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microtubule disruption, and inhibited anterograde and retro-

grade trafficking. In brain sections from AD patients and the 

5XFAD transgenic mouse model of amyloid pathology, dys-

trophic neurite halos with BACE1 elevation around amyloid 

plaques exhibited aberrant tubulin accumulations or voids. 

At the ultrastructural level, peri-plaque dystrophies were 

strikingly devoid of microtubules and replete with multi-

lamellar vesicles resembling autophagic intermediates. Pro-

teins of the microtubule motors, kinesin and dynein, and 

other neuronal proteins were aberrantly localized in peri-

plaque dystrophies. Inactive pro-cathepsin D also accumu-

lated in peri-plaque dystrophies, indicating reduced lyso-

somal function. Most importantly, BACE1 accumulation in 

peri-plaque dystrophies caused increased BACE1 cleavage 

of APP and Aβ generation. Our study supports the hypoth-

esis that Aβ induces microtubule disruption in presynaptic 

dystrophic neurites that surround plaques, thus impairing 

axonal transport and leading to accumulation of BACE1 and 

exacerbation of amyloid pathology in AD.

Keywords Alzheimer’s disease · Amyloid · Aβ · BACE1 · 
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Introduction

The β-amyloid (Aβ) peptide, the major component of 

amyloid plaques, has a crucial early role in Alzheimer’s 

disease (AD) pathogenesis [58]. The membrane aspartic 

protease β-site amyloid precursor protein (APP) cleav-

ing enzyme 1 (BACE1) is the major β-secretase enzyme 

that initiates the production of Aβ from APP [20, 54, 66, 

79]. Mutations in APP at the BACE1 cleavage site cause 

(K670N/M671L [38], A673V [8]) or prevent (A673T 

Abstract Alzheimer’s disease (AD) is characterized by 

amyloid plaques composed of the β-amyloid (Aβ) peptide 

surrounded by swollen presynaptic dystrophic neurites con-

sisting of dysfunctional axons and terminals that accumu-

late the β-site amyloid precursor protein (APP) cleaving 

enzyme (BACE1) required for Aβ generation. The cellular 

and molecular mechanisms that govern presynaptic dys-

trophic neurite formation are unclear, and elucidating these 

processes may lead to novel AD therapeutic strategies. Pre-

vious studies suggest Aβ may disrupt microtubules, which 

we hypothesize have a critical role in the development of 

presynaptic dystrophies. To investigate this further, here 

we have assessed the effects of Aβ, particularly neurotoxic 

Aβ42, on microtubules during the formation of presynaptic 

dystrophic neurites in vitro and in vivo. Live-cell imaging 

of primary neurons revealed that exposure to Aβ42 oligom-

ers caused varicose and beaded neurites with extensive 
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[24]) AD by increasing or decreasing BACE1 cleavage of 

APP and Aβ production, respectively. Also, a mutation at 

the β′-site (E682K [87]) causes AD by shifting BACE1 

cleavage toward β-site processing of APP and Aβ genera-

tion. These mutations and other evidence strongly sup-

port therapeutic BACE1 inhibition for AD [67]. BACE1 

inhibitor drugs are in clinical trials; however, the safety 

and efficacy of these drugs are unknown. BACE1 null 

mice have multiple neurological phenotypes indicating 

BACE1 inhibitor drugs could have mechanism-based tox-

icities [67]. BACE1 levels are elevated in AD brain [14, 

18, 31, 80, 86] potentially necessitating high doses of 

BACE1 inhibitor drugs, thus increasing the risk of side 

effects. Lowering/normalizing BACE1 levels in AD brain 

rather than direct inhibition of enzyme activity offers 

an alternative therapeutic approach that could avoid 

BACE1 inhibitor side effects. Elucidating the mechanism 

of BACE1 elevation in AD is essential for developing 

BACE1 lowering strategies.

While the mechanism of BACE1 elevation in brains 

of AD patients or mouse models of AD is not yet clear, 

recent data indicate that BACE1 levels are upregulated 

during stresses associated with AD risk, such as energy 

deprivation [39, 68], hypoxia and stroke [56, 71, 84], oxi-

dative stress [61], and traumatic brain injury [2, 65]. A 

large number of molecular pathways have been proposed 

to increase BACE1 levels: increased caspase 3 activity 

leading to impaired lysosomal degradation [26, 60], Cdk5 

phosphorylation of transcription factor Stat3 [72], altered 

microRNAs [3, 12, 17, 69, 88], transcription factor HIF1α 

activity, [84], elevated phosphorylation of the elongation 

initiation factor eIF2α [39]. Thus, BACE1 appears to be 

a stress-response protein that can be regulated via diverse 

molecular pathways, making it challenging to identify the 

precise mechanism(s) involved in AD-relevant BACE1 

elevation.

Insights into the mechanism of BACE1 elevation in 

AD have come from analysis of the localization pattern of 

increased BACE1 in the brains of AD patients and trans-

genic mouse models of amyloid pathology. Importantly, 

BACE1 elevation is not uniform throughout the brain, but 

is concentrated in presynaptic dystrophic neurites that sur-

round amyloid plaques [25, 86] where it potentially spurs 

Aβ generation and plaque growth. Close proximity to 

plaques is associated with presynaptic dystrophy and Aβ42 

oligomers increase BACE1 levels in cultured neurons [48, 

49], thus implicating Aβ neurotoxicity in these processes. 

Reticulon 3 is involved in dystrophic neurite formation 

[19, 52, 53], but the role of Aβ is poorly understood. We 

recently determined that BACE1-YFP expressed from a 

doxycycline-inducible transgene lacking the endogenous 

5′ UTR that controls BACE1 translation accumulates 

around plaques in an APP transgenic mouse similar to that 

observed in AD [48]. These results suggest that BACE1 

elevation in AD occurs via a post-translational mechanism 

involving Aβ neurotoxicity that is closely associated with 

amyloid plaques, and does not appear to involve transcrip-

tional or translational regulation.

Here, we show by live-cell imaging that Aβ42 oligom-

ers cause microtubule disruption and neuritic beading. In 

BACE1-positive dystrophic neurites surrounding amyloid 

plaques of AD and the 5XFAD transgenic mouse model, 

tubulin isoforms are mis-localized, often forming aberrant 

accumulations or voids. By EM, 5XFAD dystrophic axons 

appear distended with multi-lamellar vesicles, but notably 

lack intact microtubules. This observation, together with 

aberrant localization of microtubule motor proteins and 

other neuronal proteins, and evidence of reduced lysoso-

mal function and autophagic intermediate accumulation, 

suggests that microtubule-based transport is impaired in 

dystrophic neurites surrounding amyloid plaques. Most 

importantly, BACE1 and APP accumulate in peri-plaque 

dystrophies to very high levels and lead to increased gener-

ation of BACE1-cleaved APP products, including Aβ42 that 

may exacerbate plaque growth. Taken together, our results 

suggest that amyloid plaques cause a local toxic effect, pos-

sibly mediated by soluble Aβ42 oligomers, that generates 

presynaptic dystrophic neurites by disrupting microtubles 

and impairing transport. As a result, peri-plaque dystro-

phies accumulate BACE1, APP, and γ-secretase, further 

contributing to Aβ generation and plaque growth in a feed-

forward mechanism.

Materials and methods

Primary neuron culture, Aβ42 oligomer preparation, 

and immunofluorescence

E15.5-16.5 C57BL/6 mouse cortical neurons were plated 

on poly-L-lysine (Sigma) coverslips in 12-well plates 

(150,000 cells/well) in neurobasal media supplemented 

with 2 % B-27, 500 µM glutamine, 10 % horse serum, and 

2.5 µM glutamate. After 2 h, medium was changed to neu-

robasal with 2 % B-27, 500 µM glutamine, and 2.5 µM 

glutamate. After 1–3 days, medium was replaced with neu-

robasal plus 2 % B-27 and 500 µM glutamine. Following 

9 days in culture, neurons were treated with 1 µM Aβ42 

oligomers or vehicle prepared as previously described [48, 

55]. Briefly, lyophilized recombinant Aβ42 peptide (rPep-

tide, cat# A-1163-1) was HFIP treated, dried down, then 

resuspended to 5 mM in dry DMSO (Molecular Probes, # 

D12345) and brought to 100 µM in cold, 4 mM HEPES 

pH 8, incubated on ice at 4 °C for 24 h to generate oli-

gomers. For control cultures, DMSO alone was added to 

4 mM HEPES pH 8 and incubated as described. After 72 h 
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of Aβ42 treatment, neurons were fixed for 20 min in 4 % 

paraformaldehyde, 0.12 M sucrose in PBS, permeabilized 

in 0.5 % Triton, and incubated in anti-βIII tubulin mouse 

monoclonal antibody (TuJ1, gift of Dr. Lester Binder, 

1:500) followed by donkey anti-mouse Alexa 568-con-

jugated secondary antibody (Molecular Probes, 1:1000) 

and counterstained with 300 nM DAPI. Coverslips were 

mounted using Prolong Gold (Molecular Probes), and 

images acquired on a Nikon A1 confocal microscope with a 

60× objective (NA 1.4) and NIS Elements software.

