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A B S T R A C T

The purpose of this review is to give the reader a thorough background to the fundamentals and appli-
cations of pressurized hot water extraction (PHWE) for the analysis of bioactive compounds.We summarize
the field in the period 2009–14, and include fundamentals of water as a solvent: equipment; method
optimization; applications; coupling; and, future prospects. We highlight that solvent properties of water
are tunable by changing the temperature, particularly self-ionization, dielectric constant, viscosity, diffusivity,
density and surface tension. Furthermore, important aspects to consider are the risk of degradation of
the analytes and other potential reactions, such as hydrolysis, caramelization and Maillard reactions that
may lead to erroneous results. For the extraction of bioactive compounds, we report PHWEmethods based
on using water of 80–175°C and short extraction times. In conclusion, PHWE provides advantages over
conventional extraction methods, such as being “greener”, faster and more efficient.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Why another review article on pressurized hot water

extraction?

Pressurized hot water extraction (PHWE) is an extraction tech-
nique that uses liquid water as extractant (extraction solvent) at
temperatures above the atmospheric boiling point of water
(100°C/273 K, 0.1 MPa), but below the critical point of water
(374°C/647 K, 22.1 MPa) (Fig. 1, [1]). The use of PHWE in analyti-
cal chemistry started with the work in environmental analysis by
Hawthorne and colleagues in the mid-1990s [2,3], and can also be
referred to as subcritical water extraction (SWE), superheated water
extraction and pressurized liquid extraction (PLE) or accelerated
solvent extraction (ASE) with water as a solvent. There are a few
relatively recent review articles on analytical PHWE, which the reader
is recommended to read [4–8].

The aim of this review article is to give a thorough background
on the fundamental properties of water – an aspect that has been
virtually overlooked in most review articles written so far about an-
alytical PHWE. Hence, the first part of this review article concerns
the fundamentals of chemical/physical properties of water and how
these change with the increase in temperature, as well as how these
affect the extraction performance both positively and negatively in
different analytical applications.

The second part deals with technical solutions of PHWE and
how to conduct the experiment in practice. This technical part in-
cludes discussions on using commercially available and
home-built equipment. The third part includes aspects on method
optimization in PHWE. The fourth part summarizes some of the key

applications and related publications mainly in the field of extrac-
tion of bioactive compounds from plants, food, biological and
pharmaceutical samples, especially for the last five years (2010–14),
without at all being exhaustive. The final part is a conclusion and
an outlook towards the near future in terms of PHWE develop-
ment with respect to equipment and methodologies in analytical
chemistry.

2. Fundamentals of water from ambient to

near-critical conditions

Water is perhaps the most interesting naturally occurring liquid
on Earth, so necessary for life, and available to use without costly
transportation. To use water as a solvent has nearly negligible en-
vironmental impact considering production and transportation.
However, using water as a solvent in extraction processes might be
energy demanding in those cases where water needs to be removed
by evaporation. However, it is worth noting that the energy demand
to heat liquid water (25°C to 250°C, 5 MPa) is almost three times
less than needed to vaporize the water to create steam (25°C to
250°C, 0.1 MPa) [9].

2.1. Water at ambient conditions

Water has chemical and physical properties like no other solvent
[10]. At ambient temperature, water is a polar liquid, which disso-
ciates into the hydronium ion (H3O+) and the hydroxide ion (OH−),
as described by its dissociation constant (Kw), which is 1.0 × 10−14

Fig. 1. Phase diagram of water [1].
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at 25°C. This dissociation is commonly described as the “self-
ionization of water” [11] (Equation 1):

Kw

H O OH

H O
=

[ ][ ]
[ ]

+ −
3

2

2
(1)

Further, water has an extremely high relative static permittiv-
ity (εr, also referred to as the dielectric constant) of 80 at 20°C. This
means that water creates electrostatic bonds with other mol-
ecules, thereby decreasing or eliminating intermolecular interaction
between surrounding ions. In other words, water dissolves salt very
well. The relative static permittivity (εr) can be measured by a ca-
pacitor, relating the capacitance in vacuum (C0) to the capacitance
in the liquid (Cx) (Equation 2):

εr =
C

CX

0 (2)

εr is a macroscopic property related to polarisability (π*), which
is a microscopic property of how easily an induced dipole with a
separated charge distribution across the molecule can be estab-
lished. π* is just like εr determined experimentally. Both εr and π*

are relatively high for liquid water at ambient conditions, and they
decrease with increasing temperature as described further below.

Water with its high εr also has a high dipole moment (1.85 D),
while n-hexane with an εr of 1.9 at 20°C has a dipole moment of
zero D [12]. However, εr should not be confused with the dipole
moment of the molecule. For example, dichloromethane has a rel-
atively low εr of 9.1 (20°C), while its dipole moment is quite high
(1.60 D), which is also true for ethyl acetate (εr = 6.0, 1.78 D).

The high dipole moment of water can be explained by the high
electronegativity of oxygen compared to hydrogen, and the smaller
angle between the O-H bonds (104.5°) compared to a typical tet-
rahedral angle of 109°. This charge distribution results in
intermolecular attraction between the water molecules, and also
with other dipolar molecules (i.e., so-called hydrogen bonding).
Water has strong hydrogen bonding, which results in a very high
specific heat capacity (Cp,m, 75.3 J mol−1 K−1, isobaric, molar, at 25°C)
and a high heat of vaporization (Hv, 40.7 kJ/mol at 100°C).

Table 1 lists some important chemical and physical properties
of water – aspects that are important to take into considerationwhen
using water as a solvent in extraction. Many of these properties dra-
matically change with variation in temperature.

2.2. Water at elevated temperature and pressure

What makes water an interesting, viable solvent in extraction
is that several of its chemical and physical properties largely change
when varying the temperature [17]. As shown in Table 1, one of the
most dramatic changes for liquid water at saturation pressure is the
εr, going from 78 at 25°C to 14 at 350°C [13]. Water at near critical

conditions (P and T just below the critical point) dissolves hydro-
phobic compounds such as PAHs and PCBs [3,18]. Salt is no longer
soluble in the water (i.e., it precipitates). What happens is that the
increasing temperature diminishes electrostatic interactions between
the water molecules, and also between water molecules and sur-
rounding ions and molecules (i.e. both εr and π* decrease with
increasing temperature). An increased movement/rotation of water
molecules can also be observed at higher temperature. Hence, the
use of liquid water at higher temperature and pressure allows for
dissolving less polar compounds, since the intermolecular interac-
tions involving hydrogen bonding becomes less pronounced, thereby
favoring London dispersion forces (induced dipole-induced dipole
forces). In other words, liquid water at elevated temperature (and
pressure) renders the water a less polar of a solvent. As a compar-
ison, liquid water at temperatures of 200–275°C and saturation
pressure has εr similar to that of methanol and ethanol at ambient
conditions [13,19].

Solvent properties can be experimentally characterized
and “quantified” using the three solvatochromic Kamlet-Taft
parameters [20]:

• hydrogen-bond donating ability (acidity, α);
• hydrogen-bond accepting ability (basicity, β); and,
• polarisability/polarity (π*)

Each parameter is an index scale between 0 and 1 based on two
reference solvents, one set to a value of 0 and the other to a value
of 1. For example, π* is set to 0 based on cyclohexane and DMSO is
given a value of 1. Most solvents will have values between 0 and 1
on each scale. The indices are obtained experimentally using com-
pounds that absorb visible light (e.g., 4-nitroanisole and N,N-diethyl-
4-nitroaniline dyes), and, when dissolved in the solvent, result in
a shift in absorbance maximum for a certain absorbance band [20].
Using this method, solvents can be compared in terms of solvent
properties [20,21]. In Table 2, water is comparedwith some common
organic solvents with respect to their solvatochromic parameters.
It is obvious that liquid water at elevated temperature attains a
polarisability similar to methanol at 275°C, but the hydrogen-
bond accepting ability is very different from both methanol and

Table 1

Chemical and physical properties of liquid water at different temperatures and saturation pressures

Property T = 298 K
(25°C, 0.1 MPa)

T = 373 K
(100°C, 0.1 MPa)

