/F5 versus F11 to

define the 2 compartments. The DEA/NO response was much

less in Cav3KO over WT in the F4/F5 fraction (Figure 5B),

whereas both responses were lower but equal in the F11

(NLR) fraction. Interestingly, the response to BAY 60–2770

was also reduced in Cav3KO F4/F5 fractions, whereas in the

F11 NLR fraction, it was higher (as in controls and TAC) and

similar to littermate controls. The marked decline in the BAY

60–2770 response in F4/F5 fractions in Cav3KO was not due

to an absence of sGC in this microdomain, as Western blots

of sucrose density gradient fractions (Figure 5D) revealed the

presence of each subunit in both microdomains (F4/F5 and

F11). This suggests that Cav3 provides an important facili-

tating function to NO/heme-dependent and independent sGC

activation.

Figure 3. Caveolae localization of sGCb1 subunit is disrupted in hypertrophied hearts.
Caveolae-enriched lipid raft microdomains (F4 and F5, Cav3�LR) and nonlipid raft (F11, NLR)
fractions were separated using detergent-free discontinuous 35–5% sucrose density gradient
centrifugation. A, Western blot of sGC�1

�/� and sGC�1
�/� hearts as negative controls. B, Repre-

sentative Western blots of all sucrose density gradient fractions of sham (n�4) and TAC (n�6),
using anti-sGC�1, sGC�1, and Cav3 antibodies. C, Relative distribution of total protein across all
11 fractions of sham and TAC hearts, as determined by Bradford assay. D, Relative distribution
of Cav3, sGC�1, and sGC�1 confirm a localization of sGC�1 and sGC�1 in Cav3�LR (F4,F5).
Graphs are based on densitometry analysis of Western blots. E, Relative amount of sGC�1 and
�1 in Cav3�LR in TAC versus sham. *P�0.037 versus sham.
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Discussion
This study investigated whether and how the activation of

myocardial soluble guanylyl cyclase is affected by pressure-

overload–induced cardiac hypertrophy. The results highlight

several novel and important findings. First, sGC is pro-

foundly modified in the hypertrophied heart, rendering it less

NO-responsive yet equally activated by the NO- and heme-

independent agonist BAY 60–2770 as compared with con-

trols. This supports the presence of oxidation of sGC, which,

though previously documented in the pulmonary and sys-

temic hypertension,29,30 has not been previously reported in

the myocardium. Second, we reveal the presence of a sub-

stantial proportion of myocardial sGC in the plasma mem-

brane within microdomains that confer differential activation

properties in the normal heart. Specifically, sGC within

Cav3-enriched microdomains is more responsive to NO

activation and relatively protected from oxidation. By con-

trast, sGC in nonlipid raft (non-Cav3 containing) domains is

less NO responsive and more oxidized. Caveolae-localization

of sGC as a mechanism to augment NO responsiveness is

consistent with prior work showing colocalization of sGC

with NOS3 and PKG19,20 and NO-cGMP signaling within

plasmalemmal caveolae. Third, we link the 2 behaviors,

showing that this submembrane distribution of sGC is dy-

namic, being diminished in Cav3�LR domains by pressure

overload, resulting in a shift from NO to BAY 60–2770

sGC-responsiveness. Thus, although heme-oxidation contrib-

utes to the overall decline of NO activation of sGC in the

hypertrophied heart, this modulation occurs predominantly in

noncaveolae enriched microdomains. Last, we show that the

presence of Cav3 within lipid rafts is an important regulator

of both NO/heme-dependent and heme-independent sGC

activation. Viewed together, these observations shed new

light on how abnormal subcellular distribution and oxidation

of sGC can contribute to depressed cGMP-related signaling

in cardiac disease.

