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Pressure Signal-Based Analysis
of Anomalies in Switching
Behavior of a Two-Way
Directional Control Valve
Solenoid operated direction control valves, responsible for regulating the flow of fluid in
hydraulic circuit highly relies on the control current for their actuation. The control cur-
rents supplied to the solenoid generate the electromagnetic force required for switching
of valves by mechanical movement of spools inside. The deterioration in control current
leads to the degradation in electromagnetic force and thus the spool takes longer to initiate
as well as terminate the switching phenomenon. This delay or lag potentially causes the
pressure, flow and power fluctuation, and unintended impacts on the system. This article
presents a comparative analysis of detecting these anomalies by acquiring pressure
signals across the valve using extreme gradient boosting (XGBoost) and one-dimensional
convolution neural network (CNN). Four handcrafted statistical features and four fractal
dimensions train XGBoost whereas 1D CNN with six hidden layers utilizes the raw
signal of net pressure change across the valve. XGBoost predicts the switching behavior
at an accuracy of 99.68%, and 1D CNN performs at its maximum possible accuracy
(100%). The very narrow gap signifies the nearly equal significance of both of these differ-
ent category classifiers. As XGBoost cannot handle the raw signals, the pre-processing
increases the time consumption while 1D CNN does not require deep architecture and effi-
ciently maps the complexity of the hydraulic system using pressure signals.
[DOI: 10.1115/1.4056474]
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1 Introduction
Direction control valves (DCVs) are one of the most critical com-

ponents of a hydraulic system that enable reliable flow management
of the hydraulic fluid. They achieve their desired functionality by
switching the spool position and connecting different ports. Any
deviation from the optimal switching condition either due to
delay or incomplete movement of the spool may trigger undesirable
flow and pressure fluctuations in the system, thereby impairing its
power transmission ability. Therefore, to ensure system reliability
and reduce maintenance downtime, it is imperative to monitor the
valve switching condition. To date, a few attempts have been
made to study the static and dynamic characteristics of the hydraulic
valves. Maiti et al. [1] studied the steady and dynamic characteristic
of a two-stage proportional relief valve by varying the input voltage,
theoretically as well as experimentally. They conveyed the linear
relationship between the input current voltage and the force gener-
ated in the solenoids. Topçu et al. [2] developed a fast-switching
electro-pneumatic valve with a switching time of 4.5 ms and
stated that the switching time of the valve can be enhanced by
applying an overdriving current to the solenoid coils. Folmer
et al. [3] presented a data-driven system for hydraulic valves by
comparing standardized flow coefficients using data obtained
across companies. They used it to detect faults by considering
the wear and the contamination of the valve plug (spool). Cao
et al. [4] developed a health monitoring model based on the non-

dimensional artificial neural networks to estimate the flow force
and flowrates under broad operating conditions (such as different
pressure drops and valve openings) compared with conventional
lumped flow field models. Lei et al. [5] employed a machine learn-
ing model using principal component analysis (PCA) and extreme
gradient boosting (XGBoost) to identify hydraulic valve faults by
acquiring pressure signals in a hydraulic system. Given this, it is
noted that there are limited developments in the monitoring
process for the degradation of the switching behavior in the
solenoid-actuated hydraulic valves. Although, few of the authors
[4,5] have demonstrated the health monitoring of the hydraulic
valves and pumps [6–8] using conventional data-driven methodol-
ogies, there is a lack in terms of the applicability of deep learning
methods. To this end, it can be concluded that the mathematical
and data-based investigation of the switching behavior of hydraulic
valves are limited to the implementation of neural networks, PCA,
etc.
Convolution neural network (CNN) is one such deep learning

neural network used to analyze the visual imagery dataset (two-
dimensional data) [9]. The architecture of the CNN is configurable
as it consists of different layers, namely, convolution layers, pooling
layers, fully connected layers, and the output layer stacked together
in mannered order for the pattern recognition. CNN eliminates out
the manual feature extraction of the input as convolution layers
perform so by moving the kernel over the data itself. The conven-
tional 2D CNN can be tuned and adapted to learn features from
time domain signal (one-dimensional signal) by moving the
kernels in the convolution layer in one direction only preserving
the complex learning capabilities of CNN. On the other side,
XGBoost algorithm is one of the most effective ensemble classifiers
known for its fast computational speed and high accuracy [10].
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XGBoost is well capable of performing the classification task on
small as well as big data. It minimizes a regularized objective func-
tion (L1 and L2 regularization) comprising the function of convex
loss and a model complexity penalty term. It adopts the continuous
iterative method of training and induces new tress to predict the
errors of previous tress and combines it with the previous trees to
enhance the performance. This way, XGBoost is one of the most
promising and highly accurate classifiers for predicting the switch-
ing characteristic of the valve.
On the other hand, 1D CNN is developed to slide the kernel along