T = 473 K
(200°C, 1.5 MPa)

T = 623 K
(350°C, 17 MPa)

Dissociation constant, Kw [10] 1.0 × 10−14 5.6 × 10−13 4.9 × 10−12 1.2 × 10−12

pKw 13.99 12.25 11.31 11.92
Relative static permittivity, εr [13] 78.5 55.4 34.8 14.1
Dipole moment 1.85 1.85 1.85 1.85
Specific heat capacity, Cp, (J g−1 K−1) [14] 4.18 4.22 4.51 10.1
Heat of vaporization, Hv (kJ/mol) 44.0 40.7 35.0 15.6
Density (g/cm3) [15] 0.997 0.958 0.865 0.579
Dynamic viscosity, η (mPa s) [16] 0.891 0.282 0.134 0.067
Surface tension (dyn/cm) [16] 72.0 58.9 37.6 3.7
Self-diffusion coefficient, D (m2/s) [17] 2.3 × 10−9 8.6 × 10−9 23.8 × 10−9 N/A

Table 2

Solvatochromic parameters for water and some common organic solvents; average
values calculated from [20]

Solvent α β π*

Water, ambient 1.20 0.37 1.12
Water, 275°C 0.84 0.20 0.69
Methanol 1.01 0.71 0.59
Ethanol 0.89 0.79 0.53
Ethyl acetate 0 0.36 0.61
Cyclohexane 0 0 0
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ethanol. Hence, there is a risk in considering only polarisability or
dielectric constant when discussing the tunable solvent proper-
ties of pressurized hot liquid water.

Carr et al. reviewed the solubility of organic compounds in pres-
surized hot liquid water, including a few bioactive compounds (e.g.,
d-limonene and caprylic acid) [19]. They described how the solu-
bility of organic compounds in the water often goes through a
minimum value, due to “hydrogen-bonding cages” around the solute
compound, which give decreasing solubility with increasing tem-
perature. However, at a certain temperature, the solubility instead
increases with temperature since the positive heat of cavity for-
mation dominates over the negative heat in solubility.

However, there are drawbacks of experimentally determining
solubility of bioactive compounds in water. The availability of
chemical standards is limited, and there is a pertinent risk of deg-
radation of the compound during the equilibration in the solubility
determination experiment. Therefore, good complements to
experiments are solubility models and theoretical approxima-
tions. One such example of a theoretical tool to assess solvent
properties is the Hansen Solubility Parameters (HSP), first devel-
oped by Hansen [22], which can be used to describe solvent
properties or to predict the solubility of an analyte or other com-
pound in a solvent. The method is based on three cohesion energy
density (CED) parameters:

• energy from dispersion forces between molecules (δd);
• energy from dipolar forces between molecules (δp); and,
• energy from hydrogen bonds between molecules (δh)

These three parameters form coordinates in a three-dimensional
space for the analyte with respect to the solvent molecule. The more
the spheres overlap, the more soluble the analyte is in the solvent.
The total solubility parameter (squared) is the sum of the square
of the three CED parameters [22] (Equation 3):

δ δ δ δT d p h
2 2 2 2= + + (3)

CED parameters are calculated based on the group contribu-
tion method [22] {e.g., in Srinivas et al. [23], where the solubility

of betulin in water compared to in ethanol was explored using HSP}.
Betulin is an interesting anti-fungal and anti-inflammatory com-
pound found in large proportion in birch bark [24]. In Fig. 2 and in
[23], it is demonstrated that, for water, a temperature of 250–325°C
is needed to dissolve betulin. Fig. 2 also shows that the largest con-
tributor to the total solubility parameter of water is hydrogen-
bonding CED, which is also the one decreasing most with increasing
temperature in line with the discussion above.

From the discussion above, it is clear that temperature has a large
effect on the dielectric/solvent properties of water, but pressure does
not. In the literature, pressure is commonly described as having
minimal effect on the solvent strength of pressurized hot liquidwater
[4] or on extraction efficiency in PHWE [5]. The pressure is mainly
applied to maintain water in its liquid state, although, some refer-
ences state that an elevated pressure helps wet the sample matrix,
resulting in improved extraction efficiency [16,25]. It is worth noting
that the increasing temperature of liquid water at saturation pres-
sure leads to completely overlapping curves of decreasing π* and
density (see Fig. 3 [26],). As shown in Table 1 and Fig. 4C, the density
of liquid water at saturation pressure goes from 0.997 g/mL at 25°C

Fig. 2. Hansen solubility parameters versus temperature for water at saturation pressure (curves) and for betulin (marked in the left-hand side), modified from [23]. {Re-
printed with permission from [23], John Wiley & Sons}.

Fig. 3. Polarisability and density of liquid water as a function of temperature. {Re-
printed with permission from [26], ©2002, American Chemical Society}.
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to 0.579 g/mL at 350°C [15]. Pressure needed to compensate for the
weakened intermolecular interactions leading to decreasing density
of the water is in the range of 100 MPa or more at temperatures
above 200°C (Fig. 4). Hence, it is important to realize in solubility
works and experiments on extraction efficiency that the density of
liquid water at elevated temperatures (and pressures) is not con-
stant but rather significantly decreaseswithin the experimental range
of temperature values (100–374°C).

In addition to dielectric properties and density, the self-ionization
properties of water also vary with temperature. Table 1 shows how
the dissociation constant (Kw) of water increases with two units from
1.0 × 10−14 at 25°C to 1.2 × 10−12 at 350°C, with a maximum value of
4.9 × 10−12 at 250°C. This implies that the pH changes from about
7.0 to 5.5 (Fig. 5), and the ionic strength of hydronium and hydroxide

ions is significantly higher at 250°C than at ambient temperature.
These changes may affect PHWE in several aspects. First of all, at
elevated temperatures, the risk of unwanted reactions, such as hy-
drolysis, increases, since the ion strength is higher and the pH is
lower. Hydronium ions act as catalyst in reactions [27]. Further-
more, some analytesmay undergo shifts in equilibrium towards other
charged forms (e.g., anthocyanins can occur in five different forms
depending on pH) [28].

The chemical and physical properties described above relate
mainly to thermodynamic solvent properties of pressurized hot liquid
water. In addition, there are a few properties that affect the mass-
transfer properties in liquid water; including viscosity, diffusivity
and surface tension – and all of these are affected by the temper-
ature of water (Table 1, Fig. 6).

Fig. 4. Static electric permittivity of liquid water as a function of temperature (A), pressure (B) and temperature/pressure/density (C). {Reprinted with permission from [13],
AIP Publishing LLC}.
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The viscosity of water as a function of its temperature can be
described by the following Arrhenius-type of equation [30] (Equa-
tion 4):

µ T T( ) = × ×− −( )
2 414 10 10

5 247 8 140
.

. (4)

where μ is the dynamic viscosity (N·s/m2) and T is the absolute tem-
perature (K). As shown in Equation (4), the viscosity decreases with
increasing temperature.

The Stokes-Einstein relation describes the diffusion coefficient
of a compound in a liquid as a function of the viscosity of the liquid
(Equation 5):

D
k T

r

B

H

=
6πη

(5)

where D is the diffusion coefficient (m2/s), η is the viscosity of the
liquid (mPa·s), rH is the hydrodynamic radius of the compound (m),
T is the absolute temperature (K) and kB is the Boltzmann con-
stant (1.38 × 10−23 J/K). Clearly, the diffusivity increaseswith increasing
temperature and decreasing viscosity. As shown in Table 1, the self-
diffusivity of water deceases with a factor of 10 from 25 to 200°C,
and, at the critical point (374°C), it is about 100 times higher than
in ambient conditions. Diffusion of compounds in a liquid also

depends on the concentration gradient, as described by Fick’s second
law. For diffusion of analyte inside spherical sample particles, Fick’s
second law can be written as in Equation (6) [31]:

∂
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where C is concentration (mol/m3), t is time (s), r is the radius of
the sample particles (m) and Deff is the effective diffusivity (m2/s).