Despite its name and differentiation from particulate GC

coupled to natriuretic receptors, soluble GC is also detectable

in membrane fractions. The �2�1 sGC isoform is found in

placenta, epithelia, and neurons and has been shown in rat

neuronal synaptic membrane.21 The �1�1 heterodimer is more

ubiquitously expressed,34 and is also detected in the plasma-

lemma of vascular endothelial cells,19 platelets,19 neuroblas-

toma cells,39 and sarcolemma of skeletal,22,23 smooth,40 and

cardiac muscle tissue.18,19 The specific function of

membrane-associated versus cytosolic sGC�1�1 has been

relatively little studied. Zabel et al19 first identified a trans-

location of sGC to caveolin-enriched domains in endothelial

cells when NO synthesis was stimulated by calcium, and this

in turn enhanced cGMP-generation. Castro et al also observed

an NO-sGC-cGMP signal in cardiomyocyte subplasmalemma

by expressing an olfactory cyclic nucleotide gated membrane

channel, though this was considered the particulate (eg,

NP-coupled) GC,41 and not sGC. Other studies have revealed

compartmentalized NO-stimulated sGC-cGMP pools that

blunt �-adrenergic stimulation modulated by PDE5a,42

PDE2,43 and �3-adrenergic signaling,43,44 suggesting colocal-

ization at the plasma membrane. Whether this functional

compartment includes sGC has not been tested. In another

study, bovine tracheal smooth muscle showed membrane-

associated sGC�1�1 produces the first of 2 sequential cGMP

signals involved in muscarinic activation, involving sGC

translocation from cytosol to the plasma membrane.40 How

sGC moves remains unclear, though it is found in a complex

with NOS3 and heat shock protein 90 (HSP90)45 and HSP90

can act as a migration chaperone. Clarification of this

mechanism awaits further investigation.

The present study is the first to identify differential

NO/heme-dependent and heme-independent activation prop-

erties of sGC localized within or external to Cav3�LR

microdomains. Strikingly, although sGC heme-oxidation ap-

pears prevalent in the NLR fraction with TAC, this appears

not the case in Cav3�LR. The cause for an apparent protec-

tion against oxidation of sGC in the Cav3�LR versus greater

oxidation in NLR domains remains unknown. Interestingly,

superoxide dismutase 1 has been reported to localize to

caveolae in vascular endothelial cells46 and may confer

targeted antioxidant effects. Another study found thioredoxin

reductase 1 binds to caveolin-1,47 though in this instance the

interaction was suggested to impede rather than enhance

antioxidant activity. As NOS is also localized to this microdo-

main and can be the target of oxidation depressing its

function,13 it seems plausible that a protected Cav3�LR

microdomain would facilitate NO-sGC interaction and cGMP

Figure 4. Activation of sGC by NO-donor DEA/NO and NO-
and heme-independent sGC activator BAY 60–2770 in
Cav3�LR and NLR fractions of sham and TAC hearts. DEA/
NO: n�7 for sham, 6 for TAC. BAY 60–2770 n�4 per group:
*P�0.0003 versus respective DEA/NO; †P�0.05 versus respec-
tive sham in Cav3�LR; P�0.03 versus respective sham in NLR.

Table 2. Differential sGC Responsiveness Within

Microdomains of Normal and Hypertrophied Hearts

Relative Response

Cav3�LR NLR

Sham TAC Sham TAC

BAY 60–2770:DEA/NO 1.0 0.6 3.5 17.4

Relative response ratios were calculated using the percent change in cGMP

levels within respective microdomains of sham and TAC hearts. Values are

normalized to the response ratio of sham Cav3�LR fraction. Increasing BAY

60–2770:DEA/NO ratios reflect enhanced response to BAY 60–2770 and

diminished response to DEA/NO, resulting from heme-oxidization of sGC.
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generation, as we observed. The Cav3KO results further

suggest that Cav3 itself plays an important role to this

preservation, whether heme/NO dependent or not. The latter

may relate to a structural organization of the proteins within

caveolae, which become disrupted by elimination of Cav3.

Cav3KO mice develop mild cardiac hypertrophy, LV dilata-

tion, and reduced systolic function,38 whereas cardiac-

specific overexpression of Cav3 attenuates pressure-overload

hypertrophy,48 both supporting a cardioprotective role of

Cav3. Whether other members of the caveolae subproteome

also change with chronic cardiac stress (or perhaps aging)

remains unknown but raises an intriguing possibility in the

context of abnormal signal transduction in various forms of

cardiac hypertrophy and disease.