one dimension only. This characteristic makes it well suitable
for convolution-based feature extraction of 1D signals. One-
dimensional CNN is known to have achieved state-of-the-art perfor-
mances in various health monitoring tasks using electrocardiogram
data, raw motor current data, etc. This approach is shown to yield
better results as it employs raw time-series sensor data directly as
input to efficiently learn optimal representation unlike that with
the manually extracted features. In view of this, 1D CNN is opted
to classify the switching characteristic of the curve using pressure
signals acquired on either side of the valve.
The present study attempts to detect the faults in the switching

characteristic of hydraulic valve using the net pressure difference
across the valve with 1D CNN and XGBoost. These two classifiers
are chosen deliberately to look for the capabilities of these classifi-
ers in handling hydraulic signals and to look for their compatibilities
in monitoring the valve for deterioration in their switching behavior.
As XGBoost requires manually extracted features, eight features
(four statistical and fractal dimensions each) are extracted using
the net pressure change data. The prediction results reveal that
both of these classifiers are well capable and their prediction

accuracies lie in a close proximity. The methodology adapted in
this study is shown in Fig. 1.

2 Experimental Setup and Data Acquisition
The experimental dataset for pressure signals used in this study is

obtained from the UC Irvine Machine Learning Repository [11].
The pressure signals are acquired from two pressure sensors (PS1
and PS2) installed across the two-way DCV at a sampling fre-
quency of 100 Hz for 60 s. Initially, the valve remains in OFF con-
dition where pressure transducer PS1 records high pressure
(∼190 bar), while sensor PS2 senses zero pressure.
At t= 10 s, the valve’s spool switches to the new position. As the

valve opens, the upstream pressure PS1 starts reducing while the
downstream pressure PS2 (see Fig. 2(a)) increases. Figure 2(b)
shows the temporal variation of both the pressure signals during
the switching operation for four different switching conditions,
namely, “Optimal switching, small lag, severe lag, and close to
total failure.” Since the magnitude of the control current supplied
to the solenoid actuator governs the spool movement [1], to simu-
late these fault conditions, the control current is varied at 100%,
90%, 80%, and 73% of the nominal value, respectively.
Figure 2(c) shows the temporal variation of pressure difference
(ΔPS= PS1− PS2) across the valve for four different switching
conditions. It is evident that the smaller the control current is, the
larger the delay is, which is triggering spool movement for switch-
ing. This delay is termed as the lag in the switching of a direction
control valve. It is obvious that the lower values of the control
current generate less amount of the electromagnetic force and

Fig. 1 Methodology adopted to determine the switching characteristic of the
valve
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thus, the movement of the spool for switching initiates lately and
moves slowly as compared to the optimal switching condition.
This delay is termed as the lag or delay in the switching of the direc-
tion control valve.
At optimal switching condition, the valve starts to switch at

∼9.3 s (see Fig. 2(b)) while under the faulty conditions, there is a
noticeable delay. For instance, at the switching condition of close
to total failure, switching starts at ∼9.7 s due to the lower control
current to the solenoid, which in turn generates lower electromag-
netic force for spool movement. With a decrease in the control
current while the switching delay increases, the pressure difference
attains a constant, steady-state value (∼25 bar after 10.5 s) irrespec-
tive of the switching condition. However, the transient pathways
that lead to this steady-state value depend on the switching condi-
tion. Specifically, under optimal switching, there is a gradual reduc-
tion in PS1 with no pressure fluctuations, while under small lag and
severe lag conditions, there are small-scale fluctuations in PS1, and
under close to total failure condition, there are noticeable large-scale
fluctuations in the PS1 signal. While it is possible to detect the
switching condition by capturing the trends and features with
such highly time-resolved signals (a sampling rate of 100 Hz), in
practice, these measurements are acquired either using simple pres-
sure gauges or with pressure transducers at nominal sampling

frequencies in the order of 10 Hz [12], which cannot capture such
fluctuations. Thus, an automated machine learning approach is
required for monitoring the switching condition of valves. This is
the focus of Secs. 3 and 4, which demonstrate the efficacy of
XGBoost and 1D CNN for predicting the switching condition
with a high accuracy.

3 Monitoring Using Extreme Gradient Boosting
This section details the methodology for predicting the switching

condition of a hydraulic valve by extracting four statistical features
(Sec. 3.1) and four fractal dimensions (Sec. 3.2) to train XGBoost.

3.1 Statistical Features. Statistical features infer the informa-
tion associated with the statistic and the distribution of the signal
under consideration. Many a times, these features do indicate the
condition of the system and thus are a viable option to train a
machine learning model for more accurate information. Root
mean square (RMS), standard deviation, skewness, and kurtosis
[13–15] are extracted from the pressure difference signals. The
mathematical formula for these features is mentioned below:

(i) RMS: Root mean square is the quadratic mean of the signal.

