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Abstract

Background: It is necessary and essential to discovery protein function from the novel primary sequences. Wet lab
experimental procedures are not only time-consuming, but also costly, so predicting protein structure and function
reliably based only on amino acid sequence has significant value. TATA-binding protein (TBP) is a kind of DNA
binding protein, which plays a key role in the transcription regulation. Our study proposed an automatic approach
for identifying TATA-binding proteins efficiently, accurately, and conveniently. This method would guide for the
special protein identification with computational intelligence strategies.

Results: Firstly, we proposed novel fingerprint features for TBP based on pseudo amino acid composition,
physicochemical properties, and secondary structure. Secondly, hierarchical features dimensionality reduction
strategies were employed to improve the performance furthermore. Currently, Pretata achieves 92.92% TATA-
binding protein prediction accuracy, which is better than all other existing methods.

Conclusions: The experiments demonstrate that our method could greatly improve the prediction accuracy and
speed, thus allowing large-scale NGS data prediction to be practical. A web server is developed to facilitate the
other researchers, which can be accessed at http://server.malab.cn/preTata/.

Keywords: TATA binding protein, Machine learning, Dimensionality reduction, Protein sequence features, Support
vector machine

Background

TATA-binding protein (TBP) is a kind of special protein,

which is essential and triggers important molecular func-

tion in the transcription process. It will bind to TATA box

in the DNA sequence, and help in the DNA melting. TBP

is also the important component of RNA polymerase [1].

TBP plays a key role in health and disease, specifically in

the expression and regulation of genes. Thus, identifying

TBP proteins is theoretically significant. Although TBP

plays an important role in the regulation of gene

expression, no studies have yet focused on the computa-

tional classification or prediction of TBP.

Several kinds of proteins have been distinguished from

others with machine learning methods, including DNA-

binding proteins [2], cytokines [3], enzymes [4], etc.

Generally speaking, special protein identification faces

three problems, including feature extraction from primary

sequences, negative samples collection, and effective clas-

sifier with proper parameters tuning.

Feature extraction is the key process of various protein

classification problems. The feature vectors sometimes

are called as the fingerprints of the proteins. The com-

mon features include Chou’s PseACC representation

[5], K-mer and K-ship frequencies [6], Chen’s 188D

composition and physicochemical characteristics [7],
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Wei’s secondary structure features [8, 9], PSSM matrix

features [10], etc. Some web servers were also developed

for features extraction from protein primary sequence,

including Pse-in-one [11], Protrweb [12], PseAAC [13],

etc. Sometimes, feature selection or reduction techniques

were also employed for protein classification [14], such as

mRMR [15], t-SNE [16], MRMD [17].

Negative samples collection recently attracts the atten-

tion from bioinformatics and machine learning re-

searchers, since low quality negative training set may

cause the weak generalization ability and robustness

[18–20]. Wei et al. improved the negative sample quality

by updating the prediction model with misclassified

negative samples, and applied the strategies on human

microRNA identification [21]. Xu et al. updated the

negative training set with the support vectors in SVM.

They predicted cytokine-receptor interaction success-

fully with this method [22].

Proper classifier can help to improve the prediction

performance. Support vector machine (SVM), k-nearest

neighbor (k-NN), artificial neural network (ANN) [23],

random forest (RF) [24] and ensemble learning [25, 26]

are usually employed for special peptides identification.

However, when we collected all available TBP and non-

TBP primary sequences, it was realized that the training

set is extremely imbalanced. When classifying and pre-

dicting proteins with imbalanced data, accuracy rates

may be high, but resulting confusion matrices are unsat-

isfactory. Such classifiers easily over-fit, and a large

number of negative sequences flood the small number of

positive sequences, so the efficiency of the algorithm is

dramatically reduced.

In this paper, we proposed an optimal undersampling

model together with novel TBP sequence features. Both

physicochemical properties and secondary structure pre-

diction are selected to combine into 661 dimensions

(661D) features in our method. Then secondary optimal

dimensionality searching generates optimal accuracy, sen-

sitivity, specificity, and dimensionality of the prediction.

