
pREST: A REST-based Protocol for Pervasive Systems

Witold Drytkiewicz Ilja Radusch Stefan Arbanowski
Radu Popescu-Zeletin

Fraunhofer Institute for Open Communication Systems
Technische Universität Berlin

{drytkiewicz,radusch,arbanowski,zeletin}@fokus.fraunhofer.de

Abstract

The convergence of embedded systems and wireless com-
munication enables interconnection of electronic devices to
render control and provide information to the user. Offices,
apartments, and public spaces are or in near future will be
able to deliver information and services to their occupants
ranging from instant Internet access to configuration and
control in a context dependent, personalized way.

Despite progressing internetworking and sophistication,
we are still dealing with islands of functionality rather than
the invisible computer envisioned by Mark Weiser. We be-
lieve that the spread and acceptance of smart environments
will depend on common standards as well as a simple and
flexible way to access data and devices and compose ser-
vices from existing ones. A good example of such a system
is the World Wide Web, whose success is mainly due to the
simplicity with which all kinds of content can be published
and referenced.

We present an access protocol to bring the Web’s sim-
plicity and holistic view on data and services to pervasive
systems. Our approach is based on the Representational
State Transfer architectural style and emphasizes abstrac-
tion of data and services as resources, interoperation via
self describing data and service orchestration with loosely
typed components. A particular concern is to provide for
functionality in the absence of proxy nodes or infrastruc-
ture services like directory servers.

1. Introduction

Consider a simple security system, consisting of a sensor
system, a digital camera, and a computer with Internet con-
nection. The task to be accomplished is: each time someone
triggers a (motion) sensor, the camera should take a picture
and transmit it to the computer to publish it on the web.

Figure 1. Logic, communication and user in-
teraction often reside in the same code

Of all these components only the desktop computer is ca-
pable of running a middleware, say Java RMI. The camera
and the photo sensor are equipped with simple embedded
8bit processors, capable of transmitting data via serial line
or USB. Possibly they support TCP/IP [6]. But their pro-
cessing power definitely isn’t sufficient to make their data
and services available as CORBA objects or via Java RMI.

To implement this scenario, the user would run a process
to monitor the sensor and trigger the camera, whenever the
motion sensor signals activity. The software could support a
number of different cameras and sensors via device drivers
or wrapper classes. Still, most of the logic and assump-
tions about the application scenario remains hidden within
the code.

This configuration illustrates several restrictions when
interconnecting heterogenous systems, especially if part of
the service is based on Internet communication. First of all,

3400-7803-8815-1/04/$20.00 ©2004 IEEE

Figure 2. pREST provides functionality
through interconnection of independent
components

most middleware platforms require processing power and
memory lying above, what simple sensors or actuators can
provide. Commonly logic, communication, and user inter-
action is placed on the desktop machine, while the other
nodes behave like peripherals. Secondly changes to the
system configuration, like insertion of intermediate nodes
or exchange of components are only possible as far as the
software developer has forseen it - more precisely, as the
interfaces allow it. Finally, user interaction for control and
configuration of the individual parts is realized in a propri-
etary way, making it necessary to install additional software
for each deployment.

As an alternative to these platforms we present
pico-REST (pREST) an access protocol for pervasive sys-
tems based on the Representational State Transfer (REST)
architectural style [7]. REST is a model for network ap-
plications which has proven successful on the World Wide
Web. It emphasizes abstraction of data and services as re-
sources and postulates a small set of commands with fixed
semantics to access and manipulate resources. Compliant
architectures are scalable, extensible, and allow indepen-
dent deployment of components as well as anarchic evolu-
tion of the system, meaning that domain specific extensions
such as content types can be introduced by consensus.

The same scenario based on the pREST protocol, con-
sists of independent components exposing the data they pro-
duce and consume and the services they provide as indepen-
dent communication endpoints referenced by URLs. The
application logic resides mainly in the system configuration,
i.e. in the interconnection of data producers, consumers,
and service logic. Through the usage of human readable

messages, runtime interconnection of services and data is
eased.

Our implementation of the system is based on ASCII
representation of data, XML description of components,
HTTP transactions, and addressing with URLs. The re-
sulting system is lightweight and network centric, provides
built-in user interaction, and accounts for asymmetrical dis-
tribution of computational resources among participating
nodes and loose coupling of components.