RMS =

�����������������������
1
n
(x21 + x22 + · · · + x2n)

√
(1)

where n is the number of data points and xi are data points.

Fig. 2 (a) Pressure signals as acquired by PS1 and PS2, zoomed view of (b) pressure tran-
sient in PS1 and PS2, and (c) net pressure change

Fig. 3 Variation of kmax versus mean squared error

Table 1 Tuned hyper-parameters using random search for
training XGBoost

Hyper-parameters Value Hyper-parameters Value

Alpha 0.0025 max_depth 38
bootstrap TRUE max_features sqrt
Colsample_bytree 1 min_child_weight 3
gamma 0.013 min_samples_split 7
learning_rate 0.065 n_estimators 1333
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(ii) Standard deviation (σ): Standard deviation is the measure of
the scattering of discrete data about the mean value of the
signal.

σ =

���������������∑n
i=1 (xi − �x)2

n

√
(2)

where �x is the mean of the signal.
(iii) Skewness: Skewness is the measure of asymmetry in the

statistical distribution. It signifies the extent to which a
specific distribution of the signal differs from the normal
distribution.

Skewness =
∑n

i=1 (xi − �x)3

n
(3)

(iv) Kurtosis: Kurtosis is a measure of the combined weight of
the tail of the distribution with respect to the center of the
distribution of the signal.

Kurtosis =
∑n

i=1 (xi − �x)/n
σ4

(4)

3.2 Fractal Dimensions. The fractal dimension has a non-
integer value that is a good measure of the nonlinearity and
complexity of the data. Thus, these are vital mathematical tools
for analyzing non-stationary and non-periodic signals. It is viable
that the pressure signals acquired across the valve neither does
exhibit periodicity nor exhibits regularity (see Fig. 2(a)). Thus,
fractal dimension is a good measure to analyze the nonlinearity in
the acquired pressure signals. In this study, four different fractal
dimensions, i.e., Higuchi’s fractal dimension (HFD) [16], Petro-
sian’s FD [17], Katz’s FD [18], and detrended fluctuation analysis
[19], are used to quantify the nonlinearity of the pressure signal
data obtained across a DCV.
Higuchi’s algorithm for FD estimation is based on the evaluation

of mean of the curve length by considering segments of k samples.
The methods proposed by Polychronaki et al. [20] have been
adopted to evaluate the numerical values of kmax (1–100) to calcu-
late the Higuchi fractal dimension of Weierstrass cosine sequences.
The mean square error is lowest for kmax= 4 (see Fig. 3) and thus
used to calculate the HFD for the change in pressure signals.

3.3 Extreme Gradient Boosting. XGBoost is an ensemble,
high-speed and high performing classifier based on the gradient
boosted decision trees [10]. It sequentially combines weak learners
to produce a powerful learner with a lower bias and variance. The

mathematical interpretation and formulations are provided in
Refs. [10,21]. The statistical features and fractal dimension for
the differential pressure signal clubbed together constructs the
feature matrix to train the XGBoost. Seventy percent of the data
is used to train the model and remaining 30% is used as the
testing data. To remove the biasness of the model, ten-fold cross
validation has been employed, and to maintain the generality in
the data splitting, stratified is set to be true. The hyper-parameters
of the XGBoost classifier are tuned using random search cross val-
idation and the optimal hyper-parameters are listed in Table 1. The
testing accuracy for predicting the valve switching condition is
found to be 99.68%. The precision, recall, and f1-score are 99.52,
99.63, and 99.58, respectively.

4 Monitoring Using One-Dimensional Convolution
Neural Networks
The conventional CNN, also called as 2D CNN, was originally

defined for classifying image data. In 2D CNN, the kernel slides
along the two dimensions of the image. The kernel can be under-
stood as a filter that extract features from the images. Thus, a
CNN does not require the manual feature extraction, and the raw
data can be directly used in CNN [22]. This leads to the introduction
of 1D CNN to handle time-series data and the kernel moves over the
data and autonomously extract the features. Thus, 1D CNN has
been adopted to analyze the switching condition of the valve by
directly employing the pressure difference signals. In a CNN archi-
tecture, there are number of layers that defines the depth of the
model and highly influences the classification performance of the
model. In 1D CNN, the complexity order gets reduced as compared
to the conventional CNN. For example, an image with N×N

Fig. 4 Architecture of the 1D CNN model for predicting switching behavior of the DCV

Table 2 Performance comparison of XGBoost and 1D CNN

Machine learning model XGBoost 1D CNN

Accuracy (%) 99.68 100
Precision (%) 99.52 100
Recall (%) 99.63 100
f1-score (%) 99.58 100

