
Presto: Distributed Machine Learning and
Graph Processing with Sparse Matrices

Shivaram Venkataraman1 Erik Bodzsar2 Indrajit Roy Alvin AuYoung Robert S. Schreiber
1UC Berkeley, 2University of Chicago, HP Labs

shivaram@cs.berkeley.edu, {erik.bodzsar, indrajitr, alvina, rob.schreiber}@hp.com

Abstract
It is cumbersome to write machine learning and graph al-
gorithms in data-parallel models such as MapReduce and
Dryad. We observe that these algorithms are based on matrix
computations and, hence, are inefficient to implement with
the restrictive programming and communication interface of
such frameworks.

In this paper we show that array-based languages such
as R [3] are suitable for implementing complex algorithms
and can outperform current data parallel solutions. Since R
is single-threaded and does not scale to large datasets, we
have built Presto, a distributed system that extends R and
addresses many of its limitations. Presto efficiently shares
sparse structured data, can leverage multi-cores, and dynam-
ically partitions data to mitigate load imbalance. Our results
show the promise of this approach: many important machine
learning and graph algorithms can be expressed in a single
framework and are substantially faster than those in Hadoop
and Spark.

1. A matrix-based approach
Many real-world applications require sophisticated analysis
on massive datasets. Most of these applications use machine
learning, graph algorithms, and statistical analyses that are
easily expressed as matrix operations.

For example, PageRank corresponds to the dominant
eigenvector of a matrix G that represents the Web graph.
It can be calculated by starting with an initial vector x
and repeatedly performing x=G∗x until convergence [8].
Similarly, recommendation systems in companies like Net-
flix are implemented using matrix decomposition [37]. Even
graph algorithms, such as shortest path, centrality measures,
strongly connected components, etc., can be expressed using
operations on the matrix representation of a graph [19].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Eurosys’13 April 15-17, 2013, Prague, Czech Republic
Copyright c© 2013 ACM 978-1-4503-1994-2/13/04. . . $15.00

Array-based languages such as R and MATLAB provide
an appropriate programming model to express such machine
learning and graph algorithms. The core construct of arrays
makes these languages suitable to represent vectors and ma-
trices, and perform matrix computations. R has thousands
of freely available packages and is widely used by data min-
ers and statisticians, albeit for problems with relatively small
amounts of data. It has serious limitations when applied to
very large datasets: limited support for distributed process-
ing, no strategy for load balancing, no fault tolerance, and is
constrained by a server’s DRAM capacity.

1.1 Towards an efficient distributed R
We validate our hypothesis that R can be used to efficiently
execute machine learning and graph algorithms on large
scale datasets. Specifically, we tackle the following chal-
lenges:

Effective use of multi-cores. R is single-threaded. The
easiest way to incorporate parallelism is to execute pro-
grams across multiple R processes. Existing solutions for
parallelizing R use message passing techniques, includ-
ing network communication, to communicate among pro-
cesses [25] . This multi-process approach, also used in com-
mercial parallel MATLAB, has two limitations. First, it
makes local copies of many data objects, boosting memory
requirements. Figure 1 shows that two R instances on a sin-
gle physical server would have two copies of the same data,
hindering scalability to larger datasets. Second, the network
communication overhead becomes proportional to the num-
ber of cores utilized instead of the number of distinct servers,
again limiting scalability.

Existing efforts for parallelizing R have another limita-
tion. They do not support point-to-point communication. In-
stead data has to be moved from worker processes to a desig-
nated master process after each phase. Thus, it is inefficient
to execute anything that is not embarrassingly parallel [25].
Even simple iterative algorithms are costly due to the com-
munication overhead via the master.

Imbalance in sparse computations. Most real-world
datasets are sparse. For example, the Netflix prize dataset
is a matrix with 480K users (rows) and 17K movies (cols)
but only 100 million of the total possible 8 billion ratings
are available. Similarly, very few of the possible edges are

Server 1 Server 2

R process
copy of
data

R process

data

R process
copy of
data

R process
copy of
data

local copy

network copy
network copy

Figure 1. R’s poor multi-core support: multiple copies of data on
the same server and high communication overhead across servers.

0 20 40 60 80 100

1

5
10

50
100

500
1000

5000

Block id

B
lo

ck
 d

en
si

ty
 (

no
rm

al
iz

ed
)

Netflix
LiveJournal
ClueWeb−1B
Twitter

Figure 2. Variance in block density. Y-axis shows density of a
block normalized by that of the sparsest block. Lower is better.

present in Web graphs. It is important to store and manipu-
late such data as sparse matrices and retain only non-zero en-
tries. These datasets also exhibit skew due to the power-law
distribution [14], resulting in severe computation and com-
munication imbalance when data is partitioned for parallel
execution. Figure 2 illustrates the result of naı̈ve partition-
ing of various sparse data sets: LiveJournal (68M edges) [4],
Twitter (2B edges), pre-processed ClueWeb sample1 (1.2B
edges), and the ratings from Netflix prize (100M ratings).
The y-axis represents the block density relative to the spars-
est block, when each matrix is partitioned into 100 blocks
having the same number of rows/columns. The plot shows
that a dense block may have 1000× more elements than
a sparse block. Depending upon the algorithm, variance in
block density can have a substantial impact on performance
(Section 7).

1.2 Limitations of current data-parallel approaches
Existing distributed data processing frameworks, such as
MapReduce and DryadLINQ, simplify large-scale data pro-
cessing [12, 17]. Unfortunately, the simplicity of the pro-
gramming model (as in MapReduce) or reliance on rela-
tional algebra (as in DryadLINQ) makes these systems un-
suitable for implementing complex algorithms based on ma-
trix operations. Current systems either do not support state-
ful computations, or do not retain the structure of global
shared data (e.g., mapping of data to matrices), or do not
allow point to point communication (e.g., restrictive MapRe-
duce communication pattern). Such shortcomings in the pro-

1 http://lemurproject.org/clueweb09.php

gramming model have led to inefficient implementations of
algorithms or the development of domain specific systems.
For example, Pregel was created for graph algorithms be-
cause MapReduce passes the entire state of the graph be-
tween steps [24].

There have been recent efforts to better support large-
scale matrix operations. Ricardo [11] and HAMA [30] con-
vert matrix operations to MapReduce functions but end up
inheriting the inefficiencies of the MapReduce interface.
PowerGraph [14] uses a vertex-centric programming model
(non matrix approach) to implement data mining and graph
algorithms. MadLINQ provides a linear algebra platform on
Dryad but does not efficiently handle sparse matrix compu-
tations [29]. Unlike MadLINQ and PowerGraph, our aim is
to address the issues in scaling R, a system which already
has a large user community. Additionally, our techniques for
handling load imbalance in sparse matrices can be applicable
to existing systems like MadLINQ.

1.3 Our Contribution
We present Presto, an R prototype to efficiently process
large, sparse datasets. Presto introduces the distributed array,
darray, as the abstraction to process both dense and sparse
datasets in parallel. Distributed arrays store data across mul-
tiple machines. Programmers can execute parallel functions
that communicate with each other and share state using ar-
rays, thus making it efficient to express complex algorithms.

Presto programs are executed by a set of worker processes
which are controlled by a master. For efficient multi-core
support each worker on a server encapsulates multiple R in-
stances that read shared data. To achieve zero copying over-
head, we modify R’s memory allocator to directly map data
from the worker into the R objects. This mapping preserves
the metadata in the object headers and ensures that the allo-
cation is garbage collection safe.

To mitigate load imbalance, the runtime tracks the exe-
cution time and the number of elements in each array parti-
tion. In case of imbalance, the runtime dynamically merges
or sub-divides array partitions between iterations and assigns
them to a new task, thus varying the parallelism and load in
the system. Dynamic repartitioning is especially helpful for
iterative algorithms where computations are repeated across
iterations.

We have implemented seven different applications in
Presto, ranging from a recommendation system to a graph
centrality measure. Our experience shows that Presto pro-
grams are easy to write and can be used to express a wide va-
riety of complex algorithms. Compared to published results
of Hadoop and Spark [36], Presto achieves equally good
execution times with only a handful of multi-core servers.
For the PageRank algorithm, Presto is more than 40× faster
than Hadoop and 15× faster than Spark. We also show how
Presto’s multi-core support reduces communication over-
head and finally measure the impact of dynamic repartition-
ing using two real-world applications.