Methods

Features based on composition and physicochemical

properties of amino acids

Previous research has extracted protein feature information

according to composition/position or physicochemical

properties [27]. However, analyzing only either compos-

ition/position or physicochemical properties alone does not

ensure that the process is comprehensive. Dubchak pro-

posed a composition, transition, and distribution (CTD)

feature model in which composition and physicochemical

properties were used independently [28, 29]. Cai et al.

developed the 188 dimension 188D feature extraction

method, which combines amino acid compositions with

physicochemical properties into a functional classification

of a protein based on its primary sequence. This method

involves eight types of physicochemical properties, namely,

hydrophobicity, normalized van der Waals volume, polarity,

polarizability, charge, surface tension, secondary structure,

and solvent accessibility. The first 20 dimensions represent

the proportions of the 20 kinds of amino acids in the se-

quence. Amino acids can be divided into three categories

based on hydrophobicity: neutral, polar, and hydrophobic.

The neutral group contains Gly, Ala, Ser, Thr, Pro, His, and

Tyr. The polar group contains Arg, Lys, Glu, Asp, Gln, and

Asn. The hydrophobic group contains Cys, Val, Leu, Ile,

Met, Phe, and Trp [30].

The CTD model was employed to describe global

information about the protein sequence. C represents

the percentage of each type of hydrophobic amino acid

in an amino acid sequence. T represents the frequency

of one hydrophobic amino acid followed by another

amino acid with different hydrophobic properties. D

represents the first, 25%, 50%, 75%, and last position of

the amino acids that satisfy certain properties in the se-

quence. Therefore, each sequence will produce 188 (20

+ (21) × 8) values with eight kinds of physicochemical

properties considered.

The 20 kinds of amino acids are denoted as

{A1, A2, …, A19, A20}, and the three hydrophobic group

categories are denoted as [n, p, h].

In terms of the composition feature of the amino

acids, the first 20 feature attributes can be given as

Ei ¼ Number of Ai in sequence j Length of sequence
� 100; 1≤i≤20ð Þ

Extracted features are organized according to the eight

physicochemical properties. Di (i = n, p, h) represents

amino acids with i hydrophobic properties. For each

hydrophobic property, we have

Ci ¼ number of Di in sequencej length of sequence
� 100; i ¼ n; p; hð Þ

Tij ¼ number of pairs like DiDj or

DjDi length of sequenceð Þ−1½ � � 100j

where i; j∈ i ¼ n; j ¼ pð Þ; i ¼ n; j ¼ hð Þ; i ¼ p; j ¼ hð Þf g:

Dij ¼ Pjth position of Di lengthj of sequence
� 100; j ¼ 0; 1; 2; 3; 4; i ¼ n; p; hð Þ

Pj ¼
1; j ¼ 0
⌊N 4� j⌋

�

�

�

; j ¼ 1; 2; 3; 4;N ¼ number of Di in sequenceð Þ

Based on the above feature model, the 188D features

of each protein sequence can be obtained.
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Features from secondary structure

Secondary structure features were proved to be efficient for

representing proteins. They contributed on the protein fold

pattern prediction. Here we try to find the well worked

secondary structure features for TBP identification. The

PSIPRED [31] protein structure prediction server (http://

bioinf.cs.ucl.ac.uk/psipred/) allows users to submit a protein

sequence, perform the prediction of their choice, and re-

ceive the results of that prediction both textually via e-mail

and graphically via the web. We focused on PSIPRED in

our study to improve protein type classification and predic-

tion accuracy. PSIPRED employed artificial neural network

and PSI-BLAST [32, 33] alignment results for protein

secondary structure prediction, which was proved to get an

average overall accuracy of 76.5%. Figure 1 gives an ex-

ample of PSIPRED secondary structure prediction.

Then we viewed the predicted secondary structure as

a sequence with 3-size-alphabet, including H(α-helix),

E(β-sheet), C(γ-coil). Global and local features were ex-

tracted from the secondary structure sequences. The

total of the secondary structure is 473D.

Features dimensionality reduction

The composition, physicochemical and secondary structure

features are combined into 611D high dimension feature

vectors. We try to employ the feature dimensionality reduc-

tion strategy for delete the redundant and noise features. If

two features are highly dependent on one another, their

contribution toward distinguishing a target label would be

reduced. So the higher the distance between features, the

more independent those features become. In this work, we

employed our previous work MRMD [17] for features

dimension reduction. MRMD could rank all the features

according their contributions to the label classification. It

also considers the feature redundancy. Then the important

features would be ranked on top.