Network centrism Existing middleware platforms are li-
brary based, rather than network centric. Functions
such as lookup, marshalling, and invocations are pro-
vided via a library, or auto-generated code. Invoca-
tions by components lacking a dedicated middleware
layer are hard to perform, if at all. UPnP is an excep-
tion as it is based on open network protocols, rather
than programmatical interfaces (still, UPnP requires
components to process XML documents and support
SOAP access).

While a library-based API ensures type conformance,
correct invocation and an overall convenient program-
ming model, it also creates a great deal of complexity,
is less portable in a heterogeneous network, and results
in genericity being preferred over performance [7].

A network based API on the other hand is an on-the-
wire syntax with defined semantics for application in-
teractions. It does not place any restrictions on the ap-
plication code aside from the need to read/write to the
network, but does place restrictions on the set of se-
mantics that can be effectively communicated across
the interface. On the plus side, it allows a custom im-
plementation even on very constrained nodes, since the
protocol handling code can be tailored to the function-
ality of the device itself.

Finally, it supports the usage of intermediary nodes
which can inspect the transmitted messages and trans-
form, redirect, or answer them, to provide for caching,
in-network aggregation, and security.

User interaction The primary purpose of pervasive sys-
tems is to augment user activities in a possibly unob-
trusive way. However, all of the previously mentioned
middleware platforms lack built-in support for user in-
teraction via existing clients. With the exception of
UPnP allowing an optional user interface to be pro-
vided by devices, all middleware systems require cus-
tom applications to be run on clients for configuration
and control. It is unlikely, that users will be willing to
install custom software for each place they encounter.
User interaction should therefore be integrated in the
middleware for pervasive computing systems.

341

pREST is based on HTTP messages, thus compliant
components can be accessed via telnet or Web clients,
including micro browsers on smart phones and PDAs.
Telnet access requires a basic understanding of the pro-
tocol by the user, and a lot of typing, but offers all fea-
tures of pREST . Web access provides a more conve-
nient way to invoke services with complex signatures,
and parameters. However, pREST specific methods
need to be mapped onto Web forms.

Asymmetric resources Existing middleware platforms re-
quire a relatively heavy-weight runtime, prevent-
ing their application on limited devices. Though
lightweight implementations of these technologies are
available [20][13][25], and extensions for spontaneous
networking exist [21][17], memory requirements still
lie in the range of tens of kilobytes. To deal with this
limitation, the presented systems either introduce some
concept of gateways translating requests to a propri-
etary protocol for limited devices, or silently assume
such proxies being available.

However, relying on proxy nodes is insufficient for a
number of applications and reduces scalability and re-
liability to partial failures. Though proxies increase
efficiency and can provide advanced services, a basic
level of functionality must be preserved even in the ab-
sence of intermediary nodes. The basic functionality
any pREST node must provide is to get and set proper-
ties and invoke functions in response to plain text mes-
sages. This accounts for the basic client-server config-
uration.

Advanced services, such as storage of context, seman-
tical information, and content adaptation and advanced
querying, can be implemented on the application level,
masked as resource access.

Loose coupling Common approaches to component inter-
connection require an agreement on interfaces pub-
lished in form of an IDL or WSDL document. The
creation of a compatible components involves the gen-
eration of stub objects to be linked against the applica-
tion. This prevents a number of coding errors, such as
wrong parameter types or mistyped identifiers already
at compile time, but effectively prevents interoperation
between independently developed components.

In pervasive systems, few components will be devel-
oped concurrently with a common interface definition
to rely on. On the other hand, semantics that need to
be communicated across the network are rarely more
complex than ’an event occurred’, ’retrieve property’
or ’set value’.

Interfaces of components intended for interconnection
should be equally simple allowing the delivery of plain

values, such as numbers, strings or boolean values be-
tween communication endpoints defined at runtime.
For more complex data to be exchanged, self describ-
ing messages such as XForms can be passed around
between nodes, capable of processing them, as pro-
posed in [1].

Since the correct and reasonable invocation of services
on the server side is not accounted for in the applica-
tion code, the user needs to be aided in the configu-
ration of existing components, while the components
need to verify the validity of user created configura-
tions. This in turn requires a typing mechanism and
semantic description at the interconnection and presen-
tation level respectively.