Table 3 Comparative analysis of present and previous works

Switching
condition

Lei et al. [5] PCA
+XGBoost

Present work

XGBoost
1D
CNN

Precision Optimal switching 0.99 1 1
Small lag 0.885 1 1
Severe lag 1 0.96 1
Close to total
failure

1 0.99 1

Recall Optimal switching 0.902 1 1
Small lag 1 0.99 1
Severe lag 0.975 1 1
Close to total
failure

0.99 0.97 1

f1-score Optimal switching 0.944 1 1
Small lag 0.939 1 1
Severe lag 0.988 0.98 1
Close to total
failure

0.995 0.98 1

Accuracy 0.966 0.996 1
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dimensions convolve with K×K kernel and has a computational
complexity ∼O(N2K2), whereas for the corresponding 1D convolu-
tion (with the same dimensions, N and K ), the order of complexity
is ∼O(NK) [23]. Thus, it is evident that the complexity order also
gets reduced significantly using 1D CNN and are easier and faster
to train and implement. The architecture of the adapted 1D CNN
for the valve switching prediction is shown in Fig. 4.
The architecture contains two pairs of convolution and max

pooling layer. The latter layer acts as an input to the flatten layer.
The flatten layer is connected to a dense network (fully connected
layer-100 neurons), which then acts as an input for the output
layer. Each set of input signals containing 6000 data points each is
fed to the first CNN layer where they are subjected to 64 filters.
This makes the dimension of the first CNN layer as 5998 × 1 × 64.
Each of the CNN layer contains an activation function placed after
the CNN layer and before the next layer. Rectified linear unit is
chosen as the activation function because it prevents the vanishing
gradient problem during learning and assists the model to learn the
complex patterns in the data. Next, the max pooling layer performs
the sample-based discretization of the data which down-samples
and reduces the dimensionality of the feature set. Subsequently,
the data pass through another pair of 1D CNN layer and the max
pooling layer, respectively. The flatten layer employed after the
max pooling layer flattens the multidimensional input tensor to a
single dimension array before feeding it to the classification layer.
The classification layer employs a fully connected layer that learns
the non-linear combination of the high-level features, extracted by
convolution layers during learning. Based on the learning, the fully
connected layer classifies the data to a class and passes on the infor-
mation to the output layer. In addition, the dropout regularization
introduced in the model after each convolution layer avoids overfit-
ting of the neural networks. This way the architecture offers an effec-
tive regularization that reduces the overfitting and improves the
generalization error by dropping the nodes randomly during the
training. With the current 1D CNN architecture, the model predicts
the switching condition of the DCV with an accuracy, precision,
recall, and f1-score of 100% each using the pressure difference
data. Seventy percent of the data is used for training and the remain-
ing 30% is used for testing the 1D CNN. Overall, 2205 number of
data samples are considered. Thus, 1544 (70% of 2205) number of
instances are used to train the model.
Table 2 shows the performance comparison of XGBoost and 1D

CNN,while Table 3 presents a comparison of thesemodelswith a pre-
vious study, which used the same dataset. Thus, 1D CNN, employed
for hydraulic signals, is performing slightly better and can be a pro-
spective efficient classifier for hydraulic valve monitoring. The accu-
racy of the 1D CNN model is found to be 100% in predicting the
switching behavior of the DCV using the pressure difference data.
Also, the precision, recall, and f1-score are equal to 100%.

5 Conclusion
This study presents a methodology for monitoring the degrada-

tion in the switching condition of a solenoid-actuated DCV using
XGBoost and 1D CNN. Its major findings are:

(1) With a decrease in the control current to the solenoid actuator
or increase in the severity of switching fault, the time delay to
initiation of the switching increases, and fluctuations in the
pressure signal increase.

(2) Through manual feature extraction (statistical features and
fractal dimensions) from the differential pressure signals
for training the XGBoost model, a prediction accuracy of
99.68% is achieved.

(3) One-dimensional CNN is capable of learning complex and
non-stationary features from the raw signal autonomously.
With six hidden layers, 1D CNN employs unprocessed
data and achieves a marginally better performance (100%
accuracy) compared to XGBoost (99.68%).

(4) XGBoost model is time-consuming and computationally
complex, whereas 1D CNN is simple and achieves a better
accuracy without requiring pre-determined transformations,
manual feature extraction, or feature selection methods.

The future work of this study will attempt to address to develop a
forecasting technique to detect the anomaly in the switching charac-
teristic of the valve well before the development of the improper
switching of the valve.
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Nomenclature
n = number of data points in a signal
x = data points in a signal
�x = mean of the signal
σ = standard deviation
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