A
B

C

D

E
A

B

C

D

E
A

B

C

D

E
A

B

C

D

E

A B C D E

1 0 0 0 0 * * * 0 0

A B C D E

* * * * 0

A B C D E

* * * * *

A B C D E

C E C E C E C E

X

A 1 1 1 0 0

B 0 1 0 1 0

C 0 1 1 0 0

D 0 0 0 1 1

Y= X * G Y1= Y * G Y2= Y1 * G

G
D 0 0 0 1 1

E 0 0 0 0 1

Figure 3. Breadth-first search using matrix operations. The kth

multiplication uncovers vertices up to k hop distance away.

2. Background
Matrix computation is heavily used in data mining, image
processing, graph analysis, and elsewhere [32]. Our focus is
to analyze sparse datasets that are found as web graphs, so-
cial networks, product ratings in Amazon, and so on. Many
of these analyses can be expressed using matrix formula-
tions that are difficult to write in data-parallel models such
as MapReduce.

Example: graph algorithms. Many common graph algo-
rithms can be implemented by operating on the adjacency
matrix [19]. To perform breadth-first search (BFS) from a
vertex i we start with a 1×N vector x which has all ze-
roes except the ith element. Using the multiplication y=x∗G
we extract the ith row in G, and hence the neighbors of ver-
tex i. Multiplying y with G gives vertices two steps away
and so on. Figure 3 illustrates BFS from source vertex A in
a five vertex graph. After each multiplication step the non-
zero entries in Yi (starred) correspond to visited vertices. If
we use a sparse matrix representation for G and x, then the
performance of this algorithm is similar to traditional BFS
implementations on sparse graphs.

The Bellman-Ford single-source shortest path algorithm
(SSSP) finds the shortest distance to all vertices from a
source vertex. SSSP can be implemented by starting with
a distance vector d and repeatedly performing a modified
matrix multiplication, d=d⊗G. In the modified multipli-
cation d(j)=mink{d(k)+G(k,j)} instead of the usual
d(j)=∑k{d(k)∗G(k,j)}. In essence, each multiplica-
tion step updates the vertex distances by choosing the mini-
mum of the current distance, and that of reaching the vertex
using one more edge.

2.1 R: An array-based environment
R provides an interactive environment to analyze data. It
has interpreted conditional execution (if), loops (for,
while, repeat), and uses array operators written in C,
C++ and FORTRAN for better performance. Line 1 in Fig-
ure 4 shows how a 3× 3 matrix can be created. The argu-
ment dim specifies the shape of the matrix and the sequence
10 : 18 is used to fill the matrix. One can refer to entire subar-
rays by omitting an index along a dimension. For example, in

1: > A<-array(10:18,dim=c(3,3)) #3x3 matrix
2: > A

[,1] [,2] [,3]
[1,] 10 13 16
[2,] 11 14 17
[3,] 12 15 18

3: > A[1,] #First row
[1] 10 13 16

4: > idx<-array(1:3,dim=c(3,2)) #Index vector
5: > idx

[,1] [,2]
[1,] 1 1
[2,] 2 2
[3,] 3 3

6: > A[idx] #Diagonal of A
[1] 10 14 18

7: > A%*%idx #Matrix multiply
[,1] [,2]

[1,] 84 84
[2,] 90 90
[3,] 96 96

Figure 4. Example array use in R.

line 3 the first row of the matrix is obtained by A[1,], where
the column index is left blank to fetch the entire first row.
Subsections of a matrix can be easily extracted using index
vectors. Index vectors are an ordered vector of integers. To
extract the diagonal of A we create an index matrix idx in
line 4 whose elements are (1,1),(2,2) and (3,3). In line 6,
A[idx] returns the diagonal elements of A. In a single ma-
chine environment, R has native support for matrix multi-
plication, linear equation solvers, matrix decomposition and
other operations. For example, % ∗% is an R operator for
matrix multiplication (line 7).

3. Programming model
Presto is R with new language extensions and a runtime to
manage distributed execution. The extensions add data dis-
tribution and parallel execution. The runtime takes care of
memory management, scheduling, dynamic data partition-
ing, and fault tolerance. As shown in Figure 5, programmers
write a Presto program and submit it to a master process.
The runtime at the master is in charge of the overall execu-
tion. It executes the program as distributed tasks across mul-
tiple worker processes. Table 1 depicts the Presto language
constructs which we discuss in this section.

3.1 Distributed arrays
Presto solves the problem of structure and scalability by
introducing distributed arrays. Distributed array (darray)
provides a shared, in-memory view of multi-dimensional
data stored across multiple servers. Distributed arrays have
the following characteristics:

Partitioned. Distributed arrays can be partitioned into con-
tiguous ranges of rows, columns or blocks. Users specify
the size of the initial partitions. Presto workers store parti-
tions of the distributed array in the compressed sparse col-
umn format unless the array is defined as dense. Program-
mers use partitions to specify coarse-grained parallelism by
writing functions that execute in parallel and operate on par-

Figure 5. Presto architecture

titions. Partitions can be referred to by the splits func-
tion. The splits function automatically fetches remote
partitions and combines them to form a local array. For ex-
ample, if splits(A) is an argument to a function exe-
cuting on a worker then the whole array A would be re-
constructed by the runtime, from local and remote partitions,
and passed to that worker. The ith partition can be referenced
by splits(A,i).

Shared. Distributed arrays can be read-shared by multiple
concurrent tasks. The user simply passes the array partitions
as arguments to many concurrent tasks. Arrays can be mod-
ified inside tasks and the changes are visible globally when
update is called. Presto supports only a single writer per
partition.

Dynamic. Partitions of a distributed array can be loaded
in parallel from data stores such as HBase, Vertica, or from
files. Once loaded, arrays can be dynamically re-partitioned
to reduce load imbalance and prevent straggling.

3.2 Distributed parallelism
Presto provides programmers with a foreach construct to
execute deterministic functions in parallel. The functions do
not return data. Instead, programmers call update inside
the function to publish changes. The Presto runtime starts
tasks on worker nodes for parallel execution of the loop
body. By default, there is a barrier at the end of the loop
to ensure all tasks finish before statements after the loop are
executed.

3.3 Repartition and invariants
At runtime, programmers can use the repartition com-
mand to trigger Presto’s dynamic repartitioning method.
Repartitioning can be used to subdivide an array into a spec-
ified number of parts. Repartitioning is an optional perfor-
mance optimization which helps when there is load imbal-
ance in the system.

One needs be careful while repartitioning structured data,
otherwise program correctness may be affected. For exam-

Functionality Description
darray(dim=, blocks=,
sparse=)

Create a distributed array with dimensions
specified by dim, and partitioned by blocks
of size blocks.

splits(A,i) Return ith partition of the distributed array A
or the whole array if i is not specified.

foreach(v, A, f()) Execute function f as distributed tasks for
each element v of A. Implicit barrier at the end
of the loop.

update(A) Publish the changes to A.

repartition(A, n=,
merge=)

Repartition A into n parts.

invariant(A, B, type=) Declare compatibility between arrays A and
B by rows or columns or both. Used by
the runtime to maintain invariants while re-
partitioning.

Table 1. Main programming language constructs in Presto

ple, when multiplying two matrices, the number of rows
and columns in partitions of both the matrices should con-
form. If we repartition only one of the matrices then this in-
variant may be violated. Therefore, Presto allows program-
mers to optionally specify the array invariants in the pro-
gram. We show in Section 5.3 how the runtime can use the
invariant and repartition functions to automati-
cally detect and reduce imbalance without any user assis-
tance.

Note that for programs with general data structures (e.g.,
trees) writing invariants is difficult. However, for matrix
computation, arrays are the only data structure and the
relevant invariant is the compatibility in array sizes. The
invariant in Presto is similar in spirit to the alignment di-
rectives used in High Performance Fortran (HPF [22]). The
HPF directives align elements of multiple arrays to ensure
the arrays are distributed in the same manner. Unlike HPF,
in Presto the invariants are used to maintain correctness dur-
ing repartitioning.