Karacabey et al. [31] have reported that the diffusion coeffi-
cients of trans-resveratrol increased from 3.3 × 10−11 m2/s to
10.4 × 10−11 m2/s with ascending temperature from 105°C to 160°C.
However, it was pointed out that it is a challenge to determine
diffusivity of compounds in PHWE experimentally, since there is
always a risk of chemical reactions that may give erroneous results.

Surface tension of water in contact with air decreases with in-
creasing temperature of water (see Table 1 and Fig. 6). Comparing
25°C to 200°C, the surface tension at the latter is about 50% of that
at the former. At the critical point, the surface tension is zero. A lower
surface tension of the extractant (water) in PHWE will lead to an
improved wetting of the sample (i.e., creating a larger contact area
between the extractant and the sample matrix). This, in turn, may
lead to a more complete extraction.

To summarize, liquid water at elevated temperature and pres-
sure is a solvent of lower εr, π* and density that enables faster mass
transfer and improvedwetting of the sample due to higher diffusivity
and lower viscosity and surface tension (Figs. 3, 4 and 6). In Section
4, there is a deeper discussion on how to optimize PHWE consid-
ering the different variables described here, especially those effecting
solubility and extraction kinetics. First, we describe practical aspects
about PHWE equipment.

3. Equipment used for PHWE

How to perform extraction practically using liquid water as ex-
tractant? First, water, either deionized or tap water, is used as the
extractant. The water should be oxygen-free in order to prevent ox-
idation of the analytes. The methods commonly used for achieving
water degassing are ultrasound (sonication) or helium purge, of
which the former is low cost if an ultrasound bath is available, if
much slower than the latter. At least 60 min of degassing by soni-
cation is necessary to ensure that most of the oxygen gas is removed
from the water.

The basic equipment to carry out PHWE is uncomplicated. There
are two types of equipment: dynamic (continuous-flow) systems
and static (batch) systems, and combinations of the two, see Fig. 7.

3.1. Dynamic PHWE

Dynamic PHWE basically needs a pump, an extraction vessel, a
heating device, a pressure restrictor and a collection vial (Fig. 7A).
The pump used in the system can be an old HPLC pump, since the
precision of the flow rates used in extractions is usually not as crit-
ical as in chromatography. The pump delivers water to the extraction
vessel, and via the pressure restrictor to the collection vial. The pump
should be able to achieve the pressure necessary to keep the water
in liquid state during the extraction process (normally 3.5–20MPa).
Heating of the water is by either an oven (e.g., an old GC oven) or
a heat exchanger, heating tape or heating jacket. The tubing, usually
made of stainless steel, is coiled inside the heating device in order
to ensure that the set temperature is also the temperature of the
water prior to entering the extraction vessel. The extraction vessel
is usually made of stainless steel, and should have frits at both ends
in order to avoid sample losses and clogging the tubing. If moder-
ate temperatures and pressures are used (i.e., typical extraction
conditions for bioactive compounds of 100–200°C and 5–10 MPa),

Fig. 5. Water ionization plotted as half of the negative logarithm of the dissocia-
tion constant (Kw) (i.e., pH values, as a function of temperature, at 25 MPa).

Fig. 6. Viscosity, self-diffusivity and surface tension of liquid water as a function of
temperature, at saturation pressure. Data taken from [16,17,29].
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an empty HPLC column can be used as extraction vessel. However,
if temperatures near the critical point are to be used (i.e., above 250°C
towards 374°C), the extraction vessel should be of a corrosion-
resistant metal alloy (e.g. Hastelloy), in order to prevent corrosion
of the vessel. Pressure restriction is needed to control the pres-
sure inside the extraction vessel and to prevent boiling-off effects
of water at the exit of the extraction vessel. The pressure restrictor
could be a needle valve, a backpressure regulator, a thin capillary
or simply short tubing with a squeezed end providing an exit small
enough to maintain an adequate pressure upstream.

3.2. Static PHWE

In static PHWE (Fig. 7B), a pump is unnecessary. However, if an
optional pump is used to deliver water to the extraction vessel, two
valves are necessary (inlet and outlet) in order to maintain pres-
sure inside the vessel during the extraction. With a pump, pressure
can be controlled by adding an increasing amount of water to the
vessel with the outlet valve closed. If a pump is not used and water
is addedmanually to the extraction vessel, when the vessel is closed
and heated, pressure builds up and extraction is conducted at the
saturation pressure of the system. In static PHWE, convection is ac-
complished using a stirrer in order to speed up mass transfer. The
extraction vessel in static PHWE is usually of the autoclave type or
at least of a wider diameter than in dynamic PHWE, in order to fit
in the stirrer. For heating, an oven, a heating jacket or heating tape
is appropriate. A pressure restrictor is not needed, unless the speed
of removal the extract from the vessel is to be controlled.

An experiment with either dynamic or static PHWE is done by
first placing the sample inside the extraction vessel, in some cases
mixed with glass beads or other dispersant, and then equilibrat-
ing the system to a set temperature. Thereafter, water is added
manually or delivered at a certain flow rate to the vessel using a

pump, and out through the restrictor to the collection vial. The flow
rate of thewater is monitored at the pump or using continuous gravi-
metric analysis of the collected extract.

There are advantages and disadvantages of using both types of
system. Static PHWE is simpler and easier to use, since a pump and
a pressure restrictor are not needed. However, the residence time
of the analytes in static PHWE is much longer than in dynamic
PHWE, which may cause thermally labile analytes to degrade [32].
Hence, the extraction time affects both the extraction efficiency and
the degree of degradation of the analytes. Furthermore, in static
PHWE, equilibrium for distribution of analytes from the sample
matrix to the extractant will stabilize after some time, since the
volume of the extractant is constant. Hence, in this case, the effi-
ciency of the extraction depends on the distribution ratio of the
analytes into the water. However, in dynamic PHWE, the resi-
dence time of analytes in the high-temperaturewater is shorter, since
fresh extractant is continuously being pumped through the extrac-
tion vessel and out to the collection vial. In this case, the flow rate
of the extraction will control the residence time, so extraction and
degradation kinetics in PHWE are easier to control using a dynamic
(continuous-flow) extraction set-up. The disadvantage of dynamic
PHWE is that it is more costly, and there is always a risk of clog-
ging inside the tubing during the extraction.

Some of the commercially available PHWE instruments address
the issues above. For example, even if the extraction is conducted
in static mode with no flow rate through the vessel, the extractant
can be regularly replaced with fresh solvent (water) in order to
prevent equilibrium taking place before the extraction is com-
plete. In such a case, the extraction involves several static extraction
cycles, in which each cycle has a certain duration, and each volume
of extractant is replaced to a certain degree. Another challengemainly
in dynamic PHWE is clogging of the tubing. Downstream of the ex-
traction vessel, water with the extracted analytes is cooled to

Fig. 7. The main parts of a dynamic (continuous-flow) PHWE system (A) and a static (batch) PHWE system (B).
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temperatures at which some of the extracted analytes are no longer
soluble, so they precipitate and block the tubing. There are twoways
to avoid this problem. One is to use heating tape around the tubing
from the exit of the oven to the collection vial. Another is to use
an additional pump to wash the lines after the extraction vessel and
before the pressure restrictor [33].

For any PHWE equipment, it is important to consider the
maximum operating temperature and pressure, the material of the
extraction vessel, and general safety precautions, such as burst disks,
ventilation and waste lines.

4. Optimization of the PHWE method

Extraction of analytes from solid and semi-solid samples can be
described by the following five steps:

(1) wetting the sample matrix with extractant;
(2) initial desorption from the sample matrix;
(3) diffusion inside the pores of the sample matrix;
(4) partitioning between the sample matrix and the extractant;

and,
(5) diffusion through the stagnant extractant layer until the zone

of convection is reached {modified from [34]}.

All of these steps happen more or less in parallel. In PHWE, tem-
perature is the key parameter to optimize, since it affects the
efficiency of all these five steps, as described below. In addition, ex-
traction time and/or flow rate are important variables to optimize.