2. Related Work

Systems aiming at integration of limited devices and
spontaneous networking are Jini [21], UPnP [23] and Gaia
OS [16] to name a few. Out of these UPnP has the most
in common with our approach, i.e. the application of HTTP
and XML for invocation and interface representation as well
as an integrated mechanism for user interaction. In con-
trast to pREST, UPnP requires all participating nodes to un-
derstand XML and to support SOAP and GENA on top of
HTTP and HTTP-UDP.

The integration of heterogeneous devices via HTTP has
been investigated in a number of research projects. HP’s
Cooltown deals with the support for context management
[4], localized services [1], and spontaneous interconnection
of components [10] within pervasive systems using web
technologies. IBM’s BlueSpace project [2] investigates the
integration of electronic appliances in workspace environ-
ments. The implementation is based on XML technology
for representation of events, entities, and data.

Ueno et al. [22] present a system to control appliances
via HTTP. Their architecture includes a web server which
maps HTTP requests onto X.10 commands and provides an
advanced lookup service, based on attribute queries. The
AutoHAN system [19] integrates electronic appliances with
the world wide web. Devices interact via asynchronous
XML encoded messages. Both of these approaches utilize
a centralized server or gateway node.

The application of XML component descriptors to gen-
erate user interfaces and as a programming layer for config-
uration and prototyping has been proposed by Hodes et al.
[8]. The usage of XML descriptors to render device specific
interfaces is presented and discussed by Roman et al. [18]
and Ponnekanti et al. [15].

342

3. REST and pREST

pREST is based on the REST architectural style de-
fined by Fielding [7] as a reference model for applications
on the the World Wide Web. REST specifies a client-
stateless-server architecture with implied use of caches.
These constraints ensure that the final architecture is scal-
able, portable, and uses bandwidth efficiently. Furthermore
advanced services such as advanced querying and name res-
olution can be externalized.

Services and data are abstracted as resources. REST re-
quires all resources to support a small set of methods with
fixed semantics, the most important being the retrieval of a
resource representation via GET. A representation obtained
this way contains the legal operations executable in this
state, such as nested resources or parameters to be submitted
to this service. This ensures an independent deployment of
components and ’anarchic’ evolution of the system. Further
methods are PUT, POST, DELETE etc.

Instead of cache components, which are suitable for
static content, pREST defines more general intermediate
nodes, to provide services atop of simple control and con-
figuration. While control and configuration can be achieved
in a simple client-server manner with a generic client, ser-
vices content based addressing, transformation, and con-
text information can be provided transparently by advanced
nodes. These services need to be masked as GET and PUT
operations on URL-referenced resources to preserve trans-
parency.

Besides constraints on interfaces and roles, REST de-
fines an interaction pattern based on the exchange of re-
source identifiers and representations. In the request, the
method and identifier of the target resource is submitted
along with optional parameters. The server responds with
a representation of the resource’s state. This representa-
tion contains legal operations on that resource, which can
be used for further requests. Server operation can then be
viewed as state transitions, caused by user requests. The
current state is presented to the user via a standard client -
hence the name.

An example of that principle is browsing the web. A
resource is requested by clicking on a link, and answered
by transmitting the content of the requested resource to the
client. This document usually contains further links to other
resources. In pREST this pattern is applied to implement in-
terface discovery. A request to a resource offering several
services or kinds of data or expecting additional input is an-
swered with a descriptor containing the various choices. It
is then up to the user to interpret that notification correctly.

As an extension to the standard interaction pattern im-
posed by REST, which favors self descriptive XML rep-
resentation we allow the delivery of plain text represen-
tations for primitive data types, to interconnect resource

constrained devices. Secondly, to provide a lightweight
data delivery mechanism and one-to-many communication,
pREST allows the transmission of HTTP messages via UDP
(HTTPU). Datagram communication avoids expensive con-
nection establishment, but also facilitates an asynchronous
communication pattern suitable for event driven applica-
tions. We believe HTTPU communication to be suitable
for delivery and in-network aggregation of redundant data,
such as sensor readings.