To alleviate the curse of high dimensionality and

reduce redundant features, our method uses MRMD to

reduce the number of dimensions from 661 features,

and searches for an optimal dimensionality based on

secondary dimension searching. MRMD calculates the

correlation between features and class standards using

Pearson’s correlation coefficient, and redundancy among

features using a distance function. MRMD dimension

reduction is simple and rapid, but can only produce re-

sults one by one, and increases the actual computation

time greatly. Therefore, based on the above analyses, we

developed Secondary-Dimension-Search-TATA-binding

to find the optimal dimensionality with the best ACC, as

shown in Fig. 2 and Algorithm 1.

Fig. 1 PSIPRED graphical output from prediction of a TBP (CASP3 target Q8CII9) produced by PSIPRED View—a Java visualization tool that

produces two-dimensional graphical representations of PSIPRED predictions
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As described in Fig. 2 and Algorithm 1, searching the

optimal dimension contains two sub-procedures: the coarse

primary step, and the elaborate secondary step. The pri-

mary step aims to find large-scale dimension range as much

as quickly. The secondary step is more elaborate searching,

which aims to find specific small-scale dimension range to

determine the final optimal accuracy, sensitivity and specifi-

city. In the primary step, we define the initial dimension

reasonably according to current dataset, and a tolerable di-

mension, which is also the lowest dimension. Based on this

primary step, the dimensionality of sequences will become

sequentially lower with MRMD analysis. After finding the

best accuracy from all running results finally, the secondary

step starts. In the secondary step, MRMD runs and scans

all dimensions according to the secondary step sequentially

to calculate the best accuracy, which likes the primary step.

Fig. 2 Optimal dimensionality searching based on MRMD
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Negative samples collection

There is no special database for the TBP negative sample,

which is often appeared for other special protein identifi-

cation problem. Here we constructed this negative dataset

as followed. First, we list all the PFAM for all the positive

ones. Then we randomly selected one protein from the

remaining PFAMs. Although one TBP may belongs to sev-

eral PFAMs, the size of negative samples is still far more

than the positive ones. In order to get a high quality nega-

tive training set, we updated the negative training samples

repeatly. First, we randomly select some negative proteins

for training. Then the remaining negative proteins were

predicted with the training model. Anyone who was pre-

dicted as positive was considered near to the classification

boundary. These ones who had been misclassified would

be updated to the training set and replace the former

negative training samples. The process repeated several

times unless the classification accuracy would not im-

prove. The last negative training samples were selected for

the prediction model.

The raw TBP dataset is downloaded from the Uniport

database [34]. The dataset contains 964 TBP protein se-

quences. We clustered the raw dataset using CD-HIT [35]

before each analysis, because of extensive redundancy in

the raw data (including many repeat sequences). We

found 559 positive instances (denoted ΩTata) and 8465

negative instances at a clustering threshold value of 90%.

Then 559 negative control sequences (denoted Ωnon −Tata.)

were selected by random sampling from the 8465 se-

quence negative instances.

Support vector machine (SVM)

Comparing with several classifiers, including random forest,

KNN, C4.5, libD3C, we choose SVM as the classifier due to

its best performance [36]. It can avoid the over-fitting prob-

lem and is suitable for the less sample problem [37–40].

The LIBSVM package [41, 42] was used in our study to

implement SVM. The radial basis function (RBF) is chosen

as the kernel function [43], and the parameter g is set as 0.5

and c is set as 128 according to the grid optimization.

We also tried the ensemble learning for imbalanced

bioinformatics classification. However, the performance

is as good as SVM while the running time is much more

than SVM.

Results

Measurements

A series of experiments were performed to confirm the

innovativeness and effectiveness of our method. First, we

analyzed the effectiveness of extracted feature vectors

based on pseudo amino acid composition and secondary

structure, and compared this to 188D, PSIPRED, and

661D. Second, we showed the performance of our opti-

mal dimensionality search under high dimensions, and

compared these findings with the performance of an

ensemble classifier. Finally, we estimated high quality

negative sequences using an SVM, to multiply repeat the

classification analysis.

Two important measures were used to assess the

performance of individual classes: sensitivity(SN) and

specificity(SP):

SN ¼
TP

TPþ FN
� 100%

SP ¼
TP

TNþ FP
� 100%

Additionally, overall accuracy (ACC) is defined as the

ratio of correctly predicted samples over all tested sam-

ples [44, 45],:

ACC ¼
TPþ TN

TPþ TNþ FPþ FN
� 100%

where TP, TN, FN, and FP are the number of true posi-

tives, true negatives, false negatives, and false positives,

respectively.