The exact stoichiometry of sGC subunits in the myocyte

microdomains remains unknown, and this is nontrivial to

quantify given the isolation procedures involved. Further-

more, we recognize that expression of each isoform does not

determine their net balance in a heterodimer, and that this

balance may itself alter activation. The shift of �1 more than

�1 from the Cav3-microdomain suggests that some change in

heterodimer composition may have occurred. In the rat brain,

postnatal development has been associated with decreased

sGC activity despite unaltered sGC subunit expression, and

for the cerebrum, this has correlated with less sGC�1�1

heterodimerization.49 In the human heart, sGC�1 gene ex-

pression is nearly 3-fold higher than sGC�1 (sGC�2 is

undetectable).34 Our findings support this, suggesting sGC�1

may determine sGC NO-responsiveness through hetero-

dimerization with a relative surplus of the �1 subunit.

Pressure overload has been previously shown to depress

NOS activity through functional uncoupling13 and to augment

phosphodiesterase-mediated cGMP hydrolysis.9 Based on the

current data, pressure-overload also results in sGC oxidation

and disrupted localization away from Cav3�LR microdo-

mains—further depressing NO-stimulated responsiveness.

Each mechanism can play a role in reducing effective cGMP

signaling and thus contribute to cardiac stress maladaptations.

Because we cannot yet directly manipulate sGC membrane

translocation, its in vivo effects on cardiac stress responses

admittedly remain speculative. The new results do not conflict

with prior observed benefits from PDE5 or PDE1 inhibition9,50

or from reversing NOS uncoupling by tetrahydrobiopterin

(BH4).51 In the former case, the effect was due to enhancing

cGMP once generated, which in turn increased PKG activity. By

contrast, BH4 reduced NOS-derived ROS and enhanced NO

synthesis, but this did not lead to increased PKG activation. It is

possible that persistent sGC dysfunction contributed to this

observation. Further studies will be required to test whether

reverse remodeling of the hypertrophied heart can restore normal

sGC NO sensitivity and relocalize it to Cav3�LR. The present

results should help frame such research by highlighting a new

sGC regulatory mechanism and providing insights into the

potential utility of heme-independent sGC activators for the

treatment of heart disease.
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Novelty and Significance

What Is Known?

● Nitric oxide (NO) stimulates the conversion of guanosine triphosphate

to cyclic guanosine monophosphate (cGMP) by soluble guanylyl

cyclase (sGC). cGMP regulates a wide spectrum of cardiovascular

processes including cardiac contractility and chronic cardiac

hypertrophy.
● Cardiovascular disease depresses sGC activity, however, the mech-

anism of this reduction in cyclase activity is poorly understood.

What New Information Does This Article Contribute?

● Pressure-overload cardiac stress results in the oxidation of myocar-

dial sGC, rendering it less responsive to NO in the hypertrophied

heart.
● sGC within caveolae-enriched membrane microdomains of both

normal and hypertrophied hearts is relatively protected from

oxidation, demonstrating enhanced NO-responsiveness relative to

sGC within noncaveolae-enriched microdomains.
● Submyocardial distribution of sGC is dynamic. Pressure-overload

cardiac stress induces a relocalization of the membrane associ-

ated sGC away from caveolae.
● Caveolin 3 itself is important for the NO responsiveness of sGC.

Deletion of caveolin 3 reduces sGC NO- and heme-independent

activation in lipid-raft domains.

Reduced NO-cGMP signaling contributes to the pathophysiology
of cardiovascular disease. This has been attributed to depressed

NO synthase activity through functional uncoupling and to dimin-

ished cGMP signaling due to augmented phosphodiesterase-

mediated cGMP hydrolysis. In pulmonary and systemic hyper-

tension, oxidation of sGC depresses cyclase activity; thereby

further diminishing cGMP signaling. We provide evidence that

sGC activity is markedly reduced in pressure-overload hypertro-

phied myocardium not due to reduced expression but rather to

oxidation that suppresses both NO and heme-dependent activity.