4. Resources

The primary mean of abstraction within pREST is a re-
source. Virtually anything that can be uniquely addressed
with a URL is a resource: devices, services, and configu-
rations as well as documents, pictures, and raw data. Re-
sources can be nested, so that services and properties of a
component being associated with URL are resources them-
selves. In this paper we let media and proprietary resource
types aside and concentrate on resources represented by
XML and plain text, since these are more likely to be ex-
changed between applications.

Fielding [7] emphasizes the equivalence between re-
source representations and identifiers, influenced by the
synergistic relationship between URLs and internet re-
sources on the web. We interpret a resource primarily as
a uniquely identifiable, typed communication end point, ca-
pable of producing and/or consuming data, which reflects
the dynamic aspect of interactions in pervasive systems.

While a client should perceive anything as a resource,
some resources are more different than others. As far as
distributed objects are concerned, three kinds of resources
must be distinguished: complex, primitive, and services.

Complex resources are those containing at least one
nested resource. and are represented by XML docu-
ments. These documents have no predefined tags, but
rather contain the identifiers of nested resources as el-
ements. The URL of a nested resource is constructed
by appending its identifier to the parent reference.

Besides nested resources, descriptors may contain cap-
tion text to be displayed in a GUI generated from the
document. Context and semantical information can
be included in the descriptors using the Resource De-
scription Framework (RDF) [12], with suitable ontolo-
gies specified in referenced OWL documents [24].

The descriptors of complex resources are static. This
way even nodes unable to dynamically create XML
documents, can provide a description of their function-
ality. The flexibility of XML documents allows the
generation of user interfaces with XSL and enhance-
ment of descriptors with context or semantic data,

343

without invalidation. Referencing data with URLs al-
lows to store parts of the descriptors on external nodes.

Primitive resources differ from complex ones by hav-
ing no nested elements, and are represented by plain
ASCII strings. In contrast to complex resources, a
GET operation on a primitive does not return a static
document, but rather the value of this element. They
represent a component’s controllable and monitorable
properties. Simple resources might also represent data
objects, whose decomposition is not desirable or not
sensible, e.g. images.

Primitive resources are also potential candidates for in-
terconnection of components. In this case properties
serve as sources or sinks of data. In the initial scenario
the boolean data produced by the sensor value might be
regularly transmitted to the trigger of the camera. The
image output of the camera can be sent to the server,
for instant publication on the web.

Services are a hybrid between primitive and complex re-
sources. On the one hand, the invocation of a service
returns a result value, which is analogue to a primitive,
on the other hand the signature needs to be commu-
nicated in order for a human user (or an intelligent
application) to invoke the service correctly. This is
achieved via XML descriptors, similar to complex re-
sources. The descriptor documents contain required
parameters, exceptions, and a human readable descrip-
tion of the provided service. This information can be
used both for dynamic invocation as well as for user
interface generation.

A GET request for a service URL, is considered an
interface request. The server responds with an XML
representation of the signature containing the parame-
ters and exceptions of this service. POST operations
are interpreted as invocations of the service, with the
parameters enclosed in the message body.

To provide additional information about resources,
pREST supports a loose typing system via a HTTP head-
ers and a MIME-like naming scheme similar to the one pro-
posed in [1]. The typing of resources is realized via the
headers Accept and Provide. In general, resources ca-
pable of consuming logical data, i.e. properties and services
must be able to process text/plain messages. Complex
resources may specify to provide text/xml for complex
data types or media types such as img/gif.

A resource capable of consuming data of some kind,
e.g. displaying images, is typed as Accept:img/*,
and can be connected with resources providing image data,
e.G.Provide:img/gif. More commonly the data ex-
changed between components will be logical values, such as
numbers, strings, or boolean values. As a basis for property

description we have chosen a small set of primitive types
defined by XML schema. The types used by pREST consist
of int, boolean, string, and float.

4.1. Example

Figure 3 shows an exemplary descriptor for a sensor
node containing several kinds of nested resources. The par-
ticular type of the resource is at this stage visible only from
the plain text description in the elements.