4. Applications
We illustrate Presto’s programming model by discussing the
implementation of two algorithms: PageRank and Alternat-
ing Least Squares.

PageRank. Figure 6 shows the Presto code for PageRank.
M is the modified adjacency matrix of the Web graph. PageR-
ank is calculated in parallel (lines 7–13) using the power
method [8]. In line 1, M is declared as an NxN array. M is
loaded in parallel from the underlying filesystem using the
Presto driver, and is partitioned by rows. In line 3 the num-
ber of columns of M is used to define the size of a dense
vector pgr which acts as the initial PageRank vector. This
vector is partitioned such that each partition of pgr has the
same number of rows as the corresponding partition of M.
The accompanying illustration points out that each partition
of the vector pgr requires the corresponding (shaded) parti-
tions of M, Z, and the whole array xold. The Presto runtime
passes these partitions and reconstructs xold from its par-
titions before executing prFunc at each worker. In line 12

#Load data in parallel into adjacency matrix
1 : M<- darray(dim=c(N,N),blocks=c(s,N), sparse=T)
2 : load(M, file="...")
3 : pgr<- darray(dim=c(ncol(M),1),blocks=c(s,1),sparse=F)
4 : xold<- darray(dim=c(ncol(M),1),blocks=c(s,1),sparse=F)
5 : ...
6 : invariant(pgr,M,xold,Z, type=ROW)
#Calculate PageRank (pgr)
7 : repeat{

#Distributed matrix operations
8 : foreach(i, 1: numsplits(M),

prFunc(p= splits(pgr,i), m= splits(M,i),
x= splits(xold), z= splits(Z,i)) {

9 : p<-(m%*%x)+ z
10 : update(p)
11: })
12: if(norm(pgr-xold)<1e-9) break
13: xold<-pgr
14: }

PageRank splitsPageRank splits

N

P1 P1s P1 s P1
P2

P1

PN/s

P1
P2

PN/s

…

s P1
P2

PN/s

…

s P1
P2

PN/s

…
N

N/s

M
N/s

xold Z
N/s

pgr
N/s

Figure 6. PageRank on a Web graph.

the norm of the two distributed arrays, pgr and xold, are
calculated in parallel. Internally, norm is implemented using
foreach.

Line 6 is an example invariant for the PageRank code.
Each of pgr, M, xold, and Z should have the same number
of rows in each partition. By specifying this invariant, the
programmer constrains the runtime to adhere to this compat-
ibility between arrays even during automatic repartitioning.

Alternating Least Squares. The Alternating Least Squares
(ALS) algorithm with weighted regularization is known to
perform well for matrix problems that arise in recommen-
dation systems, as exemplified by the Netflix Prize compe-
tition [2]. Figure 7 shows the implementation of a parallel
version of the algorithm in Presto [37]. In Line 1 we declare
R, a sparse distributed array partitioned by columns. R is a
nu×nm array where nu and nm are the number of users and
number of movies respectively. The ratings are loaded from
the filesystem in line 2. In line 3 and 4, we create distributed
arrays to hold the feature matrices for users and movies, and
partition the arrays by columns. Each iteration of the ALS al-
gorithm consists of two steps: the first step updates the movie
feature matrix (M) based on the existing user feature matrix
(U), while the second step uses M to compute updates for U.
Lines 9–29 show how the first step of the algorithm is ex-
pressed in Presto.

The foreach loop updates each partition of M in paral-
lel. To update a particular partition, we pass the correspond-
ing partition of the ratings matrix R and the entire user fea-
ture matrix U (lines 9−12). One of the advantages of Presto
is that existing R functions can be used directly. For exam-
ple, in line 23 R’s linear solver minimizes the sum of the
squares of the differences between the known and the pre-
dicted ratings and computes the new values of M. Similarly,

#Load ratings into a sparse matrix
1 : R <- darray(dim=c(nu,nm), blocks=c(nu,ms), sparse=T)
2 : load(R, file="...")
Create feature matrices for users and movies
3 : M <- darray(dim=c(nf,nm), blocks=c(nf,ms), sparse=F)
4 : U <- darray(dim=c(nf,nu), blocks=c(nf,us), sparse=F)
5 : ...
6 : # Initialize the features
7 : ...
8 : repeat {

Update movie features based on user ratings
9 : foreach(i, 1: numsplits(M),
10 : function(ms = splits(M, i),
11 : us = splits(U),
12 : rs = splits(R, i)) {
13 : lamI <- diag(lambda, nrow=nf, ncol=nf)

Function to update single movie’s features
15 : update movie <- function(movieRatings) {
16 : # Get users who have rated this movie
17 : users <- which(movieRatings != 0)
18 : Um <- matrix(nrow=nf, data=us[, users])
19 :
20 : # Update by minimizing least squares
21 : vec <- Um %*% movieRatings[users]
22 : mat <- Um %*% t(Um) + (length(users)*lamI)
23 : m new <- solve(mat, vec)
24 : return(m new)
25 : }
26 : # Calculate updates for movies in this split
27 : ms <- apply(rs, 2, update movie)
28 : update(ms)
29 : })
30 : # Similarly update user features using movies
31 : ...
32 : # Check for convergence by computing RMSE
33 : rmse <- compute rmse(U, M)
34 : if (rmse < threshold) { break }
35 : }

Figure 7. ALS algorithm on a Netflix ratings dataset

in line 27 the familiar R construct apply is used to invoke
the function update movie on all the movies present in
the partition. Finally, in line 28 the new values of movie fea-
tures are made globally visible by invoking update.

5. System design
The Presto master acts as the control thread. The workers
execute the loop body in parallel whenever foreach loops
are encountered. The master keeps a symbol table which
maps variables to their physical location. This map is used
by workers to exchange information using pairwise commu-
nication. In this paper we describe only the main mecha-
nisms related to multi-core support, and optimizations for
sparsity and caching.

5.1 Versioning arrays
Presto uses versioning to ensure correctness when arrays are
shared across different machines. Each partition of a dis-
tributed array has a version. The version of a distributed ar-
ray is a concatenation of the versions of its partitions, similar
in spirit to vector clocks. Updates to array partitions create
a new version of the partition. By updating the version, con-
current readers of previous versions will not be affected by
the update. For example, the PageRank vector pgr in Fig-
ure 6 starts with version 〈0,0, ..,0〉. In the first iteration, ev-
ery task reads in one partition pgr with version 0. At the

Worker
DRAM

Shared data

R
instance

O hConnections

R
instance

R
instance

Other
workers

Connections
Network layer

Figure 8. Multiple R instances share data hosted in a worker.

R object

1 Header corruption
DataHeader

R instance R instance

write write corruption!

R instance R instance

R object

DataHeader

R instance R instance

gc() access error!
2 Dangling pointer

R instance R instance

Figure 9. Simply sharing R objects can lead to errors.

end of the task when update is called, a new partition with
version 1 is created. Hence, after the first iteration the dis-
tributed array’s new version becomes 〈1,1, ..,1〉. Presto uses
reference counting to garbage collect older versions of ar-
rays not used by any task.

5.2 Efficient multi-core support
Since R is not thread safe, a simple approach to utilize
multi-cores is to start multiple worker processes on the same
server. There are three major drawbacks: (1) on the server
multiple copies of the same array will be created, thus in-
hibiting scalability, (2) copying the data across processes,
using pipes or network, takes time, and (3) the network com-
munication increases as we increase the number of cores be-
ing utilized.

Instead, Presto allows a worker to encapsulate multiple
R processes that can communicate through shared mem-
ory with zero copying overhead (Figure 8). The key idea
in Presto is to efficiently initialize R objects by mapping
data using mmap or shared memory constructs. However,
there are some important safety challenges that need to be
addressed.