4.1. Temperature

As discussed above, higher temperature of the water leads to im-
proved wetting of the sample matrix [step (1) above]. Further,
increasing temperature also favors mass-transfer kinetics by dis-
rupting analyte-matrix interactions, especially hydrogen bonding
and other dipole-dipole forces, thereby facilitating initial desorp-
tion of the analytes from the sample matrix [step (2)]. A higher
temperature also results in faster diffusivity [steps (3) and (5)] as
well as altered (usually higher) solubility, the latter leading to a shift
in partitioning of the analytes between the sample matrix and the
extractant [step (4)]. In summary, an elevated temperature in PHWE
brings several advantages in terms of improved extraction kinetics.

There are three main drawbacks in using elevated tempera-
tures in PHWE:

• decreasing selectivity of the extraction;
• pertinent degradation of the analytes; and,
• other chemical reactions in the sample matrix.

The higher the temperature, the more unwanted compounds, so
called contaminants, will be extracted, leading to lower selectivi-
ty and increasing need for further clean-up after PHWE. For example,
Vergara-Salinas et al. [35] characterized two PHWE extracts from
grape pomace obtained at 100°C and 200°C, respectively. The HPLC
chromatograms of the extracts obtained at 200°C, measured at
280 nm and 320 nm, showed peaks absent in the extract obtained
at 100°C, which may correspond to either compounds formed in
thermal degradation or other reactions, or additional compounds
extracted from the sample leading to lower selectivity of the ex-
tractionmethod. It is generally difficult to be sure which compounds
are native and which are artefacts [32,36].

Degradation of the analytes and formation of new compounds
are unavoidable issues at higher temperature. As shown in Table 1,
the water dissociation constant (Kw) increases from 1.0 × 10−14 at
ambient temperature (25°C) to 4.9 × 10−12 at 200°C. This means that,
at higher temperatures, the water is a strong source of hydronium

(H3O+) and hydroxide (OH−) ions, which can catalyze reactions, in-
cluding hydrolysis of polysaccharides and proteins into smaller
molecules (e.g., oligosaccharides, monosaccharides, peptides and
amino acids) [37]. These small molecules are more susceptible to
react with each other. For example, it has been demonstrated that
Maillard, caramelization and thermo-oxidation reactions may occur
during PHWE in glycation model systems [38] and real natural
samples [39]. The occurrence of those reactions forming new com-
pounds exhibiting different structures and chemical properties may
result in erroneous analytical results. In particular, if a spectropho-
tometric antioxidant assay is used as the analytical method to
determine antioxidant phenolic compounds in plants, the result may
erroneously show that the highest temperature investigated in PHWE
gives the highest antioxidant compound recovery [40]. In reality,
the higher antioxidant recovery is due to the formation of new an-
tioxidant compounds from Maillard, caramelization and thermo-
oxidation reactions [38,39]. Consider, for example, the chemistry
behind the total phenolic assay (Folin-Ciocalteu assay, FC), which
relies on the transfer of electrons from phenolic compounds and
other reducing species tomolybdenum, forming blue complexes that
can be detected spectrophotometrically [41]. Obviously, other re-
ducing species that are not phenolic compounds can also transfer
electrons to molybdenum [42]. As an example, Fig. 8 shows re-
sponse surfaces for optimization of temperature and extraction time
in PHWE of flavonols from apple byproducts, demonstrating that
120°C and 3-min extraction time using tap water as the solvent were
optimal, while other antioxidant assays gave erroneous results
aligned with browning at higher temperature.

In many cases, degradation of thermolabile analytes during ex-
traction is unavoidable. For example, anthocyanins are extremely
sensitive to oxidation, depending on temperature and pH of the
solvent. There are several publications about degradation of phe-
nolic compounds in pressurized hot water [43–45], demonstrating
that effects of temperature on stability of the analytes should be
taken into consideration in method development. For example,
degradation-rate constants have been determined for anthocyan-
ins in red onion by static PHWE using water/ethanol/formic acid
(94/5/1, vol%) as a solvent at 110°C, and data obtained were used
to calculate theoretical extraction curves as if there was no degra-
dation [32,36]. Results showed that the losses during the extraction
were ~21–36% for the different anthocyanin species in red onion
(Fig. 9). In other words, if degradation during PHWE can be mini-
mized, 21–36% higher recovery of the anthocyanins can be recovered
from the red onion, giving more accurate analytical results.

To summarize, it is important to optimize the extraction tem-
perature in PHWE carefully to take full advantage of enhanced
solubility and improved mass transfer but still to minimize the deg-
radation effects. This approach is more important than it is in PLE
with solvents other than water [46]. Often, a properly optimized
PHWE gives higher, more accurate extraction yields than conven-
tional solvent extraction [47–49].

4.2. Flow rate and extraction time

One way to minimize chemical reactions during PHWE is to use
a continuous flow system with a flow rate of the extractant that is
high enough. A higher flow rate will not only decrease the resi-
dence time for the analytes in the elevated temperature water, but
also enhance the extraction rate of the analytes if the kinetics is
limited by the solubility in the solvent. However a flow rate of the
extractant that is too high will lead to unnecessary dilution of the
extract, and may necessitate a concentration step after PHWE. If the
extraction kinetics is mainly limited by desorption and diffusion
inside the pores of the sample matrix, then a higher flow rate will
not improve the extraction rate. In Liu et al., the highest flow rate
investigated (4 mL/min) gave the highest extraction yield of
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anthocyanins from red onion, mainly due to issues with thermal
degradation during the extraction [32]. Similarly, in static PHWE,
extraction time needs to be optimized along with the solvent-to-
sample ratio.

4.3. Pressure

As mentioned above, pressure has very little influence on the
properties of water, as long as the water remains in the liquid state.
Hence, a pressure of 5–10 MPa is usually employed unless the sat-
uration pressure of water is used.

4.4. Other parameters

Besides the important variables described above, other param-
eters might also have a great influence on extraction efficiency in
PHWE. For example, the addition of some organic and inorganic
modifiers, surfactants and additives may increase the solubility of
the analytes in the extractant, and affect the physical properties of
the sample matrix and the desorption of analytes from the sample.
For example, 5% ethanol and 1% formic acid in water favored the
extraction of anthocyanins from red cabbage [50].

Further, the particle size of the sample influences the extrac-
tion kinetics, since a smaller particle size leads to increasing contact
surface between the sample and the extractant. The particle size
has to be appropriate to maximize the contact surface while avoid-
ing channeling effects (i.e., agglomeration of particles). In some
applications, dispersants (e.g., glass beads) are introduced to the
sample in the extraction vessel in order to favor uniform distribu-
tion of the sample and the extractant in order to maximize the
extraction yield. Agitation can also be used to avoid the formation
of agglomerates.

The solvent-to-sample ratio is an important parameter in PHWE.
An increase in the ratio of extractant to sample results in a larger
fraction of the analytes being extracted without replacing the ex-
tractant with fresh solvent [51]. However, a higher solvent-to-
sample ratio requires more water to be heated. In addition, the
analyte will be less concentrated in the extract, so a concentration
step of the analyte might be necessary, causing longer total anal-
ysis times and increasing the risk of the analytes degrading. It is
therefore important that the solvent-to-sample ratio is as small as
possible but at the same time big enough to provide the highest
possible extraction yield [52].

Moisture content of the sample is another parameter that may
influence the extraction yield. Some studies show that crude samples
with high moisture content give better extraction yields of poly-
phenols than dried samples [33,53,54].

5. PHWE in chemical analysis of bioactive compounds in

complex samples

There is increasing interest in ingredients of bioactive com-
pounds from complex natural sources to be used in food and
pharmaceutical products and in the search for native plants con-
taining interesting bioactive compounds (e.g., antioxidants and anti-
inflammatory compounds). PHWE is one of the most interesting
techniques to isolate bioactives from plants and other complex
samples, whether for analytical purposes or industry processes. In
this review, we review the main applications of analytical-scale
PHWE of bioactive compounds from natural sources. Table 3 offers
a compilation of the literature on the extraction of bioactive com-
pounds using PHWE.