<sensor desc="Simple binary sensor">
<context href="http://contextserver/sensor">

Context information
</context>
<value href="./value">

Current reading (true/false)
</value>

</sensor>

Figure 3. A simple resource descriptor

The context element may contain information about
the position, ownership, or relations to other resources of
this node. Obviously this is a candidate for a complex re-
source. However, the sensor node might not be capable to
store arbitrarily structured data. To overcome this limita-
tion, the context element contains a reference to a remote
resource stored on dedicated context server.

The value element is a primitive resource, repre-
senting the current reading of the sensor. A request for
http://sensor/value returns the current value in the
body of the response message.

5. Invocation

To enable independent deployment of components and
interaction of components without knowledge of interfaces
at compile time, pREST postulates a uniform interface for
resources. Rather than a rich set of component specific
methods, functionality arises from the combination of just
a few methods, applicable to all resources. Differentiation
of services is accomplished through addressing and com-
bination of resources. This pattern also applied in SQL
databases, where arbitrary complex applications can be con-
structed with select, update, insert, and delete
combined with chains and filters.

5.1. HTTP methods

pREST uses the basic set of HTTP operations to ma-
nipulate resources. This allows pREST devices to be con-
trolled via Web browsers or telnet. In addition, components

344

do not need to process XML documents (as opposed to
SOAP and XMLRPC). Messages are plain ASCII strings,
with fixed delimiters separating method, component identi-
fier and parameters. Therefore invocation messages can be
constructed even on limited devices.

The semantics that need to be communicated within per-
vasive systems are fairly simple. Property access, mapped
on HTTP GET and PUT suffices for simple applications to
query and configure devices. Invocation of services is ex-
pressed via POST, with the parameters passed as part of the
URL.

In addition to these methods, pREST utilizes the HTTP
HEAD method. HEAD, retrieves the header of a resource
without the content, which can be used to determine the data
accepted and provided a particular this resource. An exem-
plary session on our pREST enabled camera is presented in
figure 4.

camera> GET /trigger HTTP/1.1

HTTP/1.1 200 OK
Content-type: text/xml
Accept: text/plain
Provide: text/plain

<trigger>
<parameters>
<value type=’boolean’/>

</parameters>
<exceptions/>

</trigger>

camera> POST /trigger HTTP/1.1
Content-type: text/plain

true

HTTP/1.1 200 OK
Content-type: text/plain
Accept: text/plain

camera> HEAD /img HTTP/1.1

HTTP/1.1 200 OK
Content-type: img/gif
Provide: img/gif

Figure 4. Service invocation vs. interface re-
quest

The first request returns a descriptor of the trigger

service. This is a rather simple service, taking a boolean
value as a parameter and throwing no exceptions. The im-
age data taken by the camera is stored under /img and is of
type img/gif as a HEAD request on the respective prop-
erty reveals. The /img resource can in turn be linked to the
/publish service of the web server.

5.2. Component interconnection

Services in a pREST based system are realized through
interconnection of independent of components. The data
produced by one node is used to configure another or as a
trigger for services. Interconnected devices form data paths,
commonly starting with raw sensor readings being aggre-
gated locally and transformed to high level events along
their way to actuators.

In the exemplary scenario the sensor value acts as a trig-
ger for the camera service, whereas the data produced by
the camera is used as input for the web server. In a real
world example, the readings would come from a network
of sensors to reduce the probability of a false decision. The
readings would be propagated hop by hop to the data sink
and aggregated along the way. A consensus mechanism is
simple enough, to be implemented in the sensor firmware.

The mechanisms to interconnect components in our
pREST implementation are located at the application level.
Consumers are interested in notifications upon property
changes, caused by environmental changes, in case of sen-
sors, or by application logic, in case of the camera. Like-
wise, the delivery varies from regular notifications to asyn-
chronous delivery upon property change. For this reason,
the policies of message generation and delivery should not
be imposed by the interconnection protocol.

Sensors publish their properties specifying whether their
values can be monitored, i.e. delivered to sinks. The
producer-consumer relationships are created invoking a
subscribe service on the sensor, expecting the property
to be monitored, a URL where to send values to and a flag
to indicate regular transmission or delivery upon property
change along with the expiration time of the subscription to
be submitted.

The subscribe service does not need to be invoked by the
data consumer, as this would require the consumer to know
the invocation syntax of a specific producer. Rather the de-
scriptor of the subscribe service can be requested via a
browser, and transformed into a Web form at the client side,
using XSL transformations. The user can manually create a
data link between participating nodes by completing a web
form.