Issues with data sharing. Each R object consists of a
fixed-size header, and an array of data immediately follow-
ing the header. The header (among other things) has infor-
mation about the type and size of the corresponding data
part. Simply pointing an R variable to an external data source
leads to data corruption. As shown in Figure 9, if we were to
share an R object across different R instances two problems
can arise. First, both the instances may try to write instance
specific values to the object header. This conflict will lead
to header corruption. Second, R is a garbage-collected lan-
guage. If one of the instances garbage collects the object then
the other instance will be left with a dangling pointer.

page

Local R object data part
Local R
object
header

page boundary page boundary

R object
allocator

glibc malloc

Presto malloc

Local objects

Shared objects

Shared data

R’s virtual memory space

1

2

Allocate object

Map shared data

obj. start address

Figure 10. Shared object allocation in an R instance.

Safe data sharing. We solve the data sharing challenge by
entrusting each worker with management of data shared by
multiple R processes. We only share read-only data since
only one process may write to a partition during a loop iter-
ation and writes always create a new version of a partition.
Presto first allocates process local objects in each R instance
and then maps the shared data on the data part of the object.
Since the headers are local to each R instance, write conflicts
do not occur on the header.

There is another issue that has to be solved: the mmap call
locates data only to an address at a page boundary. However,
R’s internal allocator does not guarantee that the data part
of an object will start at a page boundary. To solve this
issue, Presto overrides the behavior of the internal allocator
of R. We use malloc hook to intercept R’s malloc() calls.
Whenever we want to allocate a shared R object we use our
custom malloc to return a set of pages rounded to the nearest
multiple of the page size. Once the object has been allocated
the shared data can be mapped using mmap.

Figure 10 shows that R objects are allocated through the
default malloc for local objects and through Presto’s malloc
function for shared objects. The shared objects consist of a
set of pages with the data part aligned to the page bound-
ary. The first page starts with an unused region because the
header is smaller than a full page.

When the objects are no longer needed, these spe-
cially allocated regions need to be unmapped. Presto uses
free hook to intercept the calls to the glibc free() func-
tion. Presto also maintains a list of objects that were spe-
cially allocated. The list contains the starting address and al-
location size of the shared objects. Whenever free is called,
the runtime checks if the object to be freed is present in the
list. If it is then munmap is called. Otherwise, the glibc free
function is called. Note that while the malloc hook is used
only when allocating shared R objects, the free hook is ac-
tive throughout the lifetime of the program, because we do
not know when R may garbage collect objects.

5.3 Dynamic partitioning for sparse data
While shared memory constructs help in reducing the net-
work overhead, the overall time taken for a distributed com-

putation also depends on the execution time. Partitioning a
sparse matrix into contiguous ranges of rows or columns
may lead to uneven distribution of nonzero elements and
cause a skew in task execution times. Moreover, the num-
ber of tasks in the system is tied to the number of partitions
which makes it difficult to effectively use additional work-
ers at runtime. Presto uses dynamic partitioning to mitigate
load imbalance, and to increase or decrease the amount of
parallelism in the program at runtime. One can determine
optimal partitions statically to solve load imbalance but it is
an expensive solution. Such partitions may not remain opti-
mal as data is updated and static partitioning does not adjust
to changes in the number of workers.

Presto uses two observations to dynamically adjust parti-
tions. First, since our target algorithms are iterative, we re-
fine the partitions based on the execution of the first few it-
erations. Second, by knowing the invariants for the program
we can re-partition data without affecting correctness.

The Presto runtime tracks both the number of elements in
a partition (ei) and the execution time of the tasks (ti). It uses
these metrics to decide when to repartition data to reduce
load imbalance. The runtime starts with an initial partition-
ing (generally user-specified), and in subsequent iterations
may either merge or sub-divide partitions to create new ones.
The aim of dynamic partitioning is to keep the partition sizes
and the execution time of each task close to the median [5].
The runtime tracks the median partition size (em) and task
execution time (tm). After each iteration, the runtime checks
if a partition has more (fewer) elements than the median
by a given constant (partition threshold e.g. ei/em ≥ δ) and
sub-divides (merges) them. In the PageRank program (Fig-
ure 6), after repartitioning the runtime simply invokes the
loop function (pgFunc) for a different number of partitions
and passes the corresponding data. No other changes are re-
quired. While our current implementation only uses parti-
tion sizes for repartitioning, we plan to explore other metrics
which combine partition sizes and execution times.

For dynamic partitioning, the programmer needs to spec-
ify the invariants and annotate functions as safe under repar-
titioning. For example, a function that assigns the first ele-
ment of each partition is unsafe. Such a function is closely
tied to each partition, and if we sub-divide an existing par-
tition then two cells will be updated instead of one. In our
applications, the only unsafe functions are related to initial-
ization such as setting A[i]=1 in breadth-first search.

5.4 Co-location, scheduling, and caching
Presto workers execute functions which generally require
multiple array partitions, including remote ones. Presto uses
three mechanisms to reduce communication: locality based
scheduling, partition co-location, and caching.

The Presto master schedules tasks on workers. The mas-
ter uses the symbol table to calculate the amount of re-
mote data copy required when assigning a task to a worker.
It then schedules tasks to minimize data movement. Parti-

tions that are accessed and modified in the same function
can be co-located on the same worker. As matrix compu-
tations are structured, in most cases co-locating different
array partitions simply requires placing the ith partition of
the corresponding arrays together. For example, in PageR-
ank, the ith partition of vectors pgr, M, and Z should be
co-located. Instead of another explicit placement directive,
Presto reuses information provided by the programmer in the
invariant function to determine which arrays are related
and attempts to put the corresponding partitions on same
workers. This strategy of co-location works well for our ap-
plications. In the future, we plan to consider work-stealing
schedulers [6, 28].

Presto automatically caches and reuses arrays whose ver-
sions have not changed. For example, in the PageRank code
Z is never modified. After the first iteration, workers always
reuse Z as its version never changes. The runtime simply
keeps the reference to partitions of Z alive and is informed
by the master when a new version is available. Due to auto-
matic caching, Presto does not need to provide explicit di-
rectives such as broadcast variables [36].

5.5 Fault tolerance
Presto uses primary-backup replication to withstand failures
of the master node. Only the meta-data information like the
symbol table, program execution state, and worker informa-
tion is replicated at the backup. The state of the master is
reliably updated at the backup before a statement of the pro-
gram is considered complete. R programs are generally a
couple of hundred lines of code, but most lines perform a
compute intensive task. The overhead of check-pointing the
master state after each statement is low compared to the time
spent to execute the statement.

We use existing techniques in literature for worker fault
tolerance. The master sends periodic heartbeat messages to
determine the progress of worker nodes. When workers fail
they are restarted and the corresponding functions are re-
executed. Like MapReduce and Dryad we assume that tasks
are deterministic, which removes checkpointing as data can
be recreated using task re-execution. The matrix computa-
tion focus of Presto simplifies worker fault-tolerance. Arrays
undergo coarse-grained transformations and hence it is suf-
ficient to just store the transformations reliably instead of
the actual content of the arrays. Therefore, Presto recursively
recreates the corresponding versions of the data after a fail-
ure. The information on how to recreate the input is stored
in a table which keeps track of what input data versions and
functions result in specific output versions. In practice, ar-
rays should periodically be made durable for faster recovery.

6. Implementation
Presto is implemented as an R add-on package and provides
support for the new language features described in Section 3.
Dense and sparse matrices are stored using R’s Matrix li-

Application Algorithm R Presto
Characteristic LOC LOC

PageRank Eigenvector calculation 20 41
Vertex centrality Graph Algorithm 40 128
Edge centrality Graph Algorithm 48 132
SSSP Graph Algorithm 30 62
Netflix recom-
mender [37]

Matrix decomposition 78 130

Triangle count [18] Top-k eigenvalues 65 121
k-Means clustering Dense linear algebra 35 71

Input data Size Application
Twitter V=54M, E=2B Triangle counting
Twitter-S V=41M, E=1.4B PageRank, Centrality, SSSP
ClueWeb-S V=100M, E=1.2B PageRank
ClueWeb V=2B, E=6B PageRank
Netflix V=480K, E=100M Collaborative Filtering

Table 2. Presto applications and their input data.

brary. Our current prototype has native support for a limited
set of distributed array operators such as load, save, matrix
multiplication, addition, and so on. Other operators and al-
gorithms can be written by programmers using functions in-
side foreach. The implementation of both Presto master
and workers use ZeroMQ servers [16]. Control messages,
like starting the loop body in a worker or calls to garbage
collect arrays, are serialized and sent using Google’s pro-
tocol buffers. Transfers of arrays between workers are im-
plemented directly using BSD sockets. The Presto package
contains 800 lines of R code and 10,000 lines of C++ code.