Live imaging of neurons

Primary neurons prepared as above were plated (150,000 

cells/dish) in 35-mm glass-bottom culture dishes (Mat-

Tek # P35G-1.5-14C). After 11–12 days, medium was 

replaced with neurobasal containing 250 nM of Tubulin 

Tracker (Molecular Probes #T34075), neurons incubated 

for 30 min at 37 °C, rinsed twice with warmed media, and 

original media replaced. 10 µM Aβ42 oligomers or vehi-

cle, prepared as above, were added and neurons imaged on 

an Andor Spinning Disk confocal microscope with a 60× 

objective (NA 1.49). Imaging began within 30 min of treat-

ment and continued for 3 h, with a 100-ms exposure taken 

every 5 min, or 6 h, with a 100-ms exposure taken every 

hour, at 20–25 locations on the coverslip. Images were cap-

tured using Metamorph and intensity quantified in ImageJ. 

Statistical analysis was done using a two-tailed t test in 

Prism.

Mice

5XFAD mice were generated as previously described [40] 

and maintained by crossing transgene positive males with 

B6/SJL F1 hybrid females (Jackson Laboratories). As 

negative controls, 5XFAD mice were crossed to BACE1−/− 

mice [4] to generate 5XFAD;BACE1−/− mice. All animal 

work was done in accordance with Northwestern Univer-

sity IACUC approval.

Human tissue immunofluorescence

Human post-mortem brain tissue was obtained from three 

AD patients and three cognitively normal controls (Sup-

plementary Table S2) diagnosed at the Cognitive Neurol-

ogy and Alzheimer’s Disease Center with approval from 

the Northwestern University IRB. 40-µm floating sec-

tions of superior temporal gyrus were stained and imaged 

as described for murine tissue, except that primary and 

secondary antibody incubations were 48 h at 4 °C to 

improve antibody penetration, methoxy XO4 was added 

after secondary antibody incubation to label plaques, and 

0.2 % Sudan Black in 40 % ethanol was used to quench 

autofluorescence. Sections incubated in parallel without 

primary antibody were included as negative controls for 

autofluorescence and background binding of secondary 

antibody. A minimum of 10 plaques per case were imaged 

and analyzed on a Nikon A1 confocal microscope with a 

60× objective (NA 1.4) and NIS Elements software. Image 

acquisition settings were maintained the same between AD 

and control cases. We note that the βIII-tubulin antibody 

TuJ1 is very well characterized and produced the expected 

βIII-tubulin staining pattern in cognitively normal con-

trols (not shown) and in normal-appearing neuropil in AD 

cases (Fig. 3a, c), which served as positive controls. The 

no-primary antibody negative control produced only weak 

non-specific background staining in control and AD brain 

sections (not shown).

Murine tissue immunofluorescence

Mice were perfused with ice-cold PBS containing protease 

and phosphatase inhibitors (Calbiochem), brains harvested, 

and one hemibrain/mouse drop fixed in 4 % paraformalde-

hyde/PBS and cryopreserved in 30 % w/v sucrose/PBS for 

sectioning. The other hemibrain/mouse was dissected into 

cortex and hippocampus and flash frozen in LN2 for bio-

chemistry. 30-µm coronal or sagittal floating brain sections 

were cut and subjected to antigen retrieval for 1 h at 80 °C 

in 0.1 M sodium citrate pH 9 followed by 16 mM glycine 

in Tris-Buffered Saline with 0.25 % triton-X 100 (TBS-

T) and blocked in 5 % donkey serum in TBS-T. Sections 

were incubated overnight at 4 °C with primary antibodies 

listed in Supplementary Table 1, followed by secondary 

antibodies (donkey anti-mouse, rabbit or goat conjugated 

to Alexa 488, 568 or 647; Molecular Probes) used at the 

same concentration as primary antibody for 2–3 h at room 

temperature (except 4 °C overnight to improve penetration 

in the case of anti-tubulin antibodies) plus 300 nM DAPI. 

Sections incubated in parallel without primary antibody 

were included as negative controls for autofluorescence and 

background binding of secondary antibody. Sections were 

mounted with Prolong Gold (Molecular Probes) and images 

acquired on a Nikon A1 confocal microscope with a 60× 

objective (NA 1.4) and NIS Elements software. All image 

acquisition settings were maintained the same between 

genotypes (5XFAD;BACE1+/+ and 5XFAD;BACE1−/−). 

For all proteins whose plaque-associated co-localization 

with BACE1 was not previously published, 5–8 male and 

female 5XFAD mice at 5–6 or 9 months of age (Table S3) 

were analyzed, and 20–40 plaques were imaged for each 

antibody stain. For co-localization patterns of proteins with 

BACE1 that have been previously published (Table S4), we 

did not include additional mice but did confirm the origi-

nally reported staining patterns for βIII-tubulin (Fig. 3), 

MAP2 (Fig. 6), synaptophysin (Fig. 6), APP (Figs. 8, 9), 
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and Aβ/3D6 (Figs. 8, 9). We validated neoepitope antibod-

ies to APP cleavage products using brain sections from 

5XFAD;BACE1−/− mice (negative control). These sec-

tions were processed and imaged in parallel with brain 

sections from 5XFAD;BACE1+/+ mice. For other anti-

bodies, we considered normal-appearing neuropil regions 

distant from plaques to be an internal positive control, as 

well as normal-appearing regions of the stratum lucidum 

(Fig. 6, bottom row), which serves as a positive control for 

normal BACE1 localization and co-localization with other 

proteins.

Electron microscopy

5XFAD mouse brain tissue was prepared for electron 

microscopy as previously described [25]. Briefly, mice 

were anesthetized with isofluorane (Isothesia, Butler), per-

fused transcardially with 0.12 M PBS (pH 7.4) for 1 min, 

then a dilute aldehyde mixture (1 % paraformaldehyde, 

1.25 % glutaraldehyde, 0.02 mM CaCl2 in 0.1 M sodium 

cacodylate buffer) for 30 min, and a concentrated alde-

hyde mixture (2 % paraformaldehyde, 2.5 % glutaralde-

hyde, 0.04 mM CaCl2 in 0.1 M sodium cacodylate buffer) 

for 10 min. The brain was removed and placed in ice-cold 

concentrated fixative on a shaker at 4 °C overnight. The 

following day brain was bisected, rinsed 3× 20 min in 

0.12 M TBS and cut into 70 µm coronal sections. Sec-

tions were washed in 0.12 M phosphate buffer (PB) 3× 

10 min at 4 °C, treated with 2 % OsO4 in 0.12 M PB for 

1 h at 4 °C, and washed 3× 10 min in 0.12 M PB. The 

tissue was then dehydrated in graded ethanols and propyl-

ene oxide, infiltrated with 1:1 araldite:propylene oxide, 

flat embedded between aclar sheets and cured for 48 h at 

60 °C. Regions of interest were subdissected and re-embed-

ded as above. Serial ultrathin sections (65 nm) were cut, 

placed onto formvar-coated slotted grids, then stained with 

5 % aqueous uranyl acetate for 15 min, followed by Rey-

nold’s lead citrate (1.33 g lead nitrate, 1.76 g sodium cit-

rate, 30 ml distilled water, 8 ml of 1 N NaOH, then diluted 

to 50 ml) for 10 min, and rinsed in ultrapure dH2O. Images 

(7500–20,000×) were acquired on a JEOL 1200EX elec-

tron microscope (JEOL Ltd., IL, USA) from 10 to 30 serial 

sections. ImageJ software was used for processing image 

stacks of serial sections.

Immunoblotting

Frozen brain tissue was homogenized in RIPA buffer and 

20 µg of homogenate separated by 10 % tris–glycine 

SDS-PAGE. Protein was transferred onto 0.45 µm PVDF 

membrane, stained with 0.1 % Ponceau, and imaged. Blots 

were incubated with anti-APP antibody (6E10, Covance 

Sig-39300 1:2000) or anti-cathepsin D (Abcam # ab75852 

1:1000) followed by HRP-conjugated anti-mouse or anti-

rabbit secondary antibody (Vector Laboratories 1:10,000). 

Blots were visualized using chemiluminescence (Luminata 

Crescendo, Millipore), signals quantified using a Kodak 

Image Station 4000 R, normalized to Ponceau, densitomet-

ric analyses performed using Kodak 1D 3.6 image analysis 

software, and statistics analyzed in Prism GraphPad.

Statistical analyses

Statistical differences for immunoblot experiments were 

determined using two-tailed Student’s t test (GraphPad 

Prism Software, Inc., San Diego, CA, USA). Graphed data 

are presented as the mean ± SEM, and p < 0.05 was con-

sidered significant.

Results

Aβ42 causes neuritic beading and microtubule 

disruption in primary neurons in vitro

In addition to amyloid plaques and neurofibrillary tangles, 

other hallmark lesions of the Alzheimer’s disease brain 

include swollen, dystrophic neurites that surround amy-

loid plaques (reviewed in [9, 51]). Since these dystrophic 

neurites are predominantly found in very close proxim-

ity to, and often in contact with, plaques [25, 62] a neu-

rotoxic form of Aβ (e.g., oligomers) likely causes dystro-

phy formation. To test this hypothesis, we isolated primary 

cortical neurons from embryonic mice and exposed them 

to 1 µM of oligomeric Aβ42 for 72 h, then performed 

immunofluorescence microscopy for neuron-specific βIII-

tubulin. Aβ42-treated neurons displayed processes with 

numerous βIII-tubulin accumulations along their lengths 

resembling beads on a string, compared to vehicle-treated 

neurons (Fig. 1a). Neuritic beading was not likely associ-

ated with processes related to cell death caused by high 

concentrations of Aβ42, since we previously observed 

that 5 days of treatment with 1 and 2 µM Aβ42 oligom-

ers did not increase caspase 3 cleavages in primary neurons 

[49]. These beaded structures bore a striking resemblance 

to tubulin accumulations observed in dystrophic neurites 

around plaques in vivo (Fig. 3), suggesting a similar mech-

anism of generation. Our observation of tubulin accumula-

tion in beaded processes in Aβ42-treated cultured neurons 

is in agreement with extreme beading of primary neurons 

following 4 days of exposure to 15 µM Aβ42 [11].