345

5.3. Parameters and return values

pREST resources can produce and consume any kind of
data including images, word documents, and proprietary
byte streams. However, most services and primitive re-
sources exposed by server components accept logical values
such as numbers, strings, or boolean values, representable
as ASCII strings.

While a PUT request message and the response to a GET
commonly contain a single value as their message con-
tent, multiple parameters of service invocations need to be
bound. They are transmitted in url-encoded-post format, i.e.
attribute=value pairs separated by ampersands.

Even though strings and numbers are the most common
parameters and return values, transmission of data objects,
consisting of several primitive values is often necessary.
Proprietary encoding of complex data objects as strings can
not be prevented by pREST , but is considered bad style,
since it underruns the goal to allow composition of services
and devices driven by content, not syntax.

A better solution is to break up a complex data object
into primitive components, and use attribute names allow-
ing an unambiguous mapping to the particular fields of a
complex parameter. If a service requires a constructed type
as a parameter, the primitive parts are grouped by a common
prefix. The parameter submitted to the subscribe ser-
vice for instance, is of type SubscriptionData com-
bining the primitive parts mentioned above. These sepa-
rate string, integer and enumeration types are prefixed with
’sub.’.

Unlike library based middleware, pREST does not en-
force a service to be invoked with the correct number of
parameters and legal values. After all, an invocation is just
a text message. However, the server can communicate an
invocation failure in that case. It is then up to the user or
application to interpret that error correctly.

6. Implementation

We have implemented the pREST protocol on two plat-
forms, varying in resources and programming language ca-
pabilities. The components interconnected in our proto-
type are wrapped in a generic interface, allowing configu-
ration, monitoring and control of devices and services. The
subscribe service mentioned above used to interconnect
components is defined as part of the Monitoring interface.

The interconnected components were a sensor node, and
a software component emulating a lamp controllable via a
software interface. The Java implementation of the lamp
component is part of an architecture for applications in
smart environments developed at Fraunhofer FOKUS.

6.1 Sensor hardware

The sensor node integrated in our scenario is the Em-
bedded Sensor Board developed within the the Scatterweb
Project at FU Berlin. The hardware is based on a low-power
microcontroller (the Texas Instruments MSP430) with 2k
of RAM and 65k Flash ROM for firmware and application
code. Communication is provided via serial line, and radio.
The sensing capabilities include light, microphone, vibra-
tion, and motion sensor as well as a passive infrared sensor.

Due to resource constraints, particularly the limited
memory, processing of HTTP requests and invocations to
the application are highly integrated. The buffers are shared
between the IP layer and application, and requests pro-
cessed partially and stored in a memory efficient way. The
implementation is not divided into a generic middleware
and an application process.

The implementation of the pREST protocol is based on
the the IP stack by Adam Dunkels [6]. At the physical level,
internet access is realized via a SLIP connection to a desk-
top machine, and via a broadcast radio link. Thus in a multi-
hop scenario one sensor node must act as a base station.

In the implementation operational memory was the
scarcest resource. Table 1 shows the memory footprint of
the various layers. The firmware, providing for basic func-
tions such as radio and serial line communication, sensor
reading and communication with the application code uses
500 bytes of memory.

Firmware only Firmware + IP Firmware + IP
+ REST app

Memory 500 byte 1818 byte 2008 byte
Code 17096 byte 23504 byte 37096 byte

Table 1. Memory footprint and and code size
of pREST

The TCP/IP implementation takes up an additional 1300
bytes, most of it being buffer space for incoming packets.
The implementation uses two buffers of 552 (512 bytes for
data and 40 Bytes for the TCP/IP header). The interrupt
handler uses one buffer to store raw data arriving on the
radio interface or serial line. The other is used by the IP
layer and the application.

Atop of the pure IP processing, the pREST and appli-
cation layer require about 200 bytes for application state,
such as subscription parameters and partial requests. For ef-
ficiency reasons HTTP requests and parameters are parsed
one line at a time, and stored until the user completes the
request. Unprocessed request parts cannot be left in the IP
buffer, since any incoming IP packet overwrites the contents
of the old one. Limiting request messages to one IP packet

346

might bring a memory gain here, but would also prevent
telnet access.