We found that both cyclase oxidation and its NO-activation are

differentially impacted depending on the subcellular membrane

localization of sGC. sGC is found in both cytosol and membrane

at near equal levels. When residing in caveolae-enriched

membrane lipid rafts, sGC is more responsive to NO-activation

and relatively protected from oxidation as compared with sGC in

nonlipid raft domains. Pressure overload triggers a relocalization

of sGC out of caveolae-enriched lipid rafts to nonlipid rafts, and

this reduces NO responsiveness while increasing enzyme oxi-

dation Furthermore, caveolin-3 regulates both NO/heme-

dependent and NO/heme-independent sGC activation in lipid

rafts. These findings link dynamic subcellular localization with

differential enzyme oxidation and activity, revealing a novel

regulatory mechanism of sGC activity. Our work also suggests

the caveolae microdomain as a potential therapeutic target for

cardiac hypertrophy and heart failure.
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SUPPLEMENTAL MATERIAL 
Methods. 
Pressure Overload Model 
Mice were anesthetized with isoflurane (3%–4%, inhaled) and etomidate (0.3mg, i.m. injection), 
intubated, and mechanically ventilated. The transverse aorta was constricted with a 27-gauge 
needle using 7-0 prolene suture, after which the chest was closed and the animal allowed to 
recover from anesthesia. Sham control mice were subjected to thoracotomy alone. All animals 
were studied at 3 wk after surgery. All animals received humane care according to NIH 
guidelines, and all animal protocols were approved by the respective IACUCs of Johns Hopkins 
University and Temple University. 

Immunohistochemistry analysis of myocardium 

Mounted LV tissue slices were dually immunostained with either rabbit anti-sGC 1 (1:100, 

Abcam) or rabbit anti-sGC 1 (1:100, Cayman Chemicals) and mouse anti-Cav-3 (1:200, BD 
Transduction Laboratories) primary antibodies. Anti-mouse Alexa 594 (1:100, Molecular Probes) 
and anti-rabbit Alexa 488 (1:100, Molecular Probes) secondary antibodies were used. Tissue 
slices were also stained with diluted DAPI solution.  

Mounted LV tissue slices were deparaffinized, processed for antigen retrieval, and blocked with 
1% BSA/PBST for 30 min at room temperature and then with 20mg/ml Mouse Antibody 
Fragment Fab (goat anti-mouse 10ug/ml, Vector Lab) in 1% BSA/PBST for 1 h at room 

temperature. Mounted tissue slices were then incubated with either rabbit anti-sGC 1 (1:100, 

Abcam) or rabbit anti-sGC 1 (1:100, Cayman Chemicals) primary antibody in 1%BSA/PBST in a 
humidified chamber overnight at 4°C, washed, incubated with anti-rabbit Alexa 488 (1:100, 
Molecular Probes) secondary antibody in 1% BSA/PBST for 4 h at room temperature in the 
dark, and then washed and blocked a second time with 1% BSA/PBST for 30 min at room 
temperature in the dark. Mounted LV tissue slices were then incubated with the second primary 
antibody, mouse anti-Cav-3 (1:200, BD Transduction Laboratories), in 1% BSA/PBST in a 
humidified chamber in the dark at 4°C overnight, washed, incubated with anti-mouse Alexa 594 
secondary antibody (1:100, Molecular Probes) in 1% BSA/PBST for 1 h at room temperature in 
the dark. Mounted LV tissue was washed well with PBS, briefly stained with diluted DAPI 
solution, washed again, and then sealed with a cover slip.  

Cell and Membrane Fractionation 
Tissue homogenization was carried out in detergent free buffer of 50mM Tris-HCl, pH 7.6, 
1mmol/L EDTA, 1mmol/L DTT, and 2mmol/L PMSF(59). Following sucrose density gradient 
ultracentrifugation of the sample, fractions were collected every 400 μl from the top sucrose 
layer, corresponding to F1 (top, most buoyant) to F11 (bottom, least buoyant, heaviest). A light-
scattering band confined to the 35–5% sucrose interface, F4-F5, corresponds to Cav3+LR 
fractions. Proteins were precipitated using 0.1% w/v deoxycholic acid in 100% w/v 
trichloroacetic acid. Protein concentrations were determined by Bradford assay. Non-lipid raft 
(NLR, F11) and Cav3+LR fractions (F4 and F5) without TCA precipitation were also collected for 
Bradford and subsequent cGMP assays. 