Neuritic dystrophy and beading are observed in neu-

rons exposed to a variety of stressors and may be part of a 

regulated neurite degeneration pathway separate from cel-

lular apoptosis [10, 21, 28]. The presence of abnormal βIII-

tubulin accumulations in Aβ42-treated primary neurons 
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suggested that Aβ42 could disrupt microtubule networks, 

and that impaired axonal transport could be a specific and 

early effect of Aβ42 leading to serious neuronal and syn-

aptic dysfunction. To test this hypothesis, we followed 

microtubule dynamics in real time by live-cell imaging 

to determine if and when Aβ42 could cause microtubule 

disruption. We incubated primary neurons with Tubulin 

Tracker (Oregon Green-labeled taxol) that binds only to 

polymerized tubulin in microtubules, and then exposed 

the neurons to 10 µM Aβ42 oligomers (Fig. 1b) to model 

the potentially high Aβ42 oligomer concentrations in the 

immediate vicinity of amyloid deposits [29]. After 22 h 

of treatment, neuritic beading that strongly resembled the 

previously observed aberrant βIII-tubulin immunostaining 

pattern (Fig. 1a) was apparent in live Aβ42-treated Tubu-

lin Tracker-labeled neuron cultures (Fig. 1b), while vehi-

cle-treated neurons remained healthy with mostly smooth 

processes. These findings suggested that Aβ42 exposure 

results in microtubule disruption leading to abnormal tubu-

lin accumulation and neuritic beading in neurons.

To determine how early microtubule disruption and 

neuritic beading occur after exposure to Aβ42, we used 

spinning disk confocal microscopy to image live Tubu-

lin Tracker-labeled primary neurons continuously every 5 

Fig. 1  Oligomeric Aβ42 causes neurite beading and microtubule dis-

ruption in primary neurons. a Primary cortical neurons were cultured 

from e15.5 mouse embryos and after 9 days in vitro were exposed 

to 1 µM Aβ42 oligomers or vehicle. After 72 h, coverslips were 

fixed in 4 % paraformaldehyde, permeabilized, and stained with the 

antibody TuJ1 against βIII-tubulin (red) and DAPI (blue). Neurite 

beading is very prominent in Aβ42-treated cultures, while neurites 

appear smooth and unbeaded in vehicle-treated neurons. b Primary 

neurons were isolated as described in a, and after 12 days in vitro 

were exposed to 10 µM Aβ42 oligomers or vehicle. After 22 h of 

Aβ42 treatment, the fluorescent microtubule probe Tubulin Tracker 

was added to a final concentration of 250 nM for 30 min. Unfixed, 

live neurons were then imaged at ×20 using a Nikon Eclipse TS100 

microscope with NIS Elements software. Note that Aβ42-induced 

neurite beading visualized by Tubulin Tracker appears very similar to 

that observed with βIII-tubulin immunostaining in a, and occurs more 

rapidly with higher Aβ42 concentration. Taken together, these results 

strongly suggest that Aβ42 disrupts the organization of microtubules 

in neurons. Scale bars in all frames 50 µm
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min after 10 µM Aβ42 oligomer or vehicle treatment. We 

observed that noticeable microtubule disruption and bead-

ing occurred on neurites of primary neurons as early as 

3.5 h following Aβ42 treatment, while vehicle-treated cul-

tures appeared normal (Figs. 2a, S1). The very early appear-

ance of disrupted microtubules in beaded neurites sug-

gested that this is one of the primary ways in which Aβ42 

oligomers could impair neuronal function. Also, differen-

tial interference contrast microscopy indicated that most 

of the neurites with beads or aberrant microtubule organi-

zation were still continuous and intact, although morpho-

logically abnormal (Figs. 2a, S1). These results were highly 

reproducible, as they were representative of six individual 

experiments, all performed using separate primary neuron 

and Aβ42 preparations. We also observed a greater overall 

decrease in Tubulin Tracker fluorescence after 3 h in the 

Aβ42-treated neurons compared to vehicle (Fig. 2b), sug-

gesting that Aβ42 causes microtubule depolymerization. To 

limit photodamage, we performed an identical live-imaging 

experiment, except capturing an image once every hour 

for 6 h, and observed even more striking neuritic beading 

and microtubule disruption in Aβ42-treated neurons, while 

vehicle-treated neurons showed very little change (Fig. 2c).

Aβ42 oligomer concentrations in the range of 1–10 µM 

induce cell death in primary neuron culture (reviewed in 

[16]). To determine whether neuritic beading and microtu-

bule disruption were the results of Aβ42-induced cell death 

processes, we repeated Tubulin Tracker labeling of primary 

neurons followed by Aβ42 treatment for 3.5 h, then added 

propidium iodide to label the nuclei of dead cells (Fig. S1). 

Although we noted Aβ42-induced neuritic beading and 

microtubule disruption (Fig. S1a), the percentage of live 

cells as measured by absence of propidium iodide uptake 

was identical for both Aβ42-treated and vehicle control 

neurons (Fig. S1b). This result demonstrates that neuritic 

beading and microtubule disruption precede the induction 

of cell death in Aβ42-treated primary neurons.

The Aβ42-induced reduction and aberrant spatial dis-

tribution of microtubules in neurites suggested that micro-

tubule-based transport would be impaired in Aβ42-treated 

primary neurons. It has also been reported that trafficking of 

BDNF [44] mitochondria [70], and other axonal cargo [57] 

is impaired by Aβ, so we hypothesized BACE1 transport 

may be affected as well. To test this hypothesis, we trans-

fected primary neurons with BACE1-YFP and neuropeptide 

Y-mCherry (NPY-mCherry) fusion constructs, treated with 

10 µM Aβ42 oligomers or vehicle, and performed live-cell 

imaging and kymograph analysis to assess vesicular move-

ment in neurites. We observed that the proportion of motile 

BACE1-YFP and NPY-mCherry puncta was decreased 

in neurites of Aβ42-treated neurons, compared to vehicle 

(Fig. S2). We infer that the effect of Aβ42 on trafficking 

in neurites is not limited to BACE1-containing vesicles, as 

the movement of NPY-mCherry puncta was also decreased. 

Taken together, our results suggest that Aβ42 causes micro-

tubule depolymerization and network disruption, leading 

to neuritic beading and impaired microtubule-based axonal 

transport in neurons.

Tubulin is aberrantly localized and microtubules 

are disrupted in peri-plaque presynaptic dystrophic 

neurites in vivo

In both AD and APP transgenic mouse brains, BACE1 

accumulates in swollen presynaptic dystrophic neurites 

that surround amyloid plaques in close proximity [25, 85, 

86]. To gain insight into the mechanism of Aβ-induced 

BACE1 elevation in peri-plaque dystrophies and the 

potential role of microtubules, we performed immuno-

fluorescence staining of superior temporal gyrus from 

AD patients and cognitively normal controls (Table S2) 

with antibodies against BACE1 and neuron-specific βIII-

tubulin, as well as methoxy XO4 to label fibrillar amyloid 

deposits. As we have previously reported [25, 86], in AD 

brain BACE1 immunoreactivity was elevated in dystrophic 

neurites in a halo pattern immediately surrounding the 

methoxy XO4-positive amyloid plaque core. Interestingly, 

we observed a striking reduction of βIII-tubulin signal 

within the BACE1-positive peri-plaque halo, while the pat-

tern of βIII-tubulin immunoreactivity seemed unaffected 

in nearby normal-appearing neuropil (Fig. 3a, first two 

columns; Fig. S3, first column) and in cognitively normal 

controls (not shown). To determine the quantitative rela-

tionships between BACE1 and βIII-tubulin immunoreac-

tivities within the peri-plaque halo, we calculated the ratio 

of BACE1 to βIII-tubulin immunofluorescence intensities 

in dystrophic neurites (defined by high BACE1 signal) 

around plaques and in regions of normal neuropil distant 

from plaques for the AD cases (Fig. 3b). Importantly, we 

observed that the peri-plaque BACE1:βIII-tubulin ratio 

was significantly elevated (Fig. 3b, first two panels). We 

also generated intensity profiles of BACE1 and βIII-

tubulin immunofluorescence signals through the plaque, 

and generally found an inverse relationship between 

BACE1 and βIII-tubulin intensities, such that high BACE1 

signal typically occurred in areas of low βIII-tubulin 

intensity (Fig. 3c, first two columns). In cognitively nor-

mal controls, no plaques, and hence no areas of elevated 

BACE1 or loss of βIII-tubulin, were observed (not shown). 