7. Evaluation
Programmers can express various algorithms in Presto that
are difficult or inefficient to implement in current systems.
Table 2 lists seven applications that we implement in Presto.
These applications span graph algorithms, matrix decompo-
sition, and dense linear algebra. The sequential version of
each of these algorithms can be written in fewer than 80 lines
in R. In Presto, the distributed versions of the same applica-
tions take at most 135 lines. Therefore, only a modest effort
is required to convert these sequential algorithms to run in
Presto.

In this paper we focus on PageRank, vertex central-
ity, single-source shortest path (SSSP), triangle counting,
and collaborative filtering. We compare the performance of
Presto to Spark [36], which is a recent in-memory system for
cluster computing, and Hadoop-mem, which is Hadoop-0.20
but run entirely on ramfs to avoid disk latencies. Spark per-
forms in-memory computations, caches data, and is known
to be 20× faster than Hadoop on certain applications. In all
the experiments we disregard the initial time spent in load-
ing data from disk. Subsequent references to Hadoop in our
experiments refer to Hadoop-mem.

Our evaluation shows that:
• Presto is the first R extension to efficiently leverage

multi-cores by reducing memory and network overheads.
• Presto can handle load imbalance due to sparsity by dy-

namic partitioning.

• Presto is much faster than current systems. On PageRank
Presto is 40× faster than Hadoop, 15× faster than Spark,
and comparable to MPI implementations.

Our experiments use a cluster of 50 HP SL390 servers with
Ubuntu 11.04. Each server has two 2.67GHz (12-core) Intel
Xeon X5650 processors, 96GB of RAM, 120GB SSD, and
the servers are connected with full bisection bandwidth on
a 10Gbps network. Presto, Hadoop, and Spark are run with
the same number of workers or mappers. Hadoop algorithms
are part of Apache Mahout [1].

7.1 Application description
Since we have discussed PageRank and SSSP in Section 2,
we briefly describe centrality measure and triangle counting
algorithms.

Centrality. Vertex or edge betweenness centrality deter-
mines the importance of a vertex or edge in a network (e.g.,
social graph) based on the number of shortest paths that in-
clude the vertex or edge. We implement Brandes’ algorithm
for unweighted graphs [7]. Each betweenness algorithm con-
sists of two phases: first the shortest paths from each vertex
to all other vertices are determined (using BFS) and then
these paths are used to update the centrality measure using
scalar transformations. In our experiments we show the re-
sults of starting from a vertex whose BFS has 13 levels.

Triangle counting. In large social network graphs, anoma-
lous behavior can be detected by counting the number of tri-
angles that every vertex belongs to [18]. Since a direct count
is expensive for large graphs, the number of triangles is ap-
proximated using the top eigenvalues [33]. We implement
the iterative Lanzcos algorithm with selective reorthogonal-
ization to find the top-k eigenvalues of a matrix. In each
iteration of the algorithm, the sparse input matrix is mul-
tiplied by a dense vector representing the Lanczos vector
from the previous iteration. The result is then orthogonal-
ized to form a new basis vector and the eigenvalues for the
input matrix can be computed using the last k orthogonalized
Lanczos vectors. To handle numerical inaccuracies, the al-
gorithm uses selective-reorthogonalization, where basis vec-
tors are selectively chosen for reorthogonalization. Not every
step in this algorithm needs to be distributed across the clus-
ter, and using Presto, we can effectively mix parallel com-
putation with computation on the master. For example, the
matrix-vector multiplication is distributed across machines,
but finding the eigenvalues from the basis vectors is per-
formed on the master using existing R functions.

7.2 Advantages of multi-core support
With Presto’s multi-core support, the memory footprint and
communication overhead are lesser than when using a sin-
gle R-instance per core. In this section we vary the number
of cores and show the time spent during computation, com-
posite creation (constructing a distributed array from its par-
titions), and data transfer. We use Presto-NoMC to denote

Pagerank

0

5

10

15

20

25

cores

T
im

e
pe

r
ite

ra
tio

n
(s

ec
)

Composite creation
Transfers
Compute

2 4 6 8

With mc
support

No mc
support

With mc
support

No mc
support

With mc
support

No mc
support With mc

support

No mc
support

Input data Vertices #Cores Additional mem-
ory used (no MC)

Twitter-S 41M 8 2.1G
ClueWeb-S 100M 8 5.3G

Figure 11. Multi-core (MC) support lowers total execution time
and memory usage on a single server. Lower is better.

the system which does not have multi-core support and has
single core workers.

Single server: low memory overhead. The first advantage
of multi-core support is that there is no need to copy data be-
tween two R instances that are running on the same server.
Unlike other R packages, Presto can safely share data across
processes through shared memory. Figure 11 shows the av-
erage iteration time of PageRank on the 1.5B edge Twitter
graph when executed on a single server. The data transferred
in this algorithm is the PageRank vector. In Presto there is
no transfer overhead as all the R instances are on the same
server and can share data. At 8 cores Presto-NoMC spends
7% of the time in data transfers and takes 5% longer to
complete than Presto. The difference in execution time is
not much as communication over localhost is very ef-
ficient even with multiple workers per server. However, the
real win for multi-core support in a single server is the re-
duction in memory footprint. The table in Figure 11 shows
that at 8 cores the redundant copies of the PageRank vec-
tor in Presto-NoMC increase the memory footprint by 2 GB,
which is 10% of the total memory usage. For the Clueweb-S
dataset Presto-NoMC uses up to 5.3 GB of extra memory.

Multiple servers: low communication overhead. The sec-
ond advantage of Presto is that in algorithms with all-to-all
communication (broadcast), the amount of data transferred
is proportional only to the number of servers, not the number
of R instances. Figure 12 shows the significance of this im-
provement for experiments on the Twitter-S graph. In these
experiments we fix the number of servers to 5 and vary the
total number of cores. Figure 12(a) shows that the network
transfer overhead for Presto-NoMC is 2.1× to 9.7× higher
than Presto as we vary the total cores from 10 to 40. Worse
still, at 40 cores the PageRank code on Presto-NoMC not
only stops scaling rather it takes more time to complete than

Pagerank

0

2

4

6

8

cores

T
im

e
pe

r
ite

ra
tio

n
(s

ec
)

Composite
creation

Transfers Compute

10 20 40

With mc
support

No mc
support

With mc
support

No mc
support

With mc
support

No mc
support

Vertex centrality

0

100

200

300

cores

T
im

e
(s

ec
)

Composite creation
Transfers
Compute

10 20 40

With mc
support

No mc
support

With mc
support

No mc
support

With mc
support

No mc
support

Figure 12. Multi-core support reduces communication overhead
in (a) PageRank (b) Centrality. Lower is better.

with 20 cores due to higher transfer overhead. In compari-
son, Presto can complete an iteration of PageRank in about
3 seconds, though there is only marginal benefit of adding
more than 20 cores for this dataset. Figure 12(b) shows
similar behavior for the centrality measure algorithm. Us-
ing Presto the execution time for a single vertex decreases
from 244 seconds at 10 cores to 116 seconds at 40 cores.
In comparison, with no multi-core support Presto-NoMC in-
curs very high transfer overhead at 40 cores and the execu-
tion time is worse by 43% and takes 168 seconds.

7.3 Advantages of dynamic partitioning
While multi-core support lowers the memory and communi-
cation overhead, dynamic repartitioning of matrices reduces
imbalance due to data sparsity. We evaluate the effective-
ness of dynamic partitioning using two algorithms: first by
running PageRank on the ClueWeb graph with 2B vertices
and 6B edges and secondly by using the Lanczos method to
find top-k eigenvalues on the Twitter graph with 54M ver-
tices and 2B edges.