5.1. PHWE of phenolic compounds

PHWE has been mainly used to extract relatively polar bioactive
compounds (e.g., phenolic compounds). In the past decade,
phenolic compounds were thoroughly studied because of their po-
tential health benefits as antioxidants [85]. They were suggested as
playing an important role in the prevention of several diseases as-
sociated to oxidative stress, such as cancer, cardiovascular and
neurodegenerative diseases [86–88]. These beneficial properties are
strongly related to the phenolic chemical structure. The phenolic
compounds are classified in different groups (e.g., phenolic acids,
flavonoids, stilbenes and lignans) as a function of the number of
phenol rings and the structural elements that bind these rings to
one another [89].

Fig. 8. Response surface plots of PHWE of apple-press cakes showing the effects of
temperature and time on: the flavonol concentration (A); the total phenolic com-
pounds as determined by the FC assay (B); the antioxidant capacity by DPPH (C);
and, the formation of brown color (melanoidins) measured at 360 nm (UA) (D) [40].
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Phenolic compounds have been extracted by PHWE from many
different sources, such as plants and food-industry byproducts.
Usually, extraction temperatures of 80–150°C and extraction times
of 1–60min have been used to extract phenolic compounds by PHWE
(see Table 3). In many works, a higher antioxidant capacity has been
observed in the extracts obtained at temperatures of over 175°C and
at longer extraction times, compared to the extracts obtained at lower
temperature and shorter extraction times [39,40,55,56,60,63,90]. In
many of these studies, only the total phenolic compounds and the
total antioxidant capacity were measured, with drawbacks as dis-
cussed above. Instead, more advanced analytical techniques are
necessary to quantify phenolic compounds as well as other bioactive
compounds.

In Plaza et al., a PHWE method was optimized for the extrac-
tion of flavonols in apple byproduct using a desirability function
response surface, considering maximum antioxidant capacity and
minimal formation of brown color, giving an optimum of 125°C and
3 min [40]. These optimized PHWE conditions for the extraction of

flavonols are in agreement with other studies found in the litera-
ture for extracting flavonols by PHWE [61,79,91] and with
thermodynamic studies carried out for quercetin by PHWE [92].

Optimal extraction conditions greatly vary, depending on the kind
of phenolic compound to be extracted. For example, extremely labile
polyphenols (e.g., anthocyanins), whose stability depends on pH,
generally require a lower extraction temperature. For example, static
PHWE was optimized for anthocyanins in red cabbage [50] and red
onion [66] using water/ethanol/formic acid (94/5/1, vol%) as a solvent
at 99°C, 5 MPa and 7-min extraction time.

Monrad et al. [33] designed and optimized a dynamic hot-cold
extraction of polyphenols with just water as solvent from grape
pomace to minimize the degradation of the compounds. Water was
preheated prior to entry to the extraction vessel, where it then flowed
continuously through the unheated extraction vessel. Between the
extraction vessel and the back-pressure regulator, a mixing tee was
placed to pump cold water at the same flow rate. The extract mixture
was chilled in a cooling coil inside a water-ice bath prior to its

Fig. 9. Extraction curves for four major anthocyanins in red onion. Experimental values for extraction with simultaneous degradation are shown as circles (triplicates) with
the model values (calculated for each minute) as an adjacent solid curve. The degradation data points are shown as crosses (triplicate means) and the corresponding model
as an adjacent dashed curve. Theoretical extraction curves as if there was no degradation are calculated by two different methods (method A: upper right, dashed; method
B: upper right, solid). {Reprinted with permission from [36], Elsevier}.
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collection at room temperature. The optimal PHWE conditions were
found to be 88.4°C in the vessel (140°C of preheated tempera-
ture), 9-mL/min water flow and 9.9 g of sample. Under these
conditions, 96% of anthocyanins and 84% of procyanidins were ex-
tracted, compared to recoveries obtained using a conventional
extraction method (methanol:water:formic acid 60:37:3 v/v/v for
anthocyanins and acetone:water:acetic acid 70:29.5:0.5 v/v/v for
procyanidins) [33].

In general, the best PHWE conditions to extract anthocyanins are
medium temperatures (80–100°C), short extraction times (in batch
extractions) or high flow rates (in continuous-flow extractions) and
ethanol and formic or acetic acid as additive in the extraction solvent
(see Table 3) [32,33,36,50,61,66,67]. The extraction of different kinds
of anthocyanins can be favored with the use of additives. For
example, just water as extraction solvent in the presence or the
absence of organic acids extracted a greater amount of polar non-
acylated anthocyanins from grape pomace than acidified
hydroethanolic mixtures [61]. The hydroethanolic mixtures (espe-
cially acidified with formic or acetic acid) extracted greater amounts
of acylated anthocyanins from grape pomace [61].

Other very sensitive compounds are stilbenoids trans-resveratrol
and trans-ε-viniferin [31]. The optimal conditions to extract them
by PHWE are very similar to those for anthocyanins but without
adding organic acids (see Table 3) [31]. However, higher extrac-
tion temperatures (150°C) are needed to extract less sensitive
compounds by PHWE (e.g., tannins and tannin-anthocyanin adducts)
[68].

PHWE can be a selective technique to extract certain phenolic
compounds versus others. For example, PHWE at 150°C extraction
temperature was an effective method to extract selectively from hop
prenylflavonoid isoxanthohumol (IX) (2.34 ± 0.75 mg/g), com-
pared to xanthohumol (XN) (0.11 ± 0.03 mg/g) (the latter was not
interesting in this study because it has no anti-inflammatory prop-
erties) [47]. Moreover, PHWE was compared to a reference method,
solid-liquid extraction (SLE) with dimethyl sulfoxide as a solvent
with agitation at room temperature during 24 h in darkness, and
to PLE with ethanol at 150°C. The SLE yield of XN was nearly one
sixth of that of IX, with averages values of 0.67mg/g and 3.93mg/g,
for IX and XN, respectively. However, use of ethanol as extractant
in PLE yielded 0.67 mg/g and 1.89 mg/g of IX and XN, respectively.
Then, the ratio IX/XN rises from 0.17 in the SLE and 0.35 in PLE with
ethanol as solvent to 21 in PHWE, which represents a near 124-
fold increase. PHWE at 150°C was therefore the more selective
extraction technique to extract IX from hops [47], giving a yieldmore
than double that of the reference method.

5.2. PHWE of diterpenes

One of the more recent applications of PHWE is the extraction
of non-caloric sweetening agents from natural sources. Among the
most well-known alternatives to sucrose are steviol-glycosides
(steviosides) [80], which are diterpene glycosides obtained from the
leaves of Stevia rebaudiana Bertoni (family Asteraceae). These com-
pounds are around 300 times sweeter than sucrose [93]. The
sweetening properties of the steviol-glycosides differ from one
another in sweetness and quality of the taste, so the organoleptic
properties of the steviosides depend a lot on the extraction tech-
nique used to extract them from stevia leaves [93].

Teo et al. [69] were the first to study the effect of the tempera-
ture (60–120°C) and time (5–50min) on the extraction of steviosides
from Stevia rebaudiana leaves by PHWE. The extraction was achieved
at constant flow rate of 1.5mL/min. The stevioside and rebaudioside
A were extracted with an optimal temperature of 100°C and an
optimal extraction time of 15 min. Yildiz-Ozturk et al. [70] also op-
timized the PHWE of steviosides using dynamic extraction but
exploring larger extraction temperature range and higher flow rates

than Teo et al. [69]. Optimum extraction conditions were found at
125°C, 45 min and 4 mL/min flow rate [70]. In both works, not sur-
prisingly, the most crucial extraction parameter to optimize was
temperature [69,70]. Increasing temperature from 100°C to 125°C
resulted in higher recovery of both stevioside and rebaudioside [70].
Although steviol glycosides are thermostable and moderately polar
compounds, when the extraction temperature was increased over
150°C, the yields were considerably decreased due to degradation
[70]. Teo et al. [69] observed a decrease in the extraction yield of
steviosides at a lower extraction temperatures (120°C) than Yildiz-
Ozturk et al. [70] (150°C), because they used a lower flow rate, which
implies a longer residence time inside the vessel.

