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The propagation of a pressure wave through an imploding liquid metal liner near 

turnaround, due to the compression of magnetic flux and plasma is considered, based on 

which the pressure distribution near turnaround is derived analytically under the assump-

tion of a small Mach number M (defined by the ratio between characteristic radial velocity 

of liner and the velocity of sound through the medium). It is shown that under certain 

conditions, the rarefaction wave from the outer (free) surface causes the apparition of a 

negative pressure in the imploding liner, with consequent liability of cavitation. The crite-

rion for the generation of the negative pressure is found to be ML>0.6~0.7 for the range 

of parameters considered (L: liner thickness at turnaround normalized by the inner radius).
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I. INTRODUCTION

When an imploding liquid metal liner is applied to the compression of magnetic flux 

and fusion plasma(1)~(5), the dynamics of the system are affected by the finite compres-

sibility of the fluid. 

Papers published in the past have considered mainly (1) the energy loss due to the 

compression of the liner material(4)~(8), (2) the dwell enhancement near turnaround which 

results in an increase of fusion reaction time(7)(8).

The pressure distribution in an imploding liner has also been discussed in Ref. (8), in 

which numerical calculations with finite difference technique, have led to the finding that 

the compression wave propagating outward through the liner acts as a water hammer. 

The calculations, however, only covered the interval up to the point in time where the 

water hammer reached the outer surface of liner, and did not proceed further to consider 

the ensuing period of rarefaction wave. 

The problem raised here is the possible apparition of negative pressure during prop-

agation of the rarefaction wave, and consequent liability of cavitation(9)(10), to affect the 

entire liner motion and its geometry.

The present paper considers this possibility of negative pressure generation in an im-

ploding liner, based on analytical treatment of compressible fluid dynamics in the region 
of small Mach number.
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II. ANALYSIS

In this chapter, the pressure distribution in an imploding liner near turnaround is 

derived analytically for a small Mach number M. The Mach number in this paper is 

defined by

(1)

where c is the velocity of sound in the liner material and U0 the characteristic velocity 

of the liner. 

In cylindrical geometry, equations of continuity and radial motion take the form(11)"

(2)

(3)

where r is the density, r the radius of a fluid element, u the radial velocity, ‚¬‚èV the azi-

muthal velocity and p the pressure, while the symbols ( )', ( ) respectively denote

Let r1(t), r2(t) be the inner and outer radii of the free surfaces of the liner, as shown 

in Fig.1. The liner is assumed to rotate as a rigid body round an axis that does not

displace, so that at turnaround there is no 

Rayleigh-Taylor instability of the inner sur-

face(12). If the initial liner thickness is suf-

ficiently small compared with the initial 

radius, the angular momentum A=rV per 

unit mass can be considered roughly constant 

in the radial direction. In such case, the 

azimuthal velocity V is determined from the 

law of angular momentum conservation and 

takes the form V=A/r. Near turnaround, 

the pressure on the liner outer surface is as-

sumed to become negligible compared with 

that on the inner surface, i.e.p(r2)=0(8), and 

the liner is accelerated outward by the pres-

sure P(r1)= P1 of the compressed payload 

(magnetic flux +plasma).

In the case of an incompressible liner, i.e.(ru)'=0, Eq .(3) can be easily solved, upon 

which the pressure distribution in the rotating liner is obtained in the form(7)

(4)

(5)

(6)

and U1, V1 are the radial and azimuthal velocities of the inner surface. In the right-hand 

side of Eq.(4), the first term is the pressure due to liner motion and hence independent 

of boundary pressure, i.e. PM(r1)=PM(r2)=0.

The trajectory of an incompressible liner near turnaround is approximated by(13)

Fig.1 Geometry of model
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(7)

(8)

where the instant of turnaround is taken as the initial point in time and 2t the dwell 

time of the liner near turnaround. 

The payload pressure P1(t) is assumed to satisfy the adiabatic law(8)

(9)

where the suffix m denotes quantities at turnaround, and r is the ratio of specific heat 

of the payload, and ranges from 5/3 to 2(8). The major part of the fusion reaction in a 
duty cycle is considered to occur during the dwell time 2t, since at |t|=t the payload 

pressure is reduced to 2-g P1m.
The half dwell time t is determined from energy conservation :

(10)

where U is the radial velocity of the incompressible liner. From Eq. (7),

(11)

and from Eqs.(7),(10) and (11),

(12)

Letting U0 represent the characteristic velocity of the liner near turnaround, the Mach 

number

(13)

When the transit time (g2m-g1m)/c of pressure wave in the liner increases to the point 

where it becomes comparable to the half dwell time, the compressibility can no longer be 

neglected in calculating the pressure distribution. 

For a small Mach number, the radial velocity u can be considered to roughly equal 

that of the incompressible liner, and hence(8),

(14)

where U is the deviation due to the compressibility. 