7.3.1 PageRank
We first look at the PageRank experiments which were run
using 25 servers each with 8 R instances. Even though we
use 200 cores in this experiment, we initially partition the
graph into 1000 parts. This allows the scheduler to intel-
ligently overlap computations and attempts to improve the
balance. In this section we show that dynamic repartitioning
improves performance even in such a case.

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

S
p

li
t

si
ze

 (
G

B
)

Iteration count

Figure 13. We trace the repartitioning seen in the initial four
matrix blocks. Black boxes represents heavy blocks chosen for
repartitioning and gray boxes indicate newly created blocks.

10

15

20

25

30

35

P
ar

ti
ti

o
n

 S
iz

e
 G

B

0

50

100

150

200

250

300

350

400

2000

3000

4000

5000

6000

7000

8000

0 5 10 15 20 C
u

m
u

la
ti

v
e

p
a

rt
it

io
n

in
g

 t
im

e
(s

)

T
im

e
to

 c
o

n
v

er
g

en
ce

 (
s)

Number of Repartitions

Convergence Time
Time spent partitioning

Figure 14. Convergence time decreases with repartitioning. The
cumulative partitioning time is the time spent in repartitioning.

Effects of repeated partitioning. Figure 13 shows how the
repartitioning algorithm proceeds on the ClueWeb dataset. A
black colored partition indicates that the particular block was
heavy and chosen for repartitioning. The newly created array
partitions are shown in gray. In Figure 13 the first block (also
the densest) is continuously repartitioned from iteration 1 to
iteration 7 and then again at iterations 11, 13, 15, and 20.
Overall, repartitioning reduces the size of this partition from
23GB to 2.2GB.

However there is a cost associated with repartitioning. In
our current implementation, PageRank iterations are paused
while the graph is being repartitioned. To quantify the cost-
benefit trade-off, we estimate the total running time of
PageRank as we increase the number of repartitions. Assum-
ing that we need to perform 50 iterations for convergence,
Figure 14 shows the estimated time to converge as we vary
the number of repartitions. We calculate the total execution
time after a certain number of re-partitions by assuming no
more repartitions will occur. For example, at x-axis value
of 5, Presto has performed five repartitions and the conver-
gence time is 5,126 seconds if no further repartitions occur.
The convergence time reduces by 32% (40 minutes) after the
first four repartitions, but the benefits diminish beyond that.
Note that the cumulative time spent in partitioning is a small
fraction of the total execution time (between 0.3% and 3%).

Benefits of reducing imbalance. Reducing the imbalance
among partitions helps decrease the PageRank iteration
time. Figure 15 shows the time taken by each worker dur-

0 50 100 150

1

4

7

10

13

16

19

22

25

Time (seconds)

W
o

rk
er

s

Fetch

Execute

0 50 100 150

1

4

7

10

13

16

19

22

25

Time (seconds)

W
o

rk
er

s

Fetch

Execute

Figure 15. Per worker execution time for PageRank (a) before
repartitioning (b) after four repartitions. Shorter bar is better.

0

500

1000

1500

2000

2500

3000

3500

0 5 10 15 20

T
im

e
(s

ec
o

n
d

s)

Iteration Count

No Repartitioning

With Repartitioning

Figure 16. Comparison of overall execution time with and with-
out repartitioning. Lower is better.

ing one iteration of PageRank. The horizontal bars depict
what part of the total time was spent in transferring data ver-
sus the time taken to perform the computation. Since there
is a barrier at the end of an iteration, the iteration time is de-
termined by the maximum execution time among the work-
ers. Figure 15(a) shows that the slowest worker takes 147
seconds initially but after four repartitions (Figure 15(b)) it
finishes in 95 seconds thus reducing the per-iteration time.

Reducing imbalance is especially important for iterative
algorithms as the overall execution time can be significantly
high due to the skew among workers. As seen in Figure 16,
re-partitioning reduces the completion time by around 822
seconds (13.7 minutes) when the PageRank algorithm is run
for 20 iterations.

7.3.2 Lanczos calculation
We ran the Lanczos algorithm on the Twitter graph using
20 servers. As the dataset was relatively smaller (2B edges),
we divide the graph into 20 partitions. Each server uses as
many R instances as the number of partitions present on the
server. Similar to the PageRank experiments, we study the
benefits of dynamic partitioning by looking at the imbalance
among different workers while executing a single iteration of

0 5 10 15 20

1

4

7

10

13

16

19

Time (seconds)

W
o
rk

er
s

Fetch

Execute

0 5 10 15 20

1

4

7

10

13

16

19

Time (seconds)

W
o
rk

er
s

Fetch

Execute

Figure 17. Per worker execution time for Lanczos algorithm on
Twitter dataset (a) before repartitioning (b) after eight repartitions.
Shorter bar is better.

the Lanczos algorithm. The time taken in a single iteration
of the Lanczos algorithm is dominated by the sparse matrix-
dense vector multiplication. The execution time for this step
grows linearly as the number of non-zero entries in the
matrix increase. Figure 17 shows the time taken by each
worker during one iteration with and without repartitioning.
We observe that the Twitter dataset contains one partition
which is much larger than the others, and that repartitioning
reduces the per iteration execution time from 19s to 7s.

7.4 Scalability
We evaluate the scalability of Presto using two algorithms:
collaborative filtering [29] (CF) and single-source shortest
path (SSSP). In the following set of experiments we use 8
cores per server and measure the time taken as we increase
the number of cores. In our first experiment, we load the Net-
flix ratings dataset [2] as a matrix (R) and run two steps of
a collaborative filtering algorithm. The first step computes
Rt ×R, and the second step multiplies R with the output of
the first step computing (R×Rt)×R. Figure 18 shows the
time taken by each step of the algorithm as we increase the
number of cores. Presto scales quite well in this case with a
speedup of 4.89× (755s to 154s) while using 6×more cores
(8 to 48). These numbers also indicate that Presto’s perfor-
mance is competitive to published results for MadLINQ [29]
which takes 840s on 48 machines for the same algorithm. As
the performance numbers for MadLINQ are from a different
hardware configuration, instead of direct comparison, our re-
sults only indicate that Presto can match the performance
of existing matrix-based systems. We also tried to compare
Presto’s performance to a vanilla-R implementation of col-
laborative filtering. While vanilla-R took 385s to perform
Rt×R, the second multiplication (R×Rt×R) failed to com-
plete as the intermediate data did not fit in the server’s 96GB

Netflix Collaborative Filtering

0

200

400

600

800

1000

cores

To
ta

l t
im

e
(s

ec
) Load t(R)xR Rxt(R)xR

8 16 24 32 40 48

Figure 18. Running time for collaborative filtering on the Netflix
dataset as we increase the number of cores.

Twitter

0
20
40
60
80

100
120
140

cores

To
ta

l t
im

e
(s

ec
) Composite creation

Transfers
Compute

16 32 48 64 80 96 112 128

Figure 19. SSSP scalability on the Twitter-S dataset.

memory. This example highlights the need for distributing
the computation across more servers.

Figure 19 uses SSSP on the 1.5B edge Twitter-S dataset
to show the performance scaling of Presto. While Presto can
scale to hundreds of cores, and the execution time continues
to decrease, in this case the scaling factor is less than the
ideal. For example, when increasing the cores from 16 to
128 (8×), the execution time drops from 125 seconds to
41 seconds (3×). The less than ideal scaling is a result of
the communication overhead involved in SSSP, which is
proportional to the number of vertices in the graph. In future
we plan to rewrite the SSSP algorithm to use block partitions
of the matrix (instead of row partitions) so that no single R
instance requires the full shortest path vector.

7.5 Comparison with MPI, Spark, and Hadoop
PageRank experiments on the 1.2B edge ClueWeb-S graph
shows that Presto is more than 40× faster than Hadoop, more
than 15× faster than Spark, and can outperform simple MPI
implementations.

