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The pressure-tuning Raman spectra of five solid, diiodine heterocyclic thioamide compounds (mbztS)I2 (mbztS = N-methyl-
2-mercaptobenzothiazole) (1); [(mbztS)2I]+[I7]− (2); (pySH)I2 (pySH = 2-mercaptopyridine) (3); [(pySH)(pyS]+[I3]− (4);
(thpm)(I2)2 or possibly [(thpm)I2]+[I3]− (thpm = 2-mercapto-3,4,5,6-tertahydropyrimidine (5) have been measured for pres-
sures up to ∼ 50 kbar using a diamond-anvil cell. Compounds 1, 4, and 5 undergo pressure-induced phase transitions at ∼ 35,
∼ 25, and ∼ 32 kbar, respectively. Following the phase transition in 1, the pressure dependences of the vibrational modes, which
were originally located at 84, 111, and 161 cm−1 and are associated with the S...I–Ilinkage, are 2.08, 1.78, and 0.57 cm−1/kbar,
respectively. These pressure dependences are typical of low-energy vibrations. The pressure-tuning FT-Raman results for the pairs
of compounds 1 , 2, 3, and 4 are remarkably similar to each other suggesting that the compounds are most probably perturbed
diiodide compounds rather than ionic ones. The Raman data for 5 show that it is best formulated as (thpm)(I2)2 rather than
[(thpm)2I]+[I3]−.

Copyright © 2006 Ghada J. Corban et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

INTRODUCTION

Iodine chemistry is proving to be of considerable interest
lately, in part, because of the discovery of low-temperature,
semi- and super-conducting polyiodides, which quickly
led to the deliberate doping of conjugated polymers with
elemental iodine, and ultimately resulted in the award of
the 2000 Nobel Prize in Chemistry to Professor Heeger
et al for their research on these materials [1]. A second
important field in which iodine chemistry plays a piv-
otal role is in the activity of antithyroid drugs and there
is now a major research effort focused on determining
structure-activity relationships of thioamides with iodine
[2, 3]. The antithyroid drugs that are most commonly
used today are the thioamide derivatives, 6-n-propyl-
thiouracil, N-methyl-imidazoline-2-thione (methimazole),
and 3-methyl-2-thioxo-4-imidazoline-1-carboxylate (car-
bimazole). For the past few years, we have been exploring
the iodine chemistry of thioamides in an effort to bring
about a clearer understanding of the interactions involved
in antithyroid drug treatment. As part of this research,
we have reported the results of a fundamental study on
the effect of high external pressures (up to ∼ 50 kbar)

on the ambient-temperature FT-Raman spectra of four
solid, diiodine-heterocyclic thioamide compounds [4]. In
the case of one of these compounds, [(bztzdtH)I2} · I2

(bztzdtH = benzothiazole-2-thione), we discovered that
I2 disproportionation occurs with increasing pressure and
I3
− ions are produced. In addition, empirical correlations

were established between the wavenumber of the I−I
stretching vibration, the I−I bond length, and the applied
external pressure. In this present paper, we have extended
these pressure-tuning Raman spectroscopic studies to an
examination of a second series of five, solid diiodine-
heterocyclic thioamide compounds: (mbztS)I2 (mbztS = N-
methyl-2-mercaptobenzothiazole) (1); [(mbztS)2I]+[I7]−

(2); (pySH)I2 (pySH = 2-mercaptopyridine) (3);
[(pySH)(pyS]+[I3]− (4); (thpm)(I2)2 or [(thpm)I2]+[I3]−

(thpm = 2-mercapto-3,4,5,6-tertahydropyrimidine) (5).
These systems are also of potential importance as model
compounds for the development of structure-activity rela-
tionships associated with the interaction of antithyroid drugs
with iodine. They contain iodine atoms in several different
structural arrangements and three of them have already been
characterized by single-crystal X-ray diffraction, namely,
compounds 1 [5, 6], 2 [5–7], and 4 [8].
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EXPERIMENTAL

The diiodine-heterocyclic thioamides 1–5 were prepared ac-
cording to the literature procedures [2, 5–8]. Complete de-
tails of the pressure-tuning FT-Raman measurements, in-
cluding the ruby R1 fluorescence-pressure calibration pro-
cedure, have been described elsewhere [4, 9]. A diamond-
anvil cell (High Pressure Diamond Optics, Inc, Tucson, Ariz,
USA) was used to generate the applied pressures. FT-Raman
spectra were recorded on a Bruker IFS-88 FT-IR spectrome-
ter equipped with an FRA-105 Raman module connected via
two 1 m photo-optic cables to a Nikon Optiphot-II optical
microscope using a Nikon 20X super-long-range objective.
A near-IR (Nd3+: YAG) laser, emitting at 1064.1 nm with a
power ∼ 25 mW, was used to excite the Raman spectra and
typically a 2.6 cm−1 spectral resolution was employed while
collecting 1000 scans. The band positions are considered to
be accurate to at least ±1 cm−1.