The general equation of state for a compressible material is(14)

(15)

where K is the bulk modulus. The energy of compression is given for a unit volume by 

p2/2K, which is of the order of rU2/2, which would indicate that the ratio U/U should be 
of the same order as the Mach number. From Eq.(15) and the mass conservation law 

(gU)'=0, Eq.(2) of continuity becomes(14)

(16)

where P is defined by

(17)

The second term on the right-hand side of Eq. (16) is estimated from Eqs. (5) and (11) to 

be PM/K~M2U/g, while (gU)'/g~MU/g. Therefore, for a small Mach number, Eq. (16)
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can be rewritten

(18)

Since U=-(PM+P1L)'/r, the first order equation of motion is found from Eqs. ( 3 ) and 

(17) to be

(19)

By combining Eqs. (18) and (19), we obtain the pressure wave equation

(20)

where the terms

have been neglected. The initial and the boundary conditions of Eq. (20) are, respectively,

(21)

(22)

If we define the quantity 17(g, t) by

(23)

where

(24)

the relation

(25)

is obtained, wherein

(26)

Since

Eq. (26) can be rewritten

where P->P1L for M->0 from Eqs. ( 4 ) and (17), and 1/6ln(g2/g)<0 .1 for g>g2/2. The 

boundary condition P(g1)=P1 justifies considering the pressure distribution P near the inner 
surface to be similar to that of the incompressible liner P1L when the Mach number is 
small. Hence, the quantity z in Eq. (25) is small compared to unity, and Eq. (20) is sim-

plified into a slab-type wave equation
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(27)

The initial and boundary conditions then become

(28)
and

(29)

It should be noted that Eq. (27) gives P=P1L for c->oo, which agree with the value for 

an incompressible liner. 

The APPENDIX contains a detailed analysis of the solution of Eq.(20) under the condi-

tions specified by Eqs. (21) and (22). The result proves that Eq. (27) is valid only when

(30)

For ML>> 1, R(g) in Eq. (23) must be replaced by rg as shown in APPENDIX, the 

function R(g) or rg characterizing the cylindrical wave, while g the spherical wave (the 

quantity gP transforms a spherical wave equation into that of slab type). 
The solution of Eq. (27) is

(31)

where

(32)

(33)

Equation (31) reveals that the history of 

the inner boundary pressure P1(t) affects 

the pressure of a fluid element of radius g 

after a time delay t+-n during which the pres-

sure wave propagates through the liner con-

serving the quantity II1(t-t+-n). In the same 

equation, t+-n is the time necessary for the 

pressure wave to propagate from g1, to g 
after reflecting 2n times at the inner and 

outer surfaces, and t-n, the corresponding 

time after reflecting 2n+1 times (see Fig. 2). 

The transit time t+-n calculated with Eq. (33), 

however, does not give the true value of 

t+-n since the radial motion of the liner has 

the effect of changing the liner thickness. 

It is only when this radial velocity is neg-

ligible compared with that of sound that 

the actual transit time t+-n can be calculated 

in the straightforward manner indicated in 

Fig. 2. 

Thus, provided that the Mach number 

is small and granted the condition ML<1,

Fig. 2 Trajectories of pressure waves 
and of inner and outer surfaces 
of liner near turnaround
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an imploding liner near turnaround has a pressure distribution expressed by

(34)

where PM, R and II1 are obtained from Eqs. ( 5 ), (24) and (32). The normalized pressure

is determined by parameters M, L, g and O=Ot, where O=A/g21m is the angular velocity 

of the inner surface at turnaround.

III. DISCUSSION

The compression and expansion undergone by the payload causes the compression 

wave to propagate through the liner from inner foward outer surface. At the outer free

surface, the compression wave is reflected 

in the form of a rarefaction wave, which is 

further reflected at the inner surface as a 

compression wave. This alteration between 

compression and rarefaction waves is illus-

trated in Fig. 3 for a fluid element of radius g

, where the instant of turnaround is adopted 

for the origin of time, and where

(35)

The pressure P(g,t) is determined by 
superposing the instantaneous pressure Pi 
of these waves. If the superposed sum of 
compression waves is smaller than the cor-
responding sum for the rarefaction waves,

Fig. 3 Transition of compression and 

rarefaction waves observed at 

fluid element with radius g

Fig. 4 Pressure distribution in liner after turnaround d(g)= (g-g1)/(g2-g1)
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the resulting pressure in the fluid becomes negative. The calculated pressure distribution 

after turnaround is presented in Fig. 4. It is revealed that the pressure could become 

negative under certain conditions of liner implosion, and that its occurrence would tend to 

be promoted by increasing Mach number and liner thickness. 

In the case of a static liner (U=V=0), the most favorable condition for the generation 

of negative pressure is found from Fig. 3 to be

(36)

in which case the pressure corresponds to the superposition of the maximum value of the 

sum of Pi for rarefaction waves on the minimum value of that for compression waves. 

Under this condition, the criterion for p(g,t)=P(g, t)<0 becomes, from Eqs. ( 7 ), ( 9) and (34),

(37)

By neglecting the terms of n>=2 in Eq. (37), the criterion is approximated by

(38)

Figure 5 presents, as function of the thickness L normalized with liner motion taken into 

account, the minimum value Q of the quantity ML at which negative pressure is induced. 