To test the performance of our implementation we have
measured the time it takes for the sensor to process a single
request via serial line. To separate the impact of the differ-
ent processing steps, we have measured the time for a re-
quest for two pre-generated messages of different sizes and
one for a dynamically created message. As a lower bound
for the latency we also list the times for a ping request. Ta-
ble 2 lists the results.

Static Static Dynamic Ping
Request 70 bytes 71 91 bytes 100 bytes
Response 99 bytes 490 155 bytes 100 bytes
Min 200 261 220 40
Max 281 381 381 50
Avg 272 348 304 40

Table 2. Response times for various requests
in ms

The first column lists the response times for a simple
HTTP request with almost no processing at the application
layer (besides looking up the request URL and pasting the
HTTP status line and headers). The response times includes
waiting for the complete request and copying each received
line into an application buffer.

The second column shows the delays when requesting a
interface descriptor as pregenerated content. The overhead
to copy the static content to the IP buffer and fill in the con-
tent length is roughly 70 ms.

The construction of dynamic content as depicted in the
third column, in this case the message contained all avail-
able sensor values, takes only about 30 ms longer than a
static message of comparable size. Compared to the ping re-
quest, which does not involve checksum calculation or con-
nection establishment, the processing at the transport and
application layer consumes 80-90% of the total time.

As mentioned above, the application becomes less com-
plex and significant performance gains can be achieved, by
requiring the requests to be delivered in one packet. Pro-
cessing can take place directly in the IP buffer, without
copying request parts into an application buffer. The rel-
atively high delay for connection establishment can further
be compensated, by using TCP for creation of data links,
and UDP for data delivery. The usage of text messages with
a fixed format allows even a proprietary protocol, optimized
for sensor networks to be used for transport.

6.2 Desktop hardware

In a full featured Java environment, we have imple-
mented a wrapper to support pREST access to arbitrary

objects. Providing object introspection and not limited by
memory or processor constraints, it places no requirements
on the components to be published (besides actually hav-
ing any public methods or fields to be accessed). Server
objects can be published as pREST resources without code
modification. This way, software components can thus be
interconnected with sensor nodes or other devices transpar-
ently, data provided by embedded hardware can be used just
like user input.

7. Conclusion and future work

The reasons for employing HTTP as an interaction pro-
tocol have been discussed in a number of related publica-
tions. Implementations are lightweight and accessible via
web clients [19], HTTP has a low barrier to entry, is de-
vice, service, and language independence and content cen-
tric [10]. Finally, the affinity between pervasive computing
systems and the World Wide Web makes an integration via
the same access protocol sensible [4]. Also a number of
approaches to provide HTTP access to distributed objects
[9][11][14] has been proposed so far.

However, the benefits of HTTP as an access protocol
have often been reduced to the traversal of firewalls and its
wide availability.We believe, that HTTP semantics, typing
with MIME types and URL addressing offer a natural way
to interconnect services and data. Particularly, services can
be constructed through configuration, rather than program-
ming.

Through interconnection with data paths, a collection of
devices can be turned into a networked system to provide
higher level services with just a few operations.

7.1. Design trade-offs

Still there is a price to pay for simplicity and flexibility.
URL-encoded parameters might be convenient for users to
type in, but are inefficient with machine-to-machine interac-
tion. On the other hand since the primary goal of pervasive
systems is user interaction, it seems a fair trade off. In addi-
tion complex parameters and return values have to be split
up into primitives or encoded proprietary.

Stateless communication can handle temporary link
breaks, but adds the overhead of connection setup to each
operation. For applications where low response times
are required, some strategy should be employed to decide
whether to keep connections open for subsequent calls.

7.2. Future work

Links allow simple interconnection of devices, if the
user knows exactly, which data to link. We will investi-
gate automatic discovery of compatible resources, to allow

347

a more natural configuration by connecting e.g. pda/out
to display/in, without specifying the concrete encod-
ing. An automatic selection of transforming links to con-
nect otherwise incompatible resources is also desirable.