RESULTS AND DISCUSSION

In our previous pressure-tuning FT-Raman work on diio-
dine thioamide compounds [4], we pointed out that electron
charge-transfer between the S atom of a thioamide and diio-
dine will result in stabilization of the lone pair of electrons
on the S atom by overlapping of the S donor orbital with the
σ∗-orbital of diiodine. This situation will lead to a length-
ening of the thione double bond in the thioamide and sub-
sequent bond formation between the S atom and diiodine,
together with a concomitant lengthening of the I−I bond. It
was also shown that there are direct empirical correlations
between the S−I, C−S, and I−I bond distances, namely, if
the S−I distances are shorter than the C−S ones are, then
the I−I distances will be longer than normal and there will
be strong electron donation and vice versa. The application
of high external pressures to the diiodine thioamide com-
pounds would, therefore, be expected to produce some sig-
nificant changes in bond distances and particularly on the
positions of the low-frequency modes associated with the io-
dine atoms. There have been only a few high-pressure vibra-
tional studies reported on diiodine systems and these have
involved chiefly oxides [10, 11] and sulfides [12]. The inter-
action of polyiodides with polyvinyl alcohols has also been
investigated under high pressure [13]. In addition, the effect
of high pressures on the Raman spectrum of solid diiodine
itself has been the subject of several investigations [14, 15].
In the present work, the FT-Raman spectra of compounds
1–5 were first recorded under ambient conditions and then
pressure-tuning FT-Raman studies were undertaken on each
of the species. An excellent review of the Raman spectra ex-
pected for different diiodine compounds has been published
recently by Deplano et al [16].

FT-Raman spectra of compound 1 in the 50–250 cm−1

region are shown in Figure 1 for selected pressures up to
∼ 51.3 kbar. Initially, there are three bands observed at 84 w,
111 mw, and 161 vs cm−1. The Raman spectrum is closely
similar to that reported for the (dtt)I2 (dtt = 1,3-ditholane-
2-thione) for which the presence of a S···I−I linkage has been
established [17]. Upon increasing the pressure, the three
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Figure 1: Pressure-tuning FT-Raman spectra of 1 in the low-energy
region.

bands for compound 1 gradually shift to higher wavenum-
bers, as is typically the case [18]. At ∼ 35 kbar, the band
originally at 84 cm−1 vanishes and a new band develops at
∼ 150 cm−1 which, eventually at ∼ 51 kbar, has a compara-
ble intensity to that of the originally very strong peak, which
has now shifted to 171 cm−1. These spectral changes can also
be seen quite in the ν (cm−1) versus P (pressure, kbar) plot
(Figure 2), which indicates that compound 1 undergoes a
pressure-induced structural change at ∼ 35 kbar. From X-ray
crystallographic data for 1 [5, 6], the I−I distance is 2.7912(9)
Å which, from the linear plot of I−I bond length versus po-
sition of the ν(I−I) mode given in [4], would lead to an I−I
stretching vibration being expected at ∼ 160 cm−1 at ambi-
ent pressure, just as it is observed for this adduct. Before the
phase transition for compound 1 occurs at ∼ 35 kbar, the
three vibrations originally located at 84, 111, and 161 cm−1

are completely pressure insensitive. Following the phase tran-
sition, however, the pressure dependences are 2.08, 1.78, and
0.57 cm−1/kbar, respectively, which are typical of low-energy
vibrations. There are other weak Raman features detected
at ambient pressure at 255, 311, 392, 511, 539, 636, and
708 cm−1, which are presumably associated chiefly with low-
energy bending vibrations of the thioamide group. Further-
more, it is also worthwhile pointing out that the disappear-
ance of the 311 cm−1 band of compound 1 at ∼ 35 kbar pro-
vides further evidence for the existence of the phase transi-
tion at this pressure.

In the case of compound 2, it was initially thought
that this would prove to be compound 1 with an addi-
tional I2 molecule attached to the S···I−I unit leading to a
S···I−I−I−I linkage. However, X-ray crystallographic anal-
ysis has subsequently shown that this compound is actually
[(mbztS)2I]+[I7]− [5, 6]. The same compound was reported
earlier by Demartin et al [7]. Three Raman bands are ob-
served at ambient pressure at 85 w, 112 mw, and 161 vs cm−1.
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In addition, there are weak features at 257, 311, 391, 511,
539, and 637 cm−1. The Raman data are essentially identical
to those of compound 1. Upon application of pressure to 2,
the Raman spectra continue to be closely similar to those of
1, including the existence of a pressure-induced structural
change at ∼ 35 kbar. Therefore, from a vibrational stand-
point, compounds 1 and 2 are essentially identical, not sur-
prisingly since their formulations are really S · I2 and I− · 3I2.
Delplano et al [16] have emphasized the experimental dif-
ficulties inherent in measuring the laser Raman spectra of
polyiodides, that is, some I2 may be lost during the mea-
surements, for example, I7

− → I5
− + I2;→ I5

− →→ I3
− + I2.

There was no spectroscopic evidence, however, for the for-
mation of any free I2 in this particular case—a strong Raman
band would have been observed at ∼ 180 cm−1 [1, 14, 15].