In a recent work, the extraction of steviosides in static PHWE
using several extraction cycles was optimized [49]. All the inves-
tigated variables (temperature, time and number of cycles) had a
significant influence on the extraction yields. Optimum extraction
conditions were found to be 100°C, 4min and 1 cycle, which yielded
91.8% ± 3.4% of total extractable steviol glycosides. An additional op-
timization was achieved by reducing the particle size of the leaves
to under 0.5 mm, giving a final yield of 100.8% ± 3.3%. In this work,
the optimized PHWE method was compared to a conventional ex-
traction method (water at 60°C for 120 min with stirring) as well
as several less conventional methods [i.e., PLE, supercritical-fluid
extraction (SFE), microwave-assisted extraction, ultrasound-
assisted extraction (UAE), enzymatic extraction, hot water extraction
(HWE)] previously reported in the literature [69,94–99]. The con-
clusion was that PHWE is faster and more convenient, and does not
require as much energy.

5.3. PHWE of other bioactive compounds

Polysaccharides with different bioactive properties have been ex-
tracted from different natural sources by PHWE. For example,
polysaccharides from Lycium barbarum L. have been extracted com-
bining UAE with PHWE [71]. The extraction technique was called
ultrasound-enhanced SWE (USWE). Four variables – extraction tem-
perature, extraction time, liquid-to-solid ratio, and ultrasonic power
– were optimized. The maximum yields of polysaccharides were ob-
tained at an extraction temperature of 100°C, an extraction time
of 53 min, a liquid-to-solid ratio of 26 mL/g, and an ultrasonic elec-
tric power of 160 W. USWE was compared with other three
extractionmethods in terms of extraction conditions, extraction yield
for polysaccharides and antioxidant capacity – PHWE (110°C for 1 h,
5 MPa, and a liquid-to-solid ratio of 25 mL/g), UAE (electric power
of 140W, a liquid-to-ratio of 25 mL/g, and 110°C for 1 h) and HWE
(water at 100°C for 2 h). The polysaccharide extraction yield was
3.4% for HWE, 3.0% for UAE, 4.0% for PHWE and 4.4% for USWE. USWE
gave higher yields of polysaccharides than the other extraction
methods, perhaps because ultrasound helps to disrupt the cell walls
of plant materials. The antioxidant capacity assay revealed signif-
icant antioxidant activities of polysaccharides, and there were few
differences in the antioxidant effects of polysaccharides obtained
by USWE, PHWE and HWE.

Another polysaccharide interesting to extract by PHWE was
β-glucan from golden oyster mushroom [72], which has antioxi-
dant activity [100]. The extraction temperature and time affected
the β-glucan contents in the PHWE extracts. PHWE at 200°C for
60 min showed the highest concentration. However, at 250°C and
300°C, β-glucans degraded as the extraction time was increased.
However, PHWE may be a feasible extraction technique in chemi-
cal analysis of β-glucans and obtaining high-quality extracts rich
in β-glucan from golden oyster mushrooms.

There were works focused on the extraction of phenolic com-
pounds and carbohydrates by PHWE from different sample matrices
(e.g., potato peel and barley hull) [76,77]. The optimal conditions
for complete extraction of phenolics and carbohydrates from barley
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hull were 150°C, 15 MPa and 15 min of static extraction time [77],
and from potato peel 190°C, 4 MPa, and 9 min of static extraction
time followed by continuous extraction using a flow rate of 3mL/min,
giving total extraction time of 30 min [76]. These studies showed
that higher temperatures and higher residence times produced
browning color in the extracts due to the formation of Maillard and
caramelization reaction products, as discussed above [76,77]. The
total carbohydrate yield in potato peel, the pressure and the acidic
or alkaline PHWE therefore influenced the browning reactions [76].
For example, the brown color is mainly due to fragmentation of car-
bohydrates in the extracts. Further, the use of acidic PHWE (pH 3)
decreased the browning reactions while an increase in pH and tem-
perature increased the brown color of the extracts. Furthermore,
the increase of pressure in PHWE did not favor the extraction of car-
bohydrates. For example, the most carbohydrates were extracted
at the lowest pressure of 40 bar (268.4 mg of glucose equivalent/g
of dry potato peel) and the minimum extraction was obtained at
120 bar (147.7 mg of glucose equivalent/g of dry potato peel) [76].

PHWE can be used for simultaneous extraction of oil (free fatty
acids) and water-soluble compounds (protein, carbohydrates and
phenolics) from sunflower seeds [52]. The highest amount of oil was
obtained at 130°C, with amaximumyield of 44.3% ± 0.3% after 30min
of extraction, giving results similar to those obtained after 4 h by
Soxhlet extraction (46.2% ± 0.7%). Also, a higher yield of total car-
bohydrate could be observed at temperatures higher than 100°C,
which indicated higher carbohydrate solubility at higher tempera-
tures. On the contrary, a temperature higher than 100°C resulted
in a significantly lower protein yield. The yield of total phenolic com-
pounds was constant for 60–100°C. However, the concentration of
water-soluble compounds obtained in the extracts decreased at tem-
peratures higher than 130°C, probably a consequence of degradation,
Maillard and caramelization reactions, as discussed above.

6. PHWE in coupling

6.1. PHWE coupled with enzymatic reaction

In chemical analysis, it may be of interest to conduct a
derivatization reaction of the analytes to make them easier to
analyze. One such case is phenolic compounds, which naturally occur
as many glycosylated forms, making them difficult to quantify due
to the lack of chemical standards and since the limit of detection
might be insufficient for several low-abundant forms of the same
polyphenol aglycone. In this case, it is a common practice to hy-
drolyze the glycosides prior to final analysis, which is usually
achieved at the same time as the extraction with a mixture of hy-
drochloric acid, methanol and water.

The development of novel enzyme-basedmethods to achieve hy-
drolysis reactions coupled with PHWE is a recent development,
which was shown to be a faster, more accurate and greener method
to achieve hydrolysis compared to conventional acid-catalyzed hy-
drolysis [48]. In several studies [48,79,80,101,102], quercetin
glycosides were extracted from onion byproducts by PHWE, fol-
lowed by β-glucosidase-catalyzed conversion of quercetin glycosides
to quercetin and sugars. To comply with water at elevated temper-
ature, thermostable catalytic enzymes were used, here β-glucosidase
from Thermotoga neapolitana (TnBglA). These enzymes have their
highest activity in water at temperatures of around 90–95°C. En-
zymatic hydrolysis has been accomplished both off-line [48,79] and
on-line [80] with PHWE; the former was faster while the latter more
convenient and easier to automate. Variables optimized in these
methods were temperature, pH, addition of low concentration of
ethanol, time/flow rate and immobilization of enzyme to different
support materials. A general conclusion was that the amount of hy-
drochloric acid needed to hydrolyze flavonoid glycosides, such as
quercetin glycosides, inevitably leads to simultaneous degradation

of the compounds. The combination of PHWE and enzymatic hy-
drolysis therefore gives significantly higher, more accurate,
concentrations of polyphenols in complex samples than conven-
tional solvent extraction using hydrochloric acid as the catalyst [80].

6.2. PHWE with clean-up using sorbents

As discussed above, PHWE is not the most selective extraction
technique. PHWEmay necessitate clean-up before final analysis can
be done. For example, a clean-up step can be carried out by using
more or less selective adsorbents in the extraction vessel or in a sep-
arate vessel downstream of the sample. By employing different
materials, such as molecular imprinted polymers (MIPs) or spe-
cially designed polymers, it is possible to isolate the analytes of
interest from the PHWE extract more selectively, leading to a higher
sample throughput and a better quality of analytical determina-
tion. For example, Pakade et al. [103] usedMIPswith high recognition
for quercetin to obtain onion extract using PHWE. The binding ca-
pacity for the MIPs was higher at 84°C than 25°C, being ~30 μmol/g
at 25°C and ~120 μmol/g at 84°C. MIPs demonstrated good affini-
ty and selectivity to the quercetin from a yellow solution of onion
extract as compared to similar flavonoids, kaempferol and morin.

6.3. PHWE coupled with a drying step

The main disadvantage of using water as a solvent in extrac-
tions is the difficulty in concentrating the extracts, since the heat
of vaporization of water is relatively high compared to that of many
organic solvents. Furthermore, the need to concentrate the sample
is often relevant, since the concentration of bioactive compound in
the water extract could be low. Also, in some cases, the presence
of water could decrease the stability of the extract. One way to dry
the extract is by freeze-drying, which is rather costly and time con-
suming, and may also lead to degradation of the bioactive
compounds due to heat, light and oxygen.