These results confirm and extend our initial observation 

of decreased βIII-tubulin staining around plaques in AD 

[86]. Moreover, they suggest that reduced tubulin level, 

and hence low microtubule density, in dystrophic regions 

surrounding plaques is a pathologic feature of AD that is 

the consequence of short-range Aβ toxicity to neurites, and 

may have a role in BACE1 accumulation.
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Fig. 2  Microtubule disruption in primary neurons is an early response 

to oligomeric Aβ42. Primary cortical neurons were cultured as in 

Fig. 1, and after 12 days in vitro, were labeled for 30 min with 250 nM 

Tubulin Tracker, rinsed, and then exposed to 10 µM Aβ42 oligomers 

or vehicle. Live imaging on an Andor spinning disk confocal micro-

scope began 30 min after addition of Aβ42. a Fluorescence and dif-

ferential interference contrast (DIC) images were acquired every 5 

min for 3 h. Neurite beading, microtubule accumulation in varicosi-

ties (arrowheads), and microtubule fragmentation (arrows) in neurites 

were present 3.5 h after Aβ42 addition, in the absence of significant cell 

death or BACE1 elevation [49]. In contrast, the morphology of vehi-

cle-treated neurons was unaffected, with the exception of a moderate 

decrease of fluorescence intensity. DIC imaging revealed that neurites 

of Aβ42-treated neurons were intact and continuous, even though they 

exhibited beading and microtubule fragmentation, indicating that the 

observed microtubule disruption was not the result of physical degen-

eration of neurites. Insets show higher magnification images of the 

boxed region of the Aβ42-treated culture to accentuate varicosity for-

mation and microtubule fragmentation. b The ratios of Tubulin Tracker 

fluorescence intensity (Int.) at 3.5 h (hours) to that at 0.5 h after Aβ42 

treatment were calculated for 46 image fields from two separate experi-

ments and averaged for Aβ42-treated and vehicle-treated neurons. 

Overall Tubulin Tracker fluorescence intensity decreased in neurons 

over time due to photo-bleaching, as indicated by fluorescence intensity 

ratios below 1. Nevertheless, the Tubulin Tracker fluorescence intensity 

ratio for Aβ42-treated neurons showed a small but highly significant 

decrease compared to vehicle treatment (p = 0.004), suggesting micro-

tubule depolymerization and reduced stability of microtubule networks 

after only 3.5 h of Aβ42 exposure. Error bars SEM; **, p < 0.01. c To 

investigate longer Aβ42 treatment times and minimize photo-bleach-

ing, primary neuron cultures were prepared as above and images col-

lected once every 60 min for 6 h. Neurite beading, aberrant microtubule 

localization, and microtubule fragmentation were even more prevalent 

and pronounced in neurons after 6.5 h compared to 3.5 h of Aβ42 treat-

ment, while vehicle-treated neurites continued to appear normal. Scale 

bars 20 µm for all images in a, c
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Post-mortem AD brain samples represent end-stage dis-

ease and thus provide limited information about pathogen-

esis. To gain insight into the development of Aβ-induced 

dystrophic neurites, we turned to our 5XFAD mouse model 

of amyloid pathology [40]. Our previous work showed that 

brains of AD patients and 5XFAD mice have elevated lev-

els of BACE1 that accumulate in dystrophic presynaptic 

neuronal structures (likely axons and terminals) in a halo 

that surrounds the amyloid deposit [86]. Taken together, 

these and other data suggest that the 5XFAD mouse is a 

faithful model of BACE1 elevation in AD.

To assess the distributions of tubulin and BACE1 around 

amyloid deposits in our AD mouse model, we immu-

nostained brain sections from five different 5- to 6-month-

old 5XFAD mice with antibodies directed against specific 

isoforms of tubulin, including neuron-specific βIII-tubulin, 

acetylated α-tubulin, and polyglutamylated tubulin (Fig. 3a, 

third, fourth and fifth columns, respectively; Figs. S3, S4). 

BACE1 immunoreactivity was concentrated in a halo sur-

rounding the core of the amyloid deposit, as previously 

reported [25, 85, 86]. Interestingly, similar to human AD, 

we observed that βIII-tubulin immunostaining was largely 

absent in BACE1-positive peri-plaque dystrophies. The 

βIII-tubulin signals that did occur in the peri-plaque halo 

appeared as amorphous accumulations with a staining pat-

tern complementary to that of BACE1, i.e., regions of high 

βIII-tubulin intensity generally showed low BACE1 signal 

and vice versa. Acetylated and polyglutamylated isoforms 

of tubulin showed similarly reduced patterns of immu-

nostaining in the peri-plaque halo. Additionally, we meas-

ured peri-plaque BACE1:tubulin ratios and intensity pro-

files for 5XFAD amyloid deposits (Fig. 3b, c) and found 

increased ratios and inverse relationships between BACE1 

and tubulin isoforms, similar to our results for human AD 

plaques. We note that the peri-plaque human and mouse 

tubulin and BACE1 immunoreactivity patterns are similar 

but not identical, probably because mouse deposits are at 

most a few months old while human plaques are possibly 

many years old. At the end-stage of disease in post-mortem 

AD brain, there are very few, if any neurites near plaques 

that are not severely degenerated, thus potentially explain-

ing the lower intensities of BACE1 and tubulin immu-

nostaining in peri-plaque dystrophies of human AD com-

pared to 5XFAD mouse.

The reduction in tubulin isoforms in 5XFAD BACE1-

positive dystrophies suggested that microtubules are 

decreased, disorganized, or disrupted in presynaptic dys-

trophic neurites near amyloid deposits. To investigate this 

possibility at an ultrastructural level, we examined ultrathin 

sections of 5XFAD mouse brain by electron microscopy 

(EM). We found swollen dystrophic neurites in abundance 

in close proximity or virtually contacting amyloid depos-

its (Fig. 4a). We confirmed the close physical association 

between BACE1-positive dystrophies and amyloid deposits 

in 3D reconstructions of multi-photon confocal microscopy 

images of live brain slices of BACE1-YFP;5XFAD multi-

transgenic mice (Supplementary Text; Fig. S5, Videos S1, 

S2). By BACE1 immuno-EM, we previously reported that 

dystrophies surrounding plaques are engorged with large 

BACE1-negative electron-dense multi-lamellar vesicles and 

smaller BACE1-positive electron-translucent vesicles [25]. 

Here, by EM we found dystrophies that were definitively 

identified as axons, as indicated by the presence of myelin 

sheaths (Fig. 4b–f). Importantly, we found occasional EM 

Fig. 3  Tubulin isoforms are aberrantly localized in BACE1-positive 

peri-plaque dystrophic neurites in vivo. a Post-mortem brain sections 

of superior frontal gyrus from three AD patients and three cognitively 

normal controls were stained with antibodies against BACE1 (red) 

and βIII-tubulin (green), and methoxy XO4 (blue) to label amyloid 

deposits. Representative plaques from two cases (AD 14–190 and AD 

11–193, Columns 1–2) are shown; additional examples in Fig. S2. 

Cognitively normal controls were negative for plaques, as expected 

(not shown). As previously reported [86], BACE1 immunostaining 

was observed in a halo of dystrophic neurites surrounding individual 

plaques. In contrast, βIII-tubulin immunostaining was almost entirely 

absent in peri-plaque BACE1-positive dystrophies. Non-dystrophic 

neuropil in areas adjacent to plaques exhibited normal intensities 

and patterns of βIII-tubulin immunostaining. Some red fluorescence 

(white arrows) represents non-specific background from blood vessels. 

Brain sections from the aggressive amyloid 5XFAD mouse model 

were stained with antibodies against BACE1 (red) and βIII-tubulin, 

acetylated α-tubulin or polyglutamylated tubulin (green). Representa-

tive 5XFAD amyloid deposits are shown (Columns 3–5), with plaque 

cores marked by asterisks; additional examples in Fig. S2. Similar to 

human AD, BACE1 accumulated in peri-plaque dystrophic neurites 

in 5XFAD brain sections. Additionally, the different tubulin isoforms 

were generally reduced in dystrophic halos around plaques, although 

tubulins often occurred in amorphous accumulations that showed little 

co-localization with BACE1 immunostaining. Scale bars in all frames 

10 µm. b Immunofluorescence intensities of BACE1 and tubulin iso-

forms (as indicated at top of each column) in peri-plaque dystrophic 

neurites were measured and BACE1/tubulin intensity ratios calcu-

lated and compared to those in normal-appearing regions of neuropil 

within the same frame (Supplementary Methods). For human tissue, 

16 dystrophies and corresponding non-dystrophic regions were meas-

ured per case. For murine tissue, BACE1/tubulin isoform ratios were 

determined for 11–20 BACE1-positive dystrophic regions and a cor-

responding number of nearby neuropil areas. BACE1/tubulin ratios 

for AD 14–190 and AD 11–193 (Panels 1 and 2, respectively) and 

5XFAD mice (Panels 3–5) are shown. While there was substantial 

variation for dystrophic neurites, BACE1/tubulin intensity ratios for 

dystrophies were significantly elevated compared to those for nor-

mal neuropil for both AD cases and 5XFAD mice. Error bars SEM; 

***p < 0.001. c The quantitative relationships between BACE1 and 

tubulin isoform immunofluorescence intensities by another method, 

intensity profiles as a function of distance across the plaque were 

generated (Supplementary Methods). Representative plaques are 

shown (upper row) for AD 14–190 and AD 11–193 (Panels 1 and 2, 

respectively) and 5XFAD mice (Panels 3–5). White line indicates path 

through plaque from which the intensity profiles were generated (bot-

tom row). Note the inverse relationships between BACE1 and tubulin 

intensities as a function of distance across the plaque in each case. 