MPI. We implemented PageRank using sparse matrix and
vector multiplication in MPI. The communication phase in
the code uses MPI Allgather to gather the partitions of
the PageRank vector from processes and distribute it to all.
Figure 20(a) shows that Presto outperforms the MPI code

MPI Pagerank

0
2
4
6
8

10
12
14

cores

T
im

e
pe

r
ite

ra
tio

n
(s

ec
)

Transfers Compute

8 16 32 64

Presto

MPI

Presto

MPI

Presto

MPI

Presto

MPI

Spark PageRank

1
2
5

10
20
50

100
200
500

cores

T
im

e
pe

r
ite

ra
tio

n
(s

ec
)

Transfers Compute

8 16 32 64

Presto
Presto Presto Presto

Spark
Spark

Spark
Spark

Hadoop PageRank

1
2
5

10
20
50

100
200
500

cores

T
im

e
pe

r
ite

ra
tio

n
(s

ec
)

8 16 32 64

Presto
Presto Presto Presto

Hadoop−mem
Hadoop−mem

Hadoop−mem Hadoop−mem

Figure 20. Performance advantage over (a) MPI (b) Spark and (c) Hadoop. Lower is better.

sometimes by 2×. There are two reasons for this perfor-
mance difference. First, the MPI code does not handle com-
pute imbalance. For example, at 64 cores one MPI process
finishes in just 0.6 seconds while another process takes 4.4
seconds. Since processes wait for each other before the next
iteration, the compute time is determined by the slowest pro-
cess. Second, while MPI’s network overhead is very low at
8 processes, it increases with the increase in the number of
cores. However, for Presto the network overhead is propor-
tional to the number of multi-core servers used, and hence
does not increase at the same rate. With more effort one can
implement multi-threaded programs executing at each MPI
process. Such an implementation will reduce the network
overhead but not the compute imbalance.

Spark. We use Spark’s PageRank implementation [36] to
compare its performance with Presto. Spark takes about
64.185 seconds per-iteration with 64 cores. The per-iteration
time includes a map phase which computes the rank of ver-
tices and then propagates them to reducers that sum the val-
ues. We found that the first phase was mostly compute inten-
sive and took around 44.3 seconds while the second phase
involved shuffling data across the network and took 19.77
seconds. At fewer cores, the compute time is as high as
267.26 seconds with 8 cores. The main reason why Spark is
at least 15× slower than Presto is because it generates a large
amount of intermediate data and hence spends more time
than Presto during execution and network transfers. Note
that the Y-axis in the plot is log scale.

Hadoop. Figure 20(c) compares the performance of Ma-
hout’s PageRank implementation to that of Presto. Since
mappers and reducers overlap during the Hadoop compu-
tation, we depict only the overall execution time. Each it-
eration of Mahout’s PageRank takes 161 seconds with 64
mappers. In comparison each iteration of PageRank in Presto
takes less than 4 seconds. A portion of the 40× performance
difference is due to the use of Java. However unlike Presto,
MapReduce has the additional overhead of the sort phase
and the time spent in deserialization. Presto preserves the
matrix structure in between operations, and also eliminates
the need to sort data between iterations.

Existing R packages. To obtain a baseline for R-
implementations, we measured the time taken for a single
PageRank iteration using vanilla-R. R takes 30 seconds per
iteration in our setup and was faster than Presto which takes
58 seconds when using a single-core. We found that Presto
was slower due to the overheads associated with mapping
and processing 128 partitions. When the dataset was merged
to form a single partition (similar to vanilla-R case) Presto’s
performance matches that of vanilla-R. However, partition-
ing the dataset is helpful when using multiple cores. Presto
running on 8 cores takes less than 10 seconds for each
PageRank iteration.

Unfortunately, existing parallel R packages only allow
side-effect free functions to be executed in parallel. It means
that R objects in workers are deleted across iterations. Thus,
to run more than one iteration of parallel PageRank the
whole graph needs to be reloaded in the next iteration mak-
ing the measurements flawed. Instead, we ran a microbench-
mark with 8 cores where the sparse matrices were not ex-
changed and only a dense vector of 100M entries was ex-
changed after each round (similar to the PageRank vector).
By efficiently using multi-cores and worker-worker commu-
nication Presto is more than 4× faster than doMC, a parallel-
R package.

8. Discussion
Presto makes it easy for users to algorithmically explore
large datasets. It is a step towards a platform on which
high level libraries can be implemented. We believe that
Presto packages that implement scalable machine learning
and graph algorithms will help the large R user base reap the
benefits of distributed computing.

However, certain challenges remain both in the current
prototype and in the applicability of R to all problems. First,
the current prototype is limited by main memory: datasets
need to fit the aggregate memory of the cluster. While most
pre-processed graphs are in the low terabyte size range, for
larger datasets it may be economical to use an out-of-core
system. We are working on adding out-of-core support for
distributed arrays in future versions of Presto.

Second, Presto assumes that there is one writer per parti-
tion during a single foreach execution. Instead of using locks
to synchronize concurrent accesses, in Presto multiple tasks
explicitly write to their partitions and then combine or re-
duce the data in another foreach loop. For example, in
k-means the centers are calculated and stored in separate ar-
rays by each task and then summed up in another loop. This
programming model retains the simplicity of R and we have
found it sufficient for all the algorithms implemented so far.
This model may not be appropriate for implementing irreg-
ular applications like Delaunay mesh refinement that require
fine grained synchronization [20].

When applied to different datasets, array-based program-
ming may require additional pre-processing. For example,
Presto is based on R and is very efficient at processing ar-
rays. However, graphs may have attributes attached to each
vertex. An algorithm which uses these attributes (e.g., search
shortest path with attribute pattern) may incur the additional
overhead of referencing attributes stored in R vectors sepa-
rate from the adjacency matrix. In general, real world data
is semi-structured and pre-processing may be required to
extract relevant fields and convert them into arrays. Unlike
the Hadoop ecosystem which has both storage (HDFS) and
computation (MapReduce), Presto only has a efficient com-
putation layer. In our experience, it’s easier to load data into
Presto if the underlying store has tables (databases, HBase,
etc.) and supports extraction mechanisms (e.g., SQL).

9. Related Work
Dataflow models. MapReduce and Dryad are popular
dataflow systems for parallel data processing [12, 17]. To
increase programmer productivity high-level programming
models–DryadLINQ [35] and Pig [27]—are used on top of
MapReduce and Dryad. These systems scale to hundreds
of machines. However, they are best suited for batch pro-
cessing, and because of their restrictive programming and
communication interface make it difficult to implement ma-
trix operations. Recent improvements, such as HaLoop [9],
Twister [13], and Spark [36], do not change the program-
ming model but improve iterative performance by caching
data or using lineage for efficient fault tolerance. CIEL in-
creases the expressibility of programs by allowing new data-
dependent tasks during job execution [26]. However, none
of these systems can efficiently express matrix operations.

Piccolo runs parallel applications that can share state us-
ing distributed, in-memory, key-value tables [28]. Compared
to MapReduce, Piccolo is better suited for expressing ma-
trix operations. However, Piccolo’s key-value interface opti-
mizes for low level reads and writes to keys instead of struc-
tured vector processing. Unlike Presto, Piccolo does not han-
dle sparse datasets and the resulting load imbalance.

Pregel and GraphLab support bulk synchronous process-
ing (BSP [34]) to execute parallel programs [23, 24]. With
BSP, each vertex processes its local data and communicates

with other vertices using messages. Both systems require an
application to be (re)written in the BSP model. Presto shows
that the widely used R system can be extended to give sim-
ilar performance without requiring any programming model
changes. Presto’s execution time of PageRank on the Twit-
ter graph (Figure 11, 8 cores, 7.3s) compares favorably to
published results of PowerGraph (512 cores, 3.6s) [14].

Matrix computations. Ricardo [11] and HAMA [30] use
MapReduce to implement matrix operations. While they
solve the problem of scaling to large datasets, the imple-
mentation is inefficient due to the restrictive MapReduce in-
terface. In light of this observation, MadLINQ provides a
platform on Dryad specifically for matrix computations [29].
Similar to Presto, MadLINQ reuses existing matrix libraries
on local partitions, is fault tolerant and distributed. While
MadLINQ’s techniques are efficient for dense matrices, their
system does not efficiently handle sparse datasets, or support
dynamic partitioning to overcome load imbalance.