Trying to address this problem, an on-line process for PHWEwith
drying the extracts was developed in 2010 [81], based on a previ-
ous innovation by Sievers and co-workers called carbon dioxide-
assisted nebulization in a bubble-dryer (CAN-BD) [104]. In this novel
method, the PHWE extract is mixed continuously with supercritical
carbon dioxide in a small-volume Tee junction, resulting in a spray
of small-sized water droplets that are rapidly dried by a stream of
hot nitrogen. The process is called water extraction and particle for-
mation on-line (WEPO). Basically, this is a combined extraction-
drying process that produces micron-sized particles of the extract
containing the analytes and all other co-extracted compounds. The
WEPO process was employed by Herrero et al. [81] and Rodríguez-
Meizoso et al. [82,84] to obtain antioxidants from rosemary leaves.
Rosemary has been studied widely due to the presence of antioxi-
dants (e.g., carnosol, carnosic acid, rosmarinic acid and other phenolic
compounds) [105,106], and PHWE methods have been optimized
[107–109]. These works show that PHWE at 200°C achieved the
maximum antioxidant capacity. In the WEPO set-up, the extrac-
tion temperature was set at 200°C while different flow rates
(0.1–0.3 mL/min) were studied to carry out the extraction of anti-
oxidants from rosemary. The best flow rate to give higher yields and
smaller particle size was 0.2 mL/min. The parameters influencing
the drying process were CO2 pressure (8 MPa) and flow rate
(2.5 mL/min), and nitrogen flow rate (0.6 mL/min) to get a fine, con-
stant spray.With this process, it was possible to collect microparticles
as a fine powder with particle-size diameters less than 93 μm.

The WEPO process was also used to obtain dried extract from
onion with the same composition of quercetin derivatives as non-
dried extracts [84]. The extraction temperature was set to 120°C,
the water-flow rate at 0.3 mL/min, and the pressure of the extrac-
tion was 8MPa. Parameters influencing the drying process were CO2
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pressure (8MPa), nitrogen pressure (1.22MPa) and compressed CO2

flow rate (10 mL/min). A fine powder with spherical particles of
0.25–4-μm diameter was obtained.

Finally, it was demonstrated that the WEPO process, compared
to SFE with vacuum drying and PHWE with freeze-drying, re-
sulted in the smallest environmental impact based on a gate-to-
gate life-cycle assessment [82].

7. The future of PHWE

Water at elevated temperature and pressure is without doubt an
interesting solvent, providing efficient mass transfer and high solu-
bility for many bioactive compounds. However, there is still no
commercial analytical system devoted to PHWE (i.e., the PLE systems
available on the market are designed for organic solvents, limited in
temperature amaximum200°C, and tubing and vessels aremost often
made of stainless-steel type 316). A system especially designed for
PHWE should be made with a higher quality steel alloy, improved
pre-heating of the solvent, the possibility of varying the flow rate of
the extractant, and a temperature and pressure range going to the
critical point of water (i.e., 374°C, 22.1 MPa). However, there is a
preparative-scale system available, designed for PHWE at tempera-
tures up to 300°C and a flow rate of 100 mL/min. Further, an
appropriate degassing system would be beneficial. Another aspect
is the risk of clogging of tubing because of caramelization reac-
tions, an issue that a commercial PHWE systemwould need to address.

In terms of future development inmethodologies involving PHWE
in chemical analysis, a trend is to combine extraction with clean-up.
Novel polymer-based sorbent materials suitable for use with pressur-
ized hot liquidwater as extractant are a likely development, which also
includes MIPs. Also, more efforts will be seen in the coupling PHWE
to chromatography, including recent development in chromatogra-
phy techniques (mobile phases operated at higher temperature and
pressure, andmobile phasesmainly consisting of liquid or supercritical
carbon dioxide). Perhaps, with the development of more robust sta-
tionary phases in chromatography in combinationwithminiaturization
efforts, PHWE coupled to pressurized hot water chromatography will
be realized for bioactive compounds. So far, “superheatedwater chro-
matography”hasmainly beenexplored for thermally stable compounds,
without widespread success.

There are still doubts about PHWE replacing other more estab-
lished extraction techniques based on the use of organic solvents as
extractant, mainly due to the risk of hydrolysis reaction and other deg-
radation reactions during the extraction. Hence, a future development
should involve more research on what happens during the extraction
to the analytes, the other unwanted extractable compounds and the
remaining sample matrix, with respect to water properties and time/
flow rate. Such informationwould be valuable inmethod development,
but also in process development on a larger scale.
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[55] Ö. Güçlü-Üstündaǧ, G. Mazza, Effects of pressurized low polarity water
extraction parameters on antioxidant properties and composition of cow cockle
seed extracts, Plant Foods Hum. Nutr. 64 (2009) 32–38.

[56] T.L. Miron, M. Plaza, G. Bahrim, E. Ibáñez, M. Herrero, Chemical composition
of bioactive pressurized extracts of Romanian aromatic plants, J. Chromatogr.
A 1218 (2011) 4918–4927.

[57] M. Herrero, T.N. Temirzoda, A. Segura-Carretero, R. Quirantes, M. Plaza, E.
Ibañez, New possibilities for the valorization of olive oil by-products, J.
Chromatogr. A 1218 (2011) 7511–7520.

[58] T.L. Miron, M. Herrero, E. Ibáñez, Enrichment of antioxidant compounds from
lemon balm (Melissa officinalis) by pressurized liquid extraction and enzyme-
assisted extraction, J. Chromatogr. A 1288 (2013) 1–9.

[59] P.P. Singh, M.D.A. Saldaña, Subcritical water extraction of phenolic compounds
from potato peel, Food Res. Int. 44 (2011) 2452–2458.

[60] H. Xu, W. Wang, J. Jiang, F. Yuan, Y. Gao, Subcritical water extraction and
antioxidant activity evaluation with on-line HPLC-ABTS+ assay of phenolic
compounds from marigold (Tagetes erecta L.) flower residues, J. Food Sci.
Technol. 52 (2015) 3803–3811.

[61] K. Srinivas, J.W. King, J.K. Monrad, L.R. Howard, D. Zhang, Pressurized solvent
extraction of flavonoids from grape pomace utilizing organic acid additives,
Ital, J. Food Sci. 23 (2011) 90–105.

[62] P.G. Matshediso, E. Cukrowska, L. Chimuka, Development of pressurised hot
water extraction (PHWE) for essential compounds fromMoringa oleifera leaf
extracts, Food Chem. 172 (2015) 423–427.

[63] J.W. Kim, T. Nagaoka, Y. Ishida, T. Hasegawa, K. Kitagawa, S.C. Lee, Subcritical
water extraction of nutraceutical compounds from citrus pomaces, Sep. Sci.
Technol. 44 (2009) 2598–2608.

[64] N.I. Anisa, N. Azian, M. Sharizan, Y. Iwai, Temperature effects on diffusion
coefficient for 6-gingerol and 6-shogaol in subcritical water extraction, J. Phys.
Conf. Ser. 495 (2014) 012009.

[65] M. Co, A. Fagerlund, L. Engman, K. Sunnerheim, P.J.R. Sjöberg, C. Turner,
Extraction of antioxidants from spruce (Picea abies) bark using eco-friendly
solvents, Phytochem. Anal. 23 (2012) 1–11.

[66] E.V. Petersson, A. Puerta, J. Bergquist, C. Turner, Analysis of anthocyanins in
red onion using capillary electrophoresis-time of flight-mass spectrometry,
Electrophoresis 29 (2008) 2723–2730.

[67] J.K. Monrad, L.R. Howard, J.W. King, K. Srinivas, A. Mauromoustakos, Subcritical
solvent extraction of anthocyanins from dried red grape pomace, J. Agric. Food
Chem. 58 (2010) 2862–2868.