Taken together, these results suggest that tubulin, and hence microtu-

bules, is reduced and/or mis-localized in peri-plaque dystrophic neur-

ites. AU arbitrary units. Scale bars in all frames 10 µm

◂
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series displaying normal-appearing axons with dense micro-

tubule bundles that enter a dystrophic region within which 

microtubules are strikingly absent, reduced in length, or 

dramatically disorganized (Fig. 4c–f). These data suggest 

that in human AD and in amyloid pathology mouse models, 

peri-plaque dystrophic axons are deficient in normal func-

tional microtubule networks for axonal transport. Vesicles 

may enter but cannot transit or exit dystrophic regions due 

to absence of microtubules, which could explain the dra-

matic accumulation of BACE1 around plaques.

Microtubule motor proteins are aberrantly localized 

in BACE1-positive peri-plaque dystrophic neurites

Recent work has linked mutations in various proteins 

of the dynein–dynactin complex required for retrograde 

axonal transport to neurodegenerative disease in humans 

and mouse models [43]. If microtubule networks are dis-

rupted in dystrophies around plaques, we reasoned that the 

microtubule motor proteins that move along them carrying 

cargo from the terminals back to the cell body could also 

be mis-localized, compounding the impaired removal of 

vesicles from dystrophic axons and terminals. This could 

lead to decreased turnover of proteins that are preferen-

tially localized to presynaptic terminals, like BACE1 [25, 

86]. To determine the localization pattern of microtubule 

motor proteins in peri-plaque dystrophies, we performed 

immunofluorescence microscopy of coronal brain sections 

from five individual 5- to 6-month-old 5XFAD mice using 

antibodies directed against cytoplasmic dynein intermedi-

ate chain (DIC), two subunits of dynactin (p150glued and 

dynamitin), and kinesin heavy chain (Figs. 5, S3, S4). DIC 

Fig. 4  Microtubules are strikingly absent in peri-plaque dystrophic 

axons. 5XFAD brain tissue was prepared for electron microscopy 

(EM) and assessed ultrastructurally for the presence of microtubules in 

peri-plaque dystrophic axons. a As previously reported [25], electron 

microscopy of 5XFAD brain revealed amyloid plaques (p) surrounded 

by dystrophic neurites (representative examples outlined in blue) filled 

with electron-dense multi-lamellar vesicles, possibly autophagic inter-

mediates. b EM of a transverse section through a pair of dystrophic 

myelinated axons filled with multi-lamellar vesicles. Note that the 

lower portion of the axon on the left has lost its myelin sheath. c–f EM 

of serial ultrathin sections occasionally revealed series of longitudinal 

sections through dystrophic axons near amyloid plaques. Shown is 

such a series of a peri-plaque dystrophic myelinated axon with a por-

tion of normal axon appearing on the left side of the dystrophy. Intact, 

continuous microtubules (yellow shading) are present in the morpho-

logically normal part of the axon, but then microtubules become dis-

organized and mostly disappear within the dystrophic region. Note the 

dark outline of the surrounding myelin sheath, definitively confirming 

axonal identity. These ultrastructural images provide direct evidence 

that microtubules are disrupted and largely absent in peri-plaque dys-

trophic regions of axons. Images are spaced ~200 nm apart. f Higher 

magnification of rectangle in e. Scale bars 1 µm
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is a component of the retrograde microtubule motor, and 

while we observed some DIC staining in BACE1-posi-

tive dystrophic neurites, it was quite low compared to the 

amount of potential cargos such as BACE1 that accumu-

late in dystrophies (Figs. 5a, S3, S4). p150glued is required 

to initiate retrograde transport from the axon terminal [32, 

37], stabilize microtubules in axons [30], and improve pro-

cessivity of dynein [27, 35]. Importantly, p150glued was 

diminished in BACE1-positive peri-plaque dystrophies 

compared to normal surrounding neuropil (Figs. 5b, S3, 

S4), suggesting a deficiency of functional and active retro-

grade dynein–dynactin complexes in these dystrophies. In 

contrast, dynamitin staining was noticeably increased in 

some, but not all, BACE1-positive peri-plaque dystrophies 

(Figs. 5c, S3, S4). Dynamitin tethers the cargo-binding 

domain of dynactin to the microtubule and dynein-binding 

domain through its interactions with Arp1 and p150glued, 

respectively [5]. The increased dynamitin in peri-plaque 

dystrophies suggested that it may be trapped in either free 

form or in complexes with adaptor proteins and cargo, but 

lacking p150glued, dynamitin cannot be attached to dynein 

and transported with cargo back toward the soma. Disrup-

tion of microtubule networks in peri-plaque dystrophic 

neurites would also be predicted to have an effect on anter-

ograde axonal transport by kinesins and cause kinesin mis-

localization. Our immunofluorescence microscopy analy-

sis showed that, similar to dynamitin, kinesin heavy chain 

accumulated in dystrophies surrounding plaques (Figs. 5d, 

S3, S4), supporting our hypothesis that peri-plaque presyn-

aptic dystrophic neurites are deficient in microtubules and 

exhibit mis-localized microtubule motor proteins, condi-

tions that would impair axonal transport.

Fig. 5  Microtubule motor proteins are aberrantly localized in 

BACE1-positive peri-plaque dystrophic neurites. Sections from 

5XFAD mouse brains were stained with antibodies against BACE1 

(red) and various components of the dynein–dynactin retrograde 

transport complex, dynein intermediate chain (green, a), p150glued 

(green, b), dynamitin (green, c), or the anterograde motor protein 

kinesin heavy chain (green, d). Representative amyloid deposits are 

shown; additional examples in Figs. S3 and S4. Dynein intermediate 

chain and p150glued were reduced in peri-plaque BACE1-positive 

dystrophic neurites, while dynamitin and kinesin heavy chain tended 

to accumulate in dystrophies and showed partial but limited co-local-

ization with BACE1. These results together with evidence of micro-

tubule disruption strongly suggest that axonal transport is impaired in 

dystrophic regions of peri-plaque axons. DAPI staining (blue) identi-

fied nuclei and autofluorescence of amyloid plaque cores (marked by 

asterisks). Scale bars 10 µm (a, b, d) and 20 µm (c)
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BACE1-positive peri-plaque dystrophies are 

presynaptic, but lack components of functional 

synapses

To further characterize BACE1-positive peri-plaque 

dystrophic neurites in 5XFAD brain sections, we per-

formed immunofluorescence microscopy with antibodies 

directed against BACE1 and several other neuronal pro-

teins (Figs. 6, S3, S4), confirming that accumulation in 

dystrophies is specific to certain proteins but not others. 

Synaptophysin and bassoon, both presynaptic proteins, 

show strong co-localization with BACE1 in the stratum 

lucidum, the axon terminals of the mossy fiber pathway 

in the hippocampus (Fig. 6a, b; bottom row), confirming 

Fig. 6  BACE1-positive peri-plaque dystrophies accumulate the pre-

synaptic protein synaptophysin and the lysosomal protease cathepsin 

D, but lack the active zone protein bassoon. Sections from 5XFAD 

mouse brains were stained with antibodies against BACE1 (red) and 

active zone protein bassoon (green, a), presynaptic protein synap-

tophysin (green, b), somatodendritic marker MAP2, (green, c), or 

lysosomal protease cathepsin D (green, d). Representative amyloid 

deposits are shown; additional examples in Figs. S3 and S4. Both 

bassoon and synaptophysin co-localized extensively with BACE1 in 

presynaptic terminals in the stratum lucidum (bottom row), but bas-

soon and synaptophysin were absent and enriched in peri-plaque dys-

trophies, respectively (top row). The somatodendritic protein MAP2, 

which did not co-localize with BACE1 in the stratum lucidum (bot-

tom row), was absent in peri-plaque dystrophies (top row). The lyso-

somal protease cathepsin D was found in neuronal soma as expected 

and did not co-localize with BACE1 in stratum lucidum (bottom 

row). However, cathepsin D tended to accumulate in some dystro-

phies, indicating aberrant localization of lysosomes in peri-plaque 

dystrophic neurites. These results suggest that BACE1-positive 

peri-plaque dystrophies are largely presynaptic axons and terminals, 

although dystrophic terminals are unlikely to have active synapses as 

they lack bassoon. DAPI staining (blue) identified nuclei and autoflu-

orescence of amyloid plaque cores (marked by asterisks). Scale bars 

10 µm in all frames except for the bottom row, which is 20 µm
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our previous results that BACE1 is normally localized in 

the presynaptic terminal [25]. As we have reported before 

[25, 86], and was recently confirmed [15, 50], many peri-

plaque dystrophies appear to be axonal in origin, showing 

accumulations of the presynaptic protein synaptophysin 

(Fig. 6b), and a conspicuous absence of the somatoden-

dritic marker MAP2 (Fig. 6c), which does not co-local-

ize with BACE1 in the stratum lucidum (Fig. 6c; bottom 

panel). Surprisingly, given its strong co-staining with 

BACE1 in normal tissue of the stratum lucidum, bassoon 

appears to be entirely absent from peri-plaque dystrophies 

(Fig. 6a). Since bassoon is a well-established marker of 

synaptic active zones (reviewed in [6]), its absence from 

peri-plaque dystrophies indicates a lack of functional 

synapses in these regions. The toxic effect of amyloid 

plaques on synapses seems to be quite local, as the immu-

nofluorescence signal for bassoon outside the immediate 

peri-plaque halo of the dystrophies appears as a normal 

punctate pattern. This is supported by other APP trans-

genic mouse studies showing that PSD95 was reduced by 

60 % in the halo of oligomeric Aβ42 surrounding plaques, 

while 50 µm from the plaque it was found at normal lev-

els [29].