The low-energy FT-Raman spectra of (pySH)I2 (pySH
= 2-mercaptopyridine) (3) [(pySH)(pyS]+[I3]− (4) are also
quite similar to one another. It is possible that compound
3 may have disproportionated to 4 upon initial pressur-
ization in the DAC, as has been reported previously for
[(bztzdtH)I2} · I2 (bztzdtH = benzothiazole-2-thione) [4].
On the basis of X-ray crystallographic data for 4, the I3

moiety is slightly bent. For a linear I3
− entity, only one very

strong Raman band would be expected at ∼ 110 cm−1 from
the symmetric inphase ν(I−I) stretching mode [17]. In the
case of 4, however, there is an intense doublet at 155 and
164 cm−1, and several other weaker features are observed
at 77 sh, 110 vw, 176 sh, and 234 vvw cm−1. The appearance
of this strong band at 164 cm−1, together with the observa-
tion of the other weaker bands, suggests that the I3 moiety
in 4 is better formulated as an I− · I2 entity, containing a
slightly perturbed diiodine molecule, rather than as an I3

−

species. A comparable situation exists for [(EtNH2)2dt]I3,
which exhibits a very strong Raman band at 167 cm−1 and is
considered to have a perturbed diiodine molecule [17]. The
I− · I2 formulation for 4 could also be another reason for the
similarity of the spectra to those of 3. The second intense
Raman feature observed for 4 at 155 cm−1 may be the re-
sult of partial decomposition to another polyiodide species
or possibly even site or factor-group splitting of the sym-
metric ν(I−I) vibrational mode. Under pressure, the doublet
at 155 and 164 cm−1 shifts gradually to higher wavenum-
bers, with the higher energy component eventually merg-
ing with the lower energy one (Figure 3). The versus P plot
in Figure 4 suggests that there is a pressure-induced struc-
tural change occurring at ∼ 25 kbar. The signals in the C−H
stretching region are much too weak to be analytically use-
ful at low pressures, but there is a significant increase in
intensity occurring in this region, beginning just after the
phase transition near 30 kbar, that continues until the high
est pressure (∼ 46 kbar) is reached. This dramatic increase
in intensity may be associated with pressure-induced fluo-
rescence involving the I− · I2 entity. Such pressure-induced
fluores cence effects have been reported previously for dia-
mond anvils [19], ZnS : Mn2+ nanoparticles [20], and ace-
tone [21]. In addition, the acridine diiodine (2 : 3) adduct
has been shown to a yellow-green fluorescence upon expo-
sure to 632.8 He−Ne laser excitation [22].
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Figure 2: Wavenumber versus pressure plot for the FT-Raman
spectra of 1 in the low-energy region.
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Figure 3: Pressure-tuning FT-Raman spectra of 4 in the low-energy
region.

Finally, a FT-Raman study was also conducted for com-
pound 5, which it was thought could be formulated as ei-
ther (thpm)(I2)2 or [(thpm)I2]+[I3]−(thpm = 2-mercapto-
3,4,5,6-tertahydropyrimidine). The principal, low-energy
features appear at 91 w, 161 vvs and 197 w cm−1 suggesting
the presence of neutral (thpm)(I2)2, containing perturbed
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Figure 4: Wavenumber versus pressure plot for the FT-Raman
spectra of 4 in the low-energy region.
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Figure 5: Pressure-tuning FT-Raman spectra of 5 in the low-energy
region. The unlabeled pressure value is a repeated measurement of
the experiment at 50.33 kbar and emphasizes the reproducibility of
the pressure-tuning work.

diiodine molecules, rather than ionic [(thpm)I2]+[I3]− for
which the strongest Raman band would be expected at
∼ 110 cm−1 and not at ∼ 160 cm−1. Under pressure, this
compound also undergoes a structural change at ∼ 32 kbar
(Figures 5 and 6).
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Figure 6: Wavenumber versus pressure plot for the FT-Raman
spectra of 5 in the low-energy region.

CONCLUSIONS

Raman spectroscopy continues to be an extremely useful
probe for examining the structural features of diiodine [14,
15, 23] and interhalogen [24] thioamide compounds. In
the pressure-tuning FT-Raman spectroscopic work reported
here, structural phase transitions were detected for com-
pounds 1, 4, and 5 at ∼ 35, ∼ 25, and ∼ 32 kbar, respectively.
There was no evidence of any free I2 formation for any of the
compounds examined under high pressures. The similarity
of the FT-Raman spectra of the two pairs of compounds, 1, 2,
3, and 4, may be the result of them being closely related per-
turbed diiodine complexes [25]. In the case of compounds
3 and 4, it is also possible that a pressure-induced dispro-
portionation of 3 may have occurred leading to the forma-
tion of 4, in a similar manner to the effect of pressure on
[(bztzdtH)I2} · I2 (bztzdtH = benzothiazole-2-thione) [4].
Finally, the FT-Raman data show that 5 is best formulated as
(thpm)(I2)2 rather than the ionic species [(thpm)I2]+[I3]−.
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