To prepare membrane-cytosol fractions, LV tissue samples were homogenized in a sucrose 
buffer (10 mmol/L imidazole, 300 mmol/L sucrose, 10 mmol/L NaF, 1 mmol/L EDTA) with 
protease inhibitors (0.3 mmol/L PMSF, 0.5 mmol/L DTT, 10 μg/ml aprotinin, 10 μg/ml leupeptin, 
2 μg/ml pepstatin A) and centrifuged briefly at 2,000g to pellet the nuclear/indestructible cell 
fraction. The resulting supernatant was centrifuged at 20,000g for 1 h, and the final supernatant 
kept as the cytosolic fraction. The pellet was resuspended in high-salt buffer (25 mmol/L Tris pH 
7.4, 500 mmol/L NaCL, 1 mmol/L EDTA, 1 mmol/L EGTA + protease inhibitors) incubated for 30 
min, and centrifuged at 16,000g for 10 min. The pellet was resuspended in the same high-salt 
buffer with 0.5% Triton, incubated for 30 min, re-centrifuged at 16,000g for 10 min, and the 
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resulting supernatant collected as the membrane fraction. Protein concentrations were 
measured by BCA assay (Pierce). 

Isolation of caveolin-enriched lipid raft fraction. 
LV tissue homogenization was carried out on ice, in detergent free buffer (50 mmol/L Tris-HCl, 
pH 7.6, 1 mmol/L EDTA, 1 mmol/L DTT, 2 mmol/L PMSF, 50mmol/L NaF, 1mmol/L Na 
Vanadate) with protease inhibitors (Mammalian Cocktail, Sigma-Aldrich).  Following 1 h 
incubation on ice with intermittent vortex, 0.6mL of tissue homogenate was mixed with 1.4mL of 
60% (w/v) sucrose in 20mmol/L KCl, 0.5mmol/L MgCl2 and placed at the bottom of an 
ultracentrifuge tube. A discontinuous 35%-5% sucrose gradient was formed by overlaying each 
sample with 1.3mL of 35% sucrose and then with 1.3mL of 5% sucrose. The sucrose density 
gradient was topped off with 0.5mL of 200mmol/L KCl. Each sample was then centrifuged at 
>130,000g for 18 h at 4°C in a swinging bucket rotor (Beckman Instruments, Palo Alto, CA) 
without any brake. The top KCl layer was discarded and fractions were collected every 400 μl 
from the top sucrose layer corresponding to F1 (top) to F11 (bottom). 

Primary Antibody Concentration and Sources for Western Blot 

sGC 1 (1:1000, gifted by A. Friebe, also Abcam), sGC 1 (1:4000, Cayman Chemicals), Cav-3 
(1:10000, BD Transduction), and GAPDH (1:10000, Cell Signaling). Specificity of anti-sGCα1 

and  -β1 antibodies were confirmed using protein extracts from sGC 1
-/- and sGC 1

-/- mouse 
hearts (gifted by A. Friebe). Primary antibody binding was visualized by horseradish 
peroxidase–conjugated secondary antibodies and enhanced chemiluminescence (GE 
Healthcare). 

sGC activity assay 
Homogenates were pre-incubated at room 
temperature for 15 min in a solution for final 
concentrations of Tris 50mM, pH7.6, IBMX 
0.75mmol/L, creatine phosphate 3.5mmol/L, 
creatinine phosphokinase 1 unit, GTP 1mmol/L, 
and MgCl2 3mmol/L. Samples were then 
incubated with or without DEA/NO (1μmol/L) or 
BAY 60-2770 (0.1μmol/L) at 37°C for 10 min and 
and subjected to diethyl ether extraction. cGMP 
levels of ether-extracted samples were measured 
by EIA. ODQ (1H-[1,2,4] oxadiazolo[4,3-
a]quinoxalin1- one) was used to inhibit sGC as a 
negative control. BAY compound was provided by 
J-P Stasch (Bayer AG, Wuppertal, Germany). 
 
 

Online Figure I. Titration of sGC inhibitor 
ODQ. cGMP levels of total protein extract from 
C57BL/6 LV homogenate were measured by 
ELISA in the absence and presence of 
DEA/NO and ODQ at the concentrations 
indicated. N=4 per condition. * P<0.05 versus 
unstimulated (open bar). ‡ P<0.05 versus 

DEA/NO 1 molar without ODQ (black bar). 
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