Immature pro-cathepsin D accumulates in 5XFAD 

mouse brain

Cathepsin D is found in lysosomes, which normally local-

ize to a peri-nuclear region of the soma rather than axon 

terminals, and cathepsin D does not co-localize with 

BACE1 in normal-appearing regions of the 5XFAD stra-

tum lucidum (Fig. 6d, bottom panel). Although cathepsin 

D appeared somewhat elevated in 5XFAD BACE1-posi-

tive peri-plaque dystrophies, the patterns of cathepsin D 

and BACE1 localization did not overlap as extensively 

as those of synaptophysin and BACE1 (Figs. 6d, S3, S4). 

BACE1 is normally degraded through lysosomal path-

ways [26, 60], and thus presynaptic BACE1 is depend-

ent on retrograde transport to the cell body for turnover. 

Early lysosomes, identified by Lamp1 expression, are 

found in dystrophic neurites [15, 25] but are deficient in 

cathepsins [15]. These studies together with our results 

suggest that microtubule disruption and motor protein 

mis-localization impair retrograde transport and hence 

lysosomal maturation, ultimately resulting in reduced 

degradation of BACE1 and other proteins in peri-plaque 

dystrophic neurites. The cathepsin D antibody that we 

used for our immunolocalization analysis (Fig. 6d) recog-

nizes the C-terminus of both 43 kDa pro-cathepsin D and 

28 kDa cathepsin D heavy chain, precluding our ability 

to determine whether peri-plaque cathepsin D was mature 

(active) or immature (inactive). To distinguish and quan-

tify mature and immature forms of cathepsin D, we per-

formed immunoblot analysis of brain homogenates from 

6-month-old 5XFAD and non-transgenic mice using the 

cathepsin D antibody (Fig. 7a). We observed that 5XFAD 

brains had significantly increased levels of immature 

pro-cathepsin D compared to brains of non-transgenic 

Fig. 7  Levels of immature pro-cathepsin D are increased in 5XFAD 

mouse brain. a Cortices from 6-month 5XFAD (+) or non-transgenic 

(−) mice were homogenized and subjected to immunoblot analysis 

using antibodies against human APP (top panel; antibody 6E10) and 

the C-terminus of the lysosomal protease cathepsin D (CatD), which 

recognizes both immature (inactive) pro-CatD and mature (active) 

CatD heavy chain (middle panel). Ponceau S staining of the immu-

noblot was used to control for protein loading (bottom panel). Note 

that 43-kDa immature pro-CatD bands are more intense than 28 kDa 

mature CatD heavy chain bands, especially in 5XFAD cortices. b 

Band intensities from the immunoblot in a were quantified and nor-

malized to total protein as determined by ponceau S staining intensity 

in respective lanes and then displayed as percentage of non-trans-

genic (non-Tg) control. Note that 5XFAD cortex levels of pro-CatD 

were nearly twofold higher than those in non-Tg cortex, while levels 

of CatD heavy chain were not significantly changed, suggesting that 

lysosomal maturation is impaired in 5XFAD brains. Error bars SEM; 

**p < 0.01; NS not significant
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littermates, while 5XFAD levels of mature cathepsin 

D heavy chain were unchanged (Fig. 7b). This result is 

consistent with the notion of impaired maturation of lys-

osomes in the brains of 5XFAD mice, which might con-

tribute to accumulation of BACE1 and other proteins in 

peri-plaque dystrophic neurites.

BACE1-positive peri-plaque dystrophic neurites are 

sources of increased production of BACE1-cleaved APP 

fragments and Aβ42

Our observations of BACE1 accumulation around plaques 

led us to the hypothesis that elevated levels of BACE1, APP 

Fig. 8  Neoepitope antibodies recognize BACE1-cleaved APP 

and Aβ but not full-length APP in vivo. Sagittal brain sections of 

5XFAD;BACE1+/+ and 5XFAD;BACE1−/− mice were immu-

nostained with neoepitope antibodies to a the free C-terminus of 

BACE1-cleaved APP ectodomain ending in the Swedish mutation, 

sAPPβ (antibody ANJJ [45, 46], green), b the free N-terminus of 

BACE1-cleaved Aβ (antibody 3D6 [23], red), or c the free C-ter-

minus of γ-secretase-cleaved Aβ42 (green). Sections were also co-

immunostained with an antibody recognizing full-length APP (anti-

body Karen [64], red), then imaged by confocal microscopy. All three 

neoepitope immunoreactivities were present in soma (arrows), and 

processes in the case of sAPPβ (arrowheads), of pyramidal neurons 

in the cortex of 5XFAD;BACE1+/+ mice, while none were detected 

in 5XFAD;BACE1−/− cortex, despite overexpression of transgenic 

APP in pyramidal neurons of both genotypes. These data confirm 

that ANJJ, 3D6, and Aβ42 antibodies are selective for their respective 

neoepitopes and do not cross-react to full-length APP. DAPI staining 

(blue) identified nuclei and autofluorescence of amyloid deposit cores 

(marked by asterisks). Note that amyloid deposits are completely 

lacking in 5XFAD;BACE1−/− cortex, as previously reported [41]. 

Scale bars 10 µm (b), 20 µm (a)
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[25, 86], and PS1 [81] found in peri-plaque dystrophic neu-

rites would cause increased BACE1 processing of APP and 

Aβ production, thus exacerbating AD pathogenesis. How-

ever, direct evidence that elevated BACE1 cleaves APP 

and leads to increased Aβ formation in dystrophic neurites 

has been lacking. To address this question, we made use of 

several antibodies specific to neoepitopes of APP-derived 

fragments revealed by BACE1 and γ-secretase process-

ing. BACE1 cleavage of APP generates two products, the 

N-terminal soluble APP ectodomain fragment, sAPPβ, and 

the membrane bound C-terminal fragment, C99. The anti-

body ANJJ [45] recognizes the free C-terminus of sAPPβ 

created by BACE1 processing of APP with the Swedish 

familial AD mutation [38], which is expressed in 5XFAD 

mice [40]. To validate ANJJ for tissue immunostaining and 

verify that it does not recognize unprocessed full-length 

APP, we co-stained sagittal brain sections from 9-month-

old 5XFAD;BACE1+/+ and 5XFAD;BACE1−/− bigenic 

mice with ANJJ and an antibody to an N-terminal epitope 

of full-length APP [64] and performed immunofluores-

cence confocal microscopy (Fig. 8). We observed punctate 

sAPPβ immunoreactivity of ANJJ in the soma and pro-

cesses of 5XFAD;BACE1+/+ large pyramidal neurons in 

the cortex (Figs. 8a, upper panels; S4), the primary cells 

that express the 5XFAD transgenes in the brain [40]. The 

punctate intracellular immunostaining pattern for sAPPβ 

was expected, since BACE1 cleaves APP in endosomes 

[45, 66] to create the sAPPβ neoepitope and release the 

soluble APP ectodomain into the endosome lumen for 

eventual secretion into the extracellular milieu. The immu-

noreactivity of full-length APP exhibited a wider spatial 

distribution in the neuron compared to that of sAPPβ, indi-

cating cell surface localization in addition to intracellular 

labeling. In contrast, sAPPβ immunosignal was completely 

absent in 5XFAD;BACE1−/− brain sections (Fig. 8a, 

lower panels), indicating the absence of the sAPPβ free 

C-terminal neoepitope as expected for BACE1-deficient 

mice [34], even though full-length APP immunoreactiv-

ity throughout the neuron was similar to that observed in 

5XFAD;BACE1+/+ sections. These results demonstrate 

conclusively that the ANJJ antibody only recognizes the 

BACE1-cleaved sAPPβ C-terminal neoepitope and does 

not cross-react to full-length APP in brain sections.

We also performed immunofluorescence microscopy on 

5XFAD;BACE1+/+ and 5XFAD;BACE1−/− brain sec-

tions incubated with antibodies recognizing neoepitopes 

on the free N-terminus of BACE1-cleaved Aβ (3D6) [23] 

and the free C-terminus of γ-secretase-cleaved Aβ end-

ing in amino acid 42 (Aβ42), co-stained with the full-

length APP antibody (Fig. 8b). As with sAPPβ immu-

nosignal, we observed intraneuronal 3D6 and Aβ42 

neoepitope immunostaining only in large pyramidal corti-

cal neurons of 5XFAD;BACE1+/+ mice, while those of 

5XFAD;BACE1−/− mice were completely devoid of either 

3D6 or Aβ42 neoepitope immunoreactivities (Fig. 8b) even 

though they showed robust full-length APP labeling. Taken 

together, these results fully validate the 3D6 and Aβ42 

neoepitope antibodies for tissue immunostaining and con-

firm that they do not label full-length APP.