Popular high-performance computing (HPC) systems like
ScaLAPACK do not support general sparse matrices. The
few systems that do support sparse matrices (SLEPc [15],
ARPACK [21]) typically provide only eigensolvers. To write
a new algorithm, such as the betweenness centrality, one
would have to implement it with their low level interfaces
including FORTRAN code. None of these systems have load
balancing techniques or fault tolerance. MATLAB’s parallel
computing toolbox and existing efforts in parallelizing R can
run single programs on multiple data. Unlike these systems,
Presto can safely share data across multiple processes, has
fewer redundant copies of data, and can mitigate load imbal-
ance due to sparse datasets.

Parallel languages. HPC applications use explicit mes-
sage passing models like MPI. MPI programmers have the
flexibility to optimize the messaging layer but are difficult
to write and maintain. New parallel programming languages
like X10 [10] and Fortress [31] use the partitioned global
address space model (PGAS). These languages are not op-
timized for matrix operations and the programmer has to
deal with low level primitives like synchronization and ex-
plicit locations. For example, in X10 programmers specify
on what processors computations should occur using Place.
None of these languages are as popular as R, and users will
have to rewrite hundreds of statistical algorithms that are al-
ready present in R.

10. Conclusion
Presto advocates the use of sparse matrix operations to sim-
plify the implementation of machine learning and graph al-
gorithms in a cluster. Presto uses distributed arrays for struc-
tured processing, efficiently uses multi-cores, and dynami-
cally partitions data to reduce load imbalance. Our experi-
ence shows that Presto is a flexible computation model that
can be used to implement a variety of complex algorithms.

Acknowledgments: We thank the anonymous reviewers
and our shepherd, Jean-Philippe Martin, for their valuable
feedback. Aurojit Panda and Evan Sparks suggested im-
provements to earlier drafts of this paper. Finally, we thank
John Byrne, Kyungyong Lee, Partha Ranganathan, and Van-
ish Talwar for assisting us in developing Presto.

References
[1] Apache mahout. http://mahout.apache.org.

[2] Netflix prize. http://www.netflixprize.com/.

[3] The R project for statistical computing. http://www.r-
project.org.

[4] Stanford network analysis package. http://snap.
stanford.edu/snap.

[5] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica,
Y. Lu, B. Saha, and E. Harris. Reining in the outliers in map-
reduce clusters using Mantri. In In OSDI’10, Vancouver, BC,
Canada, 2010.

[6] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded
computations by work stealing. In SFCS ’94, pages 356–368,
Washington, DC, USA, 1994.

[7] U. Brandes. A faster algorithm for betweenness centrality.
Journal of Mathematical Sociology, 25:163–177, 2001.

[8] S. Brin and L. Page. The anatomy of a large-scale hypertextual
Web search engine. In WWW7, pages 107–117, 1998.

[9] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst. HaLoop:
Efficient iterative data processing on large clusters. Proc.
VLDB Endow., 3:285–296, September 2010.

[10] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: An object-
oriented approach to non-uniform cluster computing. In OOP-
SLA’05, pages 519–538, 2005.

[11] S. Das, Y. Sismanis, K. S. Beyer, R. Gemulla, P. J. Haas,
and J. McPherson. Ricardo: Integrating R and Hadoop. In
SIGMOD Conference’10, pages 987–998, 2010.

[12] J. Dean and S. Ghemawat. MapReduce: Simplified data pro-
cessing on large clusters. Commun. ACM, 51(1), 2008.

[13] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae,
J. Qiu, and G. Fox. Twister: A runtime for iterative MapRe-
duce. In HPDC ’10, pages 810–818, 2010.

[14] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin.
PowerGraph: Distributed Graph-Parallel Computation on Nat-
ural Graphs. In OSDI’12, Hollywood, CA, October 2012.

[15] V. Hernandez, J. E. Roman, and V. Vidal. Slepc: A scalable
and flexible toolkit for the solution of eigenvalue problems.
ACM Trans. Math. Softw., 31(3):351–362, Sept. 2005.

[16] P. Hintjens. ZeroMQ: The Guide, 2010.

[17] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:
Distributed data-parallel programs from sequential building
blocks. In EuroSys ’07, pages 59–72, 2007.

[18] U. Kang, B. Meeder, and C. Faloutsos. Spectral Analysis
for Billion-Scale Graphs: Discoveries and Implementation. In
PAKDD (2), pages 13–25, 2011.

[19] J. Kepner and J. Gilbert. Graph Algorithms in the Language of
Linear Algebra. Fundamentals of Algorithms. SIAM, 2011.

[20] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan,
K. Bala, and L. P. Chew. Optimistic parallelism requires ab-
stractions. In PLDI ’07, pages 211–222.

[21] R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK users’
guide - solution of large-scale eigenvalue problems with im-
plicitly restarted Arnoldi methods. Software, environments,
tools. SIAM, 1998.

[22] D. Loveman. High performance Fortran. IEEE Parallel &
Distributed Technology: Systems & Applications, 1(1):25–42,
1993.

[23] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and
J. M. Hellerstein. GraphLab: A New Framework for Parallel
Machine Learning. CoRR, pages 1–1, 2010.

[24] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: A system for large-scale
graph processing. In SIGMOD ’10, pages 135–146, 2010.

[25] Q. E. McCallum and S. Weston. Parallel R. O’Reilly Media,
Oct. 2011.

[26] D. G. Murray and S. Hand. CIEL: A universal execution
engine for distributed data-flow computing. In NSDI ’11,
Boston, MA, USA, 2011.

[27] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins.
Pig latin: A not-so-foreign language for data processing. In
SIGMOD’08, pages 1099–1110, 2008.

[28] R. Power and J. Li. Piccolo: Building fast, distributed pro-
grams with partitioned tables. In OSDI ’10, Vancouver, BC,
Canada, 2010. USENIX Association.

[29] Z. Qian, X. Chen, N. Kang, M. Chen, Y. Yu, T. Moscibroda,
and Z. Zhang. MadLINQ: large-scale distributed matrix com-
putation for the cloud. In EuroSys ’12, pages 197–210, 2012.

[30] S. Seo, E. J. Yoon, J. Kim, S. Jin, J.-S. Kim, and S. Maeng.
Hama: An efficient matrix computation with the mapreduce
framework. In In CLOUDCOM’10, pages 721–726.

[31] G. L. Steele, Jr. Parallel programming and code selection in
fortress. In PPoPP ’06, pages 1–1, 2006.

[32] G. Strang. Introduction to Linear Algebra, Third Edition.
Wellesley Cambridge Pr, Mar. 2003.

[33] C. E. Tsourakakis. Fast counting of triangles in large real net-
works without counting: Algorithms and laws. In ICDM’08,
pages 608–617. IEEE, 2008.

[34] L. G. Valiant. A bridging model for parallel computation.
Commun. ACM, 33:103–111, August 1990.

[35] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K.
Gunda, and J. Currey. DryadLINQ: A system for general-
purpose distributed data-parallel computing using a high-level
language. In OSDI ’08, pages 1–14, 2008.

[36] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. Mc-
Cauley, M. J. Franklin, S. Shenker, and I. Stoica. Resilient
distributed datasets: a fault-tolerant abstraction for in-memory
cluster computing. In NSDI’12, San Jose, CA, 2012.

[37] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan. Large-Scale
Parallel Collaborative Filtering for the Netflix Prize. In AAIM
’08, pages 337–348, Shanghai, China, 2008.

http://mahout.apache.org
http://www.netflixprize.com/
http://www.r-project.org
http://www.r-project.org
http://snap.stanford.edu/snap
http://snap.stanford.edu/snap

	A matrix-based approach
	Towards an efficient distributed R
	Limitations of current data-parallel approaches
	Our Contribution

	Background
	R: An array-based environment

	Programming model
	Distributed arrays
	Distributed parallelism
	Repartition and invariants

	Applications
	System design
	Versioning arrays
	Efficient multi-core support
	Dynamic partitioning for sparse data
	Co-location, scheduling, and caching
	Fault tolerance

	Implementation
	Evaluation
	Application description
	Advantages of multi-core support
	Advantages of dynamic partitioning
	PageRank
	Lanczos calculation

	Scalability
	Comparison with MPI, Spark, and Hadoop

	Discussion
	Related Work
	Conclusion