The linking of communication properties and services
offers a rudimentary scripting support for pREST compo-
nents. Allowing operations on invocation parameters and
conditional invocations would surely improve flexibility.
This eventually leads to a definition of a general script-
ing language for pREST. Providing advanced services, like
group addressing and in network aggregation of data along
data paths also poses some interesting research questions.

References

[1] J. Barton, T. Kindberg, H. Dai, N. B. Priyantha, and F. A.
bin ali. Sensor-enhanced mobile web clients: an XForms
approach. In Proceedings of the twelfth international con-
ference on World Wide Web, pages 80–89. ACM Press, 2003.

[2] P. Chou, M. Gruteser, J. Lai, A. Levas, S. McFaddin, C. Pin-
hanez, M. Viveros, D. Wong, and S. Yoshihama. Bluespace:
Creating a personalized and context-aware workspace, Oc-
tober 2001.

[3] J. Cohen. Generic Event Notification Architecture. Internet
draft.

[4] P. Debaty, P. Goddi, and A. Vorbau. Integrating the physi-
cal world with the web to enable context-enhanced services.
Technical report, Mobile and Media Systems Laboratory HP
Laboratories Palo Alto, 2003.

[5] S. D. O. DSIG. Platform Independent Model and
Platform Specific Model for Super Distributed Objects.
http://www.omg.org, 2003.

[6] A. Dunkels. Full TCP/IP for 8-bit architectures, May 2003.
[7] R. Fielding. Architectural Styles and the Design of Network-

based Software Architetures. PhD thesis, Univ. of Califor-
nia, Irvine, 2000.

[8] T. D. Hodes and R. H. Katz. Enabling ’smart spaces’: En-
tity description and user interface generation for a heteroge-
neous component-based distributed system. Technical Re-
port CSD-98-1008, University of California, Berkeley, 6,
1998.

[9] D. B. Ingham, M. C. Little, C. J. Caughey, and S. K. Shri-
vastava. W3objects: Bringing object oriented technology to
the web. In Proc. Fourth Intl WWW Conf., Boston, Mass.,
December 1995.

[10] T. Kindberg, J. Barton, J. Morgan, G. Becker, I. Bedner,
d. Caswell, P. Debaty, G. Gopal, M. Frid, V. Krishnan, H. M.
aand C. Pering, J. Schettino, B. Serra, and M. Spasoje-
vic. People, places,things: Web presence for the real world.
MONET, 7(5), October 2002.

[11] D. Larner. Migrating the web towards distributed objects.
Technical report, Xerox Corporation, 1996.

[12] E. Miller. An introduction to the resource description frame-
work.

[13] Object Managemet Group. Minimum CORBA, 1998.
[14] J.-M. G. Philippe Merle, Christophe Gransart. Corbaweb: A

generic object navigator. Technical report, INRIA, 1996.

[15] S. R. Ponnekanti, B. Lee, A. Fox, P. Hanrahan, and T. Wino-
grad. ICrafter: A service framework for ubiquitous com-
puting environments. Lecture Notes in Computer Science,
2201:56ff, 2001.

[16] M. Roman and R. H. Campbell. A middleware-based ap-
plication framework for active space applications. cite-
seer.nj.nec.com/568916.html.

[17] M. Roman, C. K. Hess, A. Ranganathan, P. Madhavarapu,
B. Borthakur, P. Viswanathan, R. Cerqueira, R. H. Camp-
bell, and M. D. Mickunas. GaiaOS: An infrastructure for
active spaces.

[18] M. Romn, J. Beck, and A. Gefflaut. A device-independent
representation for services.

[19] U. Saif, D. Gordon, and D. J. Greaves. Internet access to a
home area network. IEEE Internet Computing, 5(1):54–63,
2001.

[20] Sun Microsystems. J2ME building blocks for mobile de-
vices.

[21] Sun Microsystems. Jini techonology core platform specifi-
cation. Java specifications, Sun Microsystems, Oct. 2000.

[22] D. Ueno, T. Nakajima, I. Satoh, and K. Soejima. Web-Based
Middleware for Home Entertainment, volume 2550, pages
206 – 219. Springer-Verlag Heidelberg, January 2002.

[23] UPnP device architecture.
[24] W3C. OWL - web ontology language overview.
[25] kSOAP. http://ksoap.enhydra.org/.

348