Next, using our validated neoepitope antibodies we 

sought to determine whether elevated BACE1 in peri-

plaque dystrophies was associated with increased BACE1 

processing of APP and Aβ generation. Importantly, sagittal 

brain sections from 5- to 6-month and 9-month-old 5XFAD 

mice co-incubated with sAPPβ neoepitope and BACE1 

antibodies showed robust punctate sAPPβ immunoreac-

tivity, likely representing endosomal localization, within 

peri-plaque dystrophies that significantly co-localized with 

BACE1 immunosignal (Figs. 9a, S4). sAPPβ immunore-

activity was very intense in peri-plaque dystrophies, com-

pared to the very low sAPPβ immunosignal in the surround-

ing neuropil, indicating that BACE1 processing of APP was 

dramatically increased in the BACE1-positive dystrophic 

neurites near amyloid deposits. We noted that peri-plaque 

dystrophies exhibited variable levels of transgenic sAPPβ 

immunoreactivity, presumably because the Thy1 transgene 

promoter is expressed in some, but not all, cortical neu-

rons [36]. Similar to the sAPPβ immunostaining pattern, 

we observed increased punctate 3D6 and Aβ42 neoepitope 

immunosignals that co-localized significantly with BACE1 

immunoreactivity in peri-plaque dystrophies (Figs. 9b, c, 

respectively; S4), suggesting that BACE1 accumulation 

elevated Aβ production. Although 3D6 and Aβ42 immu-

nosignal intensities in dystrophies were weaker than those 

in amyloid deposits, they were obviously elevated com-

pared to surrounding neuropil, especially at higher magni-

fications (right panels, 9b, c). Additionally, sAPPβ and 3D6 

neoepitope immunoreactivities co-localized significantly 

in peri-plaque dystrophies (Fig. 9d). Co-immunostaining 

of 5XFAD brain sections with full-length APP and BACE1 

antibodies confirmed that APP and BACE1 accumulate 

together in peri-plaque dystrophies (Fig. 9e), implicating 

both in plaque progression.

Taken together, our results suggest that elevated BACE1 

in dystrophic neurites around plaques is associated with 

increased BACE1 cleavage of APP and Aβ generation. The 

presence of neoepitope N-terminal and C-terminal APP 

processing products in peri-plaque dystrophies strongly 

supports the hypothesis that BACE1 and γ-secretase are 

active in dystrophies, although we cannot formally exclude 

the possibility that APP processing occurs elsewhere in 

the cell followed by APP product trafficking and accumu-

lation in dystrophies. Additionally, our results show that 

peri-plaque dystrophic neurites accumulate Aβ42, which 

if released into the extracellular space could contribute to 

plaque growth and further neuritic dystrophy.
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Discussion

In this study, we provide evidence that Aβ mediates micro-

tubule disruption and microtubule-based transport impair-

ment leading to dystrophic neurite formation, BACE1 

accumulation, increased BACE1 cleavage of APP and Aβ 

production. Primary neurons treated with Aβ42 oligom-

ers exhibited disrupted microtubules, neuritic beading, and 

reduced BACE1-YFP trafficking after only a short Aβ42 

exposure in vitro. In the 5XFAD mouse model of amy-

loid pathology, presynaptic dystrophic neurites surround-

ing plaques showed BACE1 accumulation that correlated 

with aberrant localization patterns of tubulins, microtu-

bule motor proteins, and synaptic and cell body proteins. 

Tubulin was largely absent from human AD and 5XFAD 

BACE1-positive peri-plaque dystrophies and showed 
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increased BACE1:tubulin ratios and inverse relationships 

between BACE1 and tubulin. Although 5XFAD peri-plaque 

dystrophic neurites accumulated the lysosomal protease 

cathepsin D, it largely appeared to be immature pro-cath-

epsin D, suggesting that impaired lysosomal maturation 

correlates with BACE1 accumulation. By EM, peri-plaque 

dystrophic axons lacked intact microtubules, consistent 

with reduced tubulin by immunofluorescence microscopy. 

Remarkably, the toxic effects of amyloid on dystrophies 

were highly localized to the immediate vicinity of the 

plaque, with neighboring axons and terminals appearing 

normal. Multi-photon confocal microscopy 3D-reconstruc-

tions of live 5XFAD;BACE1-YFP brain slices invariably 

showed physical contact between BACE1-YFP-positive 

dystrophies and amyloid deposits. Most importantly, peri-

plaque dystrophies displayed BACE1 and APP accumula-

tion, increased BACE1 cleavage of APP, and elevated Aβ42 

generation.

Taken together, our results suggest the following work-

ing hypothesis of presynaptic dystrophic neurite formation 

and plaque progression (Fig. S6). During early stages of 

amyloid deposition, a plaque nidus forms stochastically in 

the parenchyma and is too small to be significantly toxic 

to axons and terminals. Following further Aβ addition, the 

plaque grows large enough to come into close proximity to 

a nearby axon or terminal and causes neurotoxicity derived 

from high local concentrations of either soluble Aβ oligom-

ers or insoluble Aβ fibrils. An as yet undefined cascade is 

triggered that leads to local destabilization and/or depolym-

erization of microtubules in the axon; microtubules in more 

distant regions of the axon are unaffected. Microtubule-

dependent axonal transport is impaired locally in the region 

of the axon nearest the plaque in which microtubules are 

disrupted, although transport is normal in segments further 

away from the plaque. Vesicles proximal and distal to the 

plaque undergoing anterograde and retrograde transport, 

respectively, detach from the ends of disrupted microtu-

bules and begin to accumulate causing swelling and axonal 

dystrophy nearest the plaque. The accumulation of vesicles 

containing APP, BACE1, and γ-secretase leads to increased 

APP processing and Aβ generation in the dystrophic region 

of the axon and may accelerate growth and development 

of the nearby plaque. This in turn results in a feed-for-

ward mechanism of increased axonal dystrophy, BACE1 

and APP accumulation, and Aβ generation. Together with 

dysfunction associated with axonal swelling and impaired 

transport, this cascade is likely to exacerbate downstream 

neurodegeneration leading to cognitive deficits. Despite 

being likely of presynaptic origin, peri-plaque dystrophies 

lack a structural protein of active zones, bassoon, suggest-

ing that they are not functional in synaptic transmission. 

Importantly, this cascade would disrupt vesicular traffick-

ing from the soma to the terminal and vice versa. Protein 

turnover could be inhibited resulting in accumulation of 

certain proteins like BACE1, and loss of others according 

to the specific cellular mechanisms by which their transport 

and degradation are controlled. In future work, it will be 

important to determine the potential roles of other major 

players in dystrophic neurite generation, such as Reticulon 

3, which has been implicated in dystrophic neurite forma-

tion [19, 52, 53], or the recently discovered η-secretase 

processing of APP [73] (see Supplementary Text, Fig. S7), 

in the processes that we describe here.

Our data suggest that BACE1-positive peri-plaque dys-

trophic neurites are axonal or terminal in origin due to the 

presence of the predominantly axonal protein neurofilament 

NF-M [25, 74], synaptic vesicle protein synaptophysin 

(Fig. 6b) [25, 85, 86] and myelination (Fig. 4), and absence 

of the somatodendritic protein MAP2 (Fig. 6c) [25, 85, 

86]. Moreover, endogenous BACE1 is highly concentrated 

in vesicles of presynaptic terminals [25]. Consistent with 

our results, other APP transgenic mice have peri-plaque 

APP-positive dystrophies that stain for synaptophysin and 

the presynaptic vesicular glutamate transporter VGLUT1 

but lack MAP2, and also have dystrophies that are myeli-

nated and accumulate autophagic intermediates by EM 

[50]. VGLUT1 and other presynaptic markers includ-

ing growth-associated protein 43 (GAP43), glutamic acid 

Fig. 9  BACE1 accumulation in peri-plaque dystrophic neurites 

increases BACE1 cleavage of APP and generation of Aβ42. Sagittal 

brain sections of 5XFAD mice were co-immunostained with anti-

bodies recognizing BACE1 and cleaved APP fragment neoepitopes 

(sAPPβ, 3D6, Aβ42) validated in Fig. 8. a The BACE1-cleaved free 

C-terminal neoepitope of sAPPβ (ANJJ, green) showed robust co-

localization with elevated BACE1 (red) in peri-plaque dystrophic 

neurites. Note the intense sAPPβ immunoreactivity in dystrophies, 

while little if any sAPPβ signal is present in surrounding neuropil, 

demonstrating dramatically elevated BACE1 cleavage of APP in 

BACE1-positive dystrophic neurites near amyloid deposits. b Anti-

body 3D6 (green), which recognizes the free N-terminal neoepitope 

of BACE1-cleaved Aβ, also co-localized with elevated BACE1 (red) 

in dystrophic neurites, confirming increased BACE1 activity and 

Aβ generation in dystrophies. Antibody 3D6 also detects amyloid 

plaques, as expected (example marked with asterisk). c Like 3D6, 

an antibody recognizing the free C-terminal neoepitope generated 

after γ-secretase cleavage of Aβ42 (green) co-localized with ele-

vated BACE1 (red) in peri-plaque dystrophies, and detected amyloid 

deposits, as expected (asterisk). d Co-immunostaining also demon-

strated that both sAPPβ (green) and 3D6 (Aβ, red) neoepitopes co-

localized in peri-plaque dystrophies. e Co-immunostaining with anti-

bodies against BACE1 (red) and APP (Karen, green) also showed a 

high level of co-localization. Note that all cleaved APP fragment 

neoepitopes and BACE1 show a punctate immunostaining pattern 

in dystrophies, suggesting that they are localized to vesicles such 

as endosomes, while APP immunostaining appears more uniform, 

implying greater cell surface localization. Panels in the right column 

of each set are high-magnification images of the boxed regions in 

the frames of the left column. DAPI staining (blue) identified nuclei 

and autofluorescence of amyloid deposit cores (marked by asterisks). 