From this figure, the criterion for p(g,t)<0 could also be approximated by

(39)

where Q(2,0)~-0.60 and Q(5/3,0)~-0.64, in the present range of L. Liner rotation (O=/0) 

produces an increase of PM, as seen from Eq. ( 5 ), which has the effect of raising the 
minimum value Q. This effect, however, is found to be small, the increment being only 

10% even when O~1. i.e. when the kinetic energy of the liner rotation is comparable to 

the compressed payload energy at turnaroud.

The apparition of negative pressure would introduce the liability of cavitation occur-

rence, which will affect the whole liner motion and its geometry after turnaround. 

We know from Eq. (36) that, for ML~-Q, the negative pressure would first appear in 

the fluid element within the radius g~-(g2-g1)/2, i.e. at the center of the liner. The time 
t* at which the negative pressure begins to appear would then be (3/2)t, after turnaround. 

With increasing t3/t(=ML), the time t* approaches ts. This can be easily understood

Fig. 5 Minimum value Q of ML for generation of negative pressure, as function of L
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when we consider the case where an im-

pulsive transient pressure is applied at the 
inner surface ; the negative pressure would 

then appear immediately after the reflection 

at the outer surface. The inner radius g1 

at time t* is related to ML in Fig. 6, where 

it is seen that the minimum value of g1(t*)/ 

g1m is roughly 1.3~1.4, when the payload 

pressure is reduced to 30~40% of the turn-

around value. 

The foregoing observation would in-

dicate that the bulk of the fusion reaction 

in a cycle would be left unaffected even if

the liner is disrupted by cavitation immediately after turnaround. 

There still remains the problem, however, that in order to enhance the reactor plant 

efficiency, the kinetic energy of the liner must be recovered during its expansion (cf. MHD 

conversion similarly to the case of t-pinched plasma(15). For this reason, the criterion ML<Q 

requires to be satisfied if the occurrence of negative pressure affects the liner motion 

significantly.

IV. CONCLUSIONS

The pressure distribution in an imploding liner near turnaround has been obtained 
analytically for a small Mach number M under the condition ML<1 . The results indicate 

possible apparition of negative pressure in the liner under certain conditions. Such negative 
pressure is liable to induce cavitation, which could basically affect the entire liner motion 
and its geometry after turnaround. 

The occurrence of negative pressure, however, has been shown to be preventable by 
the condition ML<Q(g,O), with 0.6<Q<0.64 for the present range of L with irrotational 

liner. Liner rotation has the effect of slightly increasing Q.

[NOMENCLATURE]

A: Angular momentum per unit mass 
c: Sound velocity 

K: Bulk modulus 
L: Defined by Eq.(6) 
M: Mach number 

p: Pressure 
PM: Pressure due to motion 

P=p-PMPj: 
Boundary pressure (j=1,2) g

: Radius 
R: Defined by Eq. (23) 
t: Time 

t* : Time when negative pressure begins to 
appear 

u : Radial velocity 
U0: Characteristic velocity of liner 
U: Radial velocity of incompressible liner 

U: Deviation of radial velocity due to 
compressibility

V : Azimuthal velocity 
Q: Minimum value of Mu for generation of 

negative pressure 
g: Ratio of specific heats of payload 

L: Liner thickness at turnaround normalized 
by gim 
II=RP r

: Liner density 
t: Half dwell time defined in Eq. ( 7 ) t3

= g2m-g1m)/c : Transit time of pressure 
wave in liner O

: Angular velocity of inner surface at 
turnaround 

O=Ot (Subscripts) 

j=1,2: Quantities at inner and outer surfaces, 
respectively 

m : Quantities at turnaround

Fig. 6 Inner radius g1 at time t* when 

negative pressure begins to appear
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[APPENDIX]

Here, the solution of Eq. (19) is derived under the conditions specified by Eqs. (20) 

and (21). 

Under the initial condition Eq. (20), Eq. (19) becomes, by Laplace transformation,

(A1)

where s is the operator of the Laplace transformation. The solution of Eq. (A1) is ob-

tained with the boundary conditions Eq. (21) :

(A2)

where

while Io is the modified Bessel function of the first kind of order zero, and K0 the second 

kind. 

The function X(z+dz, z) is Taylor expanded in the power of
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(A3)

where

Finally,

(A4)

where

Since, in the present instance, |s|-1 is of the order of the half dwell time t
, |dz| can 

be estimated by

When dz~ML<1, 3(dz-1 coth dz-dz-2) in Eq. (A4) is nearly equal to unity , and 
X(z+dz, z) can be estimated by

(A5)

On the other hand, for dz~ML>1, Eq. (A5) gives

(A6)

By applying Eq. (A5) to Eq. (A2) and performing inverse Laplace transformation
, the 

pressure P(g, t) for ML<1 is found to be

(A7)

where

When ML>>1, R(g) must be replaced by rg , as seen from Eqs. (A5) and (A6).
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