[68] J.R. Vergara-Salinas, P. Bulnes, M.C. Zúñiga, J. Pérez-Jiménez, J.L. Torres, M.L.
Mateos-Martín, et al., Effect of pressurized hot water extraction on antioxidants
from grape pomace before and after enological fermentation, J. Agric. Food
Chem. 61 (2013) 6929–6936.

[69] C.C. Teo, S.N. Tan, J.W.H. Yong, C.S. Hew, E.S. Ong, Validation of green-solvent
extraction combined with chromatographic chemical fingerprint to evaluate
quality of Stevia rebaudiana Bertoni, J. Sep. Sci. 32 (2009) 613–622.

[70] E. Yildiz-Ozturk, O. Tag, O. Yesil-Celiktas, Subcritical water extraction of steviol
glycosides from Stevia rebaudiana leaves and characterization of the raffinate
phase, J. Supercrit. Fluids 95 (2014) 422–430.

[71] Z. Chao, Y. Ri-Fu, Q. Tai-Qiu, Ultrasound-enhanced subcritical water extraction
of polysaccharides from Lycium barbarum L, Sep. Purif. Technol. 120 (2013)
141–147.

[72] E.K. Jo, D.J. Heo, J.H. Kim, Y.H. Lee, Y.C. Ju, S.C. Lee, The effects of subcritical
water treatment on antioxidant activity of golden oyster mushroom, Food
Bioprocess Technol. 6 (2013) 2555–2561.

[73] S. Santoyo, M. Plaza, L. Jaime, E. Ibañez, G. Reglero, F.J. Señorans, Pressurized
liquid extraction as an alternative process to obtain antiviral agents from the
edible microalga Chlorella vulgaris, J. Agric. Food Chem. 58 (2010) 8522–8527.

[74] S. Santoyo, M. Plaza, L. Jaime, E. Ibañez, G. Reglero, J. Señorans, Pressurized
liquids as an alternative green process to extract antiviral agents from the
edible seaweed Himanthalia elongata, J. Appl. Phycol. 23 (2011) 909–917.

[75] S. Santoyo, L. Jaime, M. Plaza, M. Herrero, I. Rodriguez-Meizoso, E. Ibañez, et al.,
Antiviral compounds obtained frommicroalgae commonly used as carotenoid
sources, J. Appl. Phycol. 24 (2012) 731–741.

[76] V.H. Alvarez, J. Cahyadi, D. Xu, M.D.A. Saldaña, Optimization of phytochemicals
production from potato peel using subcritical water: experimental and
dynamic modeling, J. Supercrit. Fluids 90 (2014) 8–17.

[77] S. Sarkar, V.H. Alvarez, M.D.A. Saldaña, Relevance of ions in pressurized fluid
extraction of carbohydrates and phenolics from barley hull, J. Supercrit. Fluids
93 (2014) 27–37.

[78] J. Wiboonsirikul, M. Mori, P. Khuwijitjaru, S. Adachi, Properties of extract from
okara by its subcritical water treatment, Int. J. Food Prop. 16 (2013) 974–982.

[79] C. Turner, P. Turner, G. Jacobson, K. Almgren, M. Waldeback, P. Sjoberg, et al.,
Subcritical water extraction and [small beta]-glucosidase-catalyzed hydrolysis
of quercetin glycosides in onion waste, Green Chem. 8 (2006) 949–959.

[80] S. Lindahl, J. Liu, S. Khan, E. Nordberg Karlsson, C. Turner, An on-line method
for pressurized hot water extraction and enzymatic hydrolysis of quercetin
glucosides from onions, Anal. Chim. Acta 785 (2013) 50–59.

[81] M. Herrero, M. Plaza, A. Cifuentes, E. Ibáñez, Green processes for the extraction
of bioactives from Rosemary: chemical and functional characterization via
ultra-performance liquid chromatography-tandem mass spectrometry and
in-vitro assays, J. Chromatogr. A 1217 (2010) 2512–2520.

[82] I. Rodríguez-Meizoso, M. Castro-Puyana, P. Börjesson, J.A. Mendiola, C. Turner,
E. Ibáñez, Life cycle assessment of green pilot-scale extraction processes to
obtain potent antioxidants from rosemary leaves, J. Supercrit. Fluids 72 (2012)
205–212.

[83] M.E.E. Ibanez, A. Cifuentes, I. Rodriguez-Meizoso, J.A. Mendiola, G. Reglero,
J. Señorans, et al., Spanish Patent No. P200900164, 2009.

[84] J.M. Andersson, S. Lindahl, C. Turner, I. Rodriguez-Meizoso, Pressurised hot
water extraction with on-line particle formation by supercritical fluid
technology, Food Chem. 134 (2012) 1724–1731.

[85] K.B. Pandey, S.I. Rizvi, Plant polyphenols as dietary antioxidants in human
health and disease, Oxid. Med. Cell. Longev. 2 (2009) 270–278.

[86] S.N. Nichenametla, T.G. Taruscio, D.L. Barney, J.H. Exon, A review of the effects
andmechanisms of polyphenolics in cancer, Crit. Rev. Food Sci. Nutr. 46 (2006)
161–183.

[87] A. Ebrahimi, H. Schluesener, Natural polyphenols against neurodegenerative
disorders: potentials and pitfalls, Ageing Res. Rev. 11 (2012) 329–345.

[88] I.C. Arts, P.C. Hollman, Polyphenols and disease risk in epidemiologic studies,
Am. J. Clin. Nutr. 81 (2005) 317s–325s.

[89] C. Manach, A. Scalbert, C. Morand, C. Rémésy, L. Jiménez, Polyphenols: food
sources and bioavailability, Am. J. Clin. Nutr. 79 (2004) 727–747.

[90] M. Plaza, S. Santoyo, L. Jaime, B. Avalo, A. Cifuentes, G. Reglero, et al.,
Comprehensive characterization of the functional activities of pressurized
liquid and ultrasound-assisted extracts from Chlorella vulgaris, LWT-Food Sci.
Technol. 46 (2012) 245–253.

[91] M. Plaza, J. Kariuki, C. Turner, Quantification of individual phenolic compounds’
contribution to antioxidant capacity in apple: a novel analytical tool based
on liquid chromatography with diode array, electrochemical, and charged
aerosol detection, J. Agric. Food Chem. 62 (2014) 409–418.

[92] K. Srinivas, J.W. King, L.R. Howard, J.K. Monrad, Solubility and solution
thermodynamic properties of quercetin and quercetin dihydrate in subcritical
water, J. Food Eng. 100 (2010) 208–218.

[93] A.B. Rao, G.R. Reddy, P. Ernala, S. Sridhar, Y.V.L. Ravikumar, An improvised
process of isolation, purification of steviosides from Stevia rebaudiana Bertoni
leaves and its biological activity, Int. J. Food Sci. Technol. 47 (2012) 2554–2560.

53M. Plaza, C. Turner/Trends in Analytical Chemistry 71 (2015) 39–54



[94] A. Erkucuk, I.H. Akgun, O. Yesil-Celiktas, Supercritical CO2 extraction of
glycosides from Stevia rebaudiana leaves: identification and optimization, J.
Supercrit. Fluids 51 (2009) 29–35.

[95] M. Puri, D. Sharma, C.J. Barrow, A.K. Tiwary, Optimisation of novel method
for the extraction of steviosides from Stevia rebaudiana leaves, Food Chem.
132 (2012) 1113–1120.

[96] C. Rai, G.C. Majumdar, S. De, Optimization of process parameters for water
extraction of stevioside using response surface methodology, Sep. Sci. Technol.
47 (2012) 1014–1022.

[97] J. Liu, J.-W. Li, J. Tang, Ultrasonically assisted extraction of total carbohydrates
from Stevia rebaudiana Bertoni and identification of extracts, Food Bioprod.
Process. 88 (2010) 215–221.

[98] V. Jaitak, B.S. Bandna, V.K. Kaul, An efficient microwave-assisted extraction
process of stevioside and rebaudioside-A from Stevia rebaudiana (Bertoni),
Phytochem. Anal. 20 (2009) 240–245.

[99] J. Pól, E. Varad’ová Ostrá, P. Karásek, M. Roth, K. Benešová, P. Kotlaříková, et al.,
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