Scale bar sizes are indicated in bottom panels for images in each col-

umn

◂
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decarboxylase 67 (GAD67), and choline acetyltransferase 

(ChAT) have also been shown to co-localize with BACE1 

in dystrophic neurites, supporting their presynaptic/axonal 

origin [85]. Although lack of BACE1 and MAP2 co-locali-

zation does not guarantee that BACE1-positive dystrophies 

are not dendritic, the robust co-localization of BACE1 with 

five presynaptic markers strongly suggests presynaptic ori-

gin. The absence of synaptic active zone scaffold protein 

bassoon in BACE1-positive dystrophies (Fig. 6a) could be 

caused by loss of normal synaptic structure. The post-syn-

aptic density protein PSD95 is also reduced around plaques 

[29], supporting this hypothesis. Thus, the majority of evi-

dence suggests that BACE1-positive peri-plaque dystro-

phies are presynaptic in origin, although we cannot exclude 

the possibility that some BACE1-positive dystrophic neur-

ites are post-synaptic/dendritic in nature.

There has been much debate about whether plaques are 

a toxic agent in Alzheimer’s disease, or a mechanism for 

the brain to sequester amyloid in a less harmful form. Early 

reports indicated that plaque load did not correlate well 

with cognitive impairment [1, 59]. However, recent work 

has shown that cerebral amyloid deposition identified by 

amyloid-PET imaging in cognitively normal and mildly 

impaired individuals predicts conversion to AD [22]. Fur-

thermore, numerous studies have documented toxic effects 

such as mitochondrial loss [77], oxidative damage [78], 

synapse loss [29], and spine loss [75] in the immediate 

vicinity of plaques. In our study, we found that dystrophic 

neurites appear to be in contact with amyloid plaques at 

the ultrastructural level (Fig. 4), by immunofluorescence 

microscopy (Figs. 3, 5, 6, 9, S3, S4) and in live slices by 

multi-photon confocal microscopy (Fig. S5; Videos S1, 

S2), whereas areas of neuropil slightly further away are 

morphologically normal. Interestingly, a study using an 

antibody specific to oligomeric Aβ (NAB61) determined 

that a halo of oligomeric Aβ extends ~6.5 µm beyond the 

edge of the fibrillar Aβ core [29]. These results suggest 

that plaques are sources of soluble Aβ oligomers, widely 

thought to be the toxic species in AD, that are in dynamic 

equilibrium with insoluble Aβ deposits, thus creating high 

local concentrations of neurotoxic Aβ.

Previous studies have reported that soluble Aβ levels in 

the brain are in the picomolar range [33, 76]. However, this 

estimate is based on biochemical isolation of Aβ from post-

mortem brain lysates and thus is the average concentration 

of soluble Aβ in the brain, but it may not reflect the local 

soluble Aβ concentration near the plaque. To our knowl-

edge, absolute soluble Aβ concentrations in the immediate 

vicinity of the plaque have not been quantified. Although 

a halo of Aβ oligomers emanating from individual plaques 

has been demonstrated [29], the absolute quantification of 

soluble peri-plaque Aβ concentrations was not performed 

in this study. Thus, we suggest that local peri-plaque 

concentrations of soluble Aβ may be much higher than 

average Aβ concentrations in the brain. If so, high local 

soluble Aβ concentrations may cause microtubule disrup-

tion and neuritic swelling in the portion of the neurite that 

is very near the plaque, but parts of the neurite that are far-

ther away would be exposed to lower soluble Aβ concentra-

tions that may not induce neuritic dystrophy. Such a local-

ized effect on only the peri-plaque portion of the neurite 

may not induce cell death processes in the distant cell body, 

at least not initially. This scenario is consistent with both 

our in vitro and in vivo results.

Although it is challenging to measure Aβ oligomer con-

centrations in the halo surrounding the amyloid deposit, 

the local concentrations of Aβ may reach very high values 

approaching the plaque. We used relatively high concentra-

tions of Aβ42 oligomers (1–10 µM) in our primary neuron 

experiments to model the high local oligomeric Aβ42 con-

centration in the immediate vicinity of the amyloid deposit. 

It is unlikely that microtubule disruption (Figs. 1, 2) and 

axonal transport impairment (Fig. S2) in Aβ42-treated pri-

mary neurons were the result of cell death processes, since 

propidium iodide staining showed no increase in dead 

cells in the Aβ42-treated cultures (Fig. S1). Additionally, 

we previously showed that 5 days of treatment with 1 or 

2 µM Aβ42 oligomers caused no significant increase of 

activated caspase 3 in primary neurons [49]. Microtubule 

disruption may occur at concentrations lower than 1 µM 

Aβ42, although we have not tested this yet. However, a pre-

vious study has shown that 0.5 µM Aβ42 oligomers does 

not appear to disrupt microtubules in primary neurons [7], 

suggesting that 1 µM Aβ42 may be a threshold concentra-

tion for microtubule disruption. The relationship between 

our in vitro and in vivo results still requires further inves-

tigation, but even in aged 5XFAD mice with high levels 

of soluble Aβ42, we observe microtubule disruption and 

aberrant tubulin localization only in the immediate vicin-

ity of amyloid deposits, suggesting that high Aβ42 concen-

trations are necessary for these effects. When conditional 

expression of APP in transgenic mouse brain is reduced 

by over 90 % with doxycycline treatment, Aβ40 and Aβ42 

levels in interstitial fluid drop by about 70 %, suggesting 

that while plaques are fairly stable over time, they do con-

tribute to soluble Aβ in the brain [13]. The hypothesis has 

been advanced that the toxic species of Aβ is generated in 

plaques, as the Aβ bound there over time becomes modi-

fied, gaining neurotoxicity [83]. Alternatively, insoluble 

fibrillar Aβ in plaques could be directly neurotoxic, or indi-

rectly induce toxicity through secondary mechanisms such 

as neuroinflammation. Much future research remains to 

precisely define the exact neurotoxic species of Aβ in AD.

The cellular and molecular mechanisms leading to amy-

loid-induced microtubule disruption and axonal dystrophy 

are not yet clear. Recent studies investigating the effects 
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of Aβ42 oligomers on Tau mis-sorting indicate that the 

microtubule-severing enzyme spastin mediates microtubule 

breakdown in dendrites [82]; however, a role for this mech-

anism in axons is unclear. It is unlikely that Tau is directly 

involved in the generation of dystrophic neurites, as hAPP; 

Tau−/− mice have the same plaque area and same percent-

age of plaques with dystrophic neurites as hAPP; Tau+/+ 

mice despite having improved survival and cognitive func-

tion [47]. Importantly, the absence of Tau did not affect the 

generation of APP-positive dystrophies that, based upon 

our results, were also likely BACE1-positive (Fig. 9e). 

These results suggest that Tau has an important role in 

Aβ-related cognitive deficits, but Tau does not appear cen-

tral to the effects of amyloid deposits on dystrophic neu-

rite formation. It is more likely that depolymerization of 

microtubules affects Tau phosphorylation, mis-sorting, and 

aggregation.

Aβ42 oligomers have been proposed to mediate toxic-

ity through a number of extracellular receptors such as 

glutamate receptors, p75 neurotrophin receptors, nicotinic 

acetylcholine receptors, amylin receptors, the receptor for 

advanced glycation end products (RAGE), insulin and IGF 

receptors, and others (reviewed in [42]). Activation of these 

receptors leads to changes in LTP, modulation of various 

signaling cascades, including Jun kinase, p38, MAPKs 

and p53, as well as caspase activation (reviewed in [42]), 

some of which can cause apoptosis and cell death. Oligo-

meric Aβ42 leads to synaptic dysfunction that correlates 

with cognitive decline, perhaps mediated through effects 

on NMDA receptors [63]. One study showed that NMDA 

receptor antagonists and GSK3β inhibitors prevented Aβ 

oligomer-induced disruption of axonal trafficking, suggest-

ing that these pathways are involved [7].

The identity of BACE1-positive vesicles in peri-plaque 

dystrophic axons is not yet clear. Our previous EM analy-

sis indicates that the dystrophies are heterogeneous, some 

containing smaller, clear vesicles, possibly endosomes, 

and others containing larger, multi-lamellar, electron-dense 

vesicles that may be autophagic/lysosomal intermediates 

[25]. By immuno-EM, BACE1 is predominantly found 

in dystrophies with small, electron-translucent vesicles. 

Recent work indicates that large numbers of Lamp1-posi-

tive immature lysosomes accumulate around plaques, and 

that BACE1 co-localizes with Lamp1, suggesting BACE1 

accumulation in immature lysosomes [15]. Although we 

have observed Lamp1 [25] and cathepsin D (this study) 

accumulation in peri-plaque dystrophies, co-localization 

of these lysosomal proteins with BACE1 is limited, sug-

gesting that BACE1 trafficking to lysosomes is impaired. 

Additionally, our data showing elevated immature proteo-

lytically inactive pro-cathepsin D in 5XFAD brains sup-

port the hypothesis that lysosomal maturation is impaired, 

which could reduce the degradation of BACE1 and cause 

it to accumulate. Further studies are needed to better char-

acterize the heterogeneity of peri-plaque dystrophies, and 

determine its causes and consequences.

While we clearly observed Aβ42 in presynaptic dys-

trophic neurites around plaques, future investigation must 

determine whether these dystrophies are a significant source 

of Aβ42 for plaque growth. Local Aβ generation should be 

higher in plaque-rich than in plaque-poor brain regions, and 

in older APP transgenic mice with elevated BACE1, com-

pared to young animals. If so, these data could indicate that 

stabilization of microtubules might be beneficial in slowing 

pathology and plaque growth, and perhaps preserve neu-

ronal and cognitive function for the treatment of AD.
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