Joint features outperform the single ones

We extracted composition and physicochemical fetures

(188D), secondary structured features (473D), and the joint

features (611D) for comparison. These data were trained,

and the results of our 10-fold cross-validation were ana-

lyzed using Weka (version 3.7.13) [46]. We then calculated

the SN, SP, and ACC values of five common and latest clas-

sifiers and illustrated the results in Figs. 3, 4, and 5.

We picked five different types of classifiers, with the aim

of reflecting experimental accuracy more comprehen-

sively. In turn: LibD3C is an ensemble classifier developed

by Lin et al. [47]. LIBSVM is a simple support vector ma-

chine tool for classification developed by Chang et al. [41].

IBK [48] is a k-Nearest neighbors, non-parametric algo-

rithm used for classification and regression. Random

Forest [49, 50] is an implementation of a general random

decision forest technique, and is an ensemble learning

method for classification, regression, and other tasks.

Bagging is a machine learning ensemble meta-algorithm

designed to improve the stability and accuracy of machine

learning algorithms used in statistical classification and re-

gression. Using these five different category classification

tests, we concluded that the combination of the

composition-physicochemical features (188D) and the sec-

ondary structured features (473D) together is significantly

superior to any single method, judging by ACC, SN, and

SP values. In other words, neither physicochemical prop-

erties, nor secondary structure measurements alone can

sufficiently reflect the functional characteristics of protein
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sequences enough to allow accurate prediction of protein

sequence classification. A comprehensive consideration of

both physicochemical properties and secondary structure

can adequately reflect protein sequence functional charac-

teristics. As for the type of classifier, LIBSVM had the best

classification accuracy with our data, achieving up to

90.46% ACC with the 611D dataset. Furthermore,

LIBSVM had better SN and SP indicator results than the

other classifiers tested as well. These conclusions sup-

ported our consequent efforts to improve the current ex-

periment using SVM, with hopes that we can obtain

better performance while handling imbalanced datasets.

Experiment in 4.3 will verify the SVM, but first we

needed to consider another important issue. That is:

what is the best dimensionality search method for re-

ducing the 661D features dynamically to obtain a

lower overall dimensionality and, thus, a higher accur-

acy with its final results.

Dimensionality reduction outperforms the joint features

According to the former experiments, we concluded that

the classification performance of 611D is far better than

composition-physicochemical fetures (188D) or the sec-

ondary structured features (473D) alone, and that

LIBSVM is the best classifier for our purposes. Then we

tried MRMD to reduce the features. In order to save the

Fig. 3 Five classifier sensitivities (SN)

Fig. 4 Five classifier specificities (SP)
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Fig. 5 Five classifier accuracies (ACC)

Fig. 6 SN, SP, and ACC of the primary step
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estimating time, we first reduced 20 features every time,

and compared the SN, SP, and ACC values, as shown in

Fig. 6. We found that it performed better with 230–330

features. In the second step, we tried the features size

with decreasing 2 every times from 230 to 330, as shown

in Fig. 7. Optimal SN, SP, and ACC values are shown in

Figs. 6 and 7 for each step.

The coarse search is illustrated in Fig. 6. The best

ACC we obtained using LIBSVM is 91.58%, which is

better than in the joint features in 4.1. Furthermore,

ACC, SN, and SP all display outstanding results with

combined optimal dimensionalities ranging from 220D

to 330D. Figure 7 illustrates the elaborate search. The

scatter plot displays the best ACC, SN, and SP values,

92.92, 98.60, and 87.30%, respectively. The scatter plot

distribution suggested that there was no clear mathem-

atical relationship between dimensionality and accur-

acy. Therefore, we considered whether our random

selection algorithm is adequate to obtain the negative

sequences in our dataset. We had to perform another

experiment concerning the manner which we were

obtaining our negative sequences to answer this

question. We designed the next experiment to address

the issue.

Negative samples have been highly representive

In the previous experiments we selected randomly the

negative dataset Ωnon −Tata. It may be doubted that

whether the random selection negative samples were

representive and reconstruction of training dataset can

improve the performance. Indeed, the positive and nega-

tive training samples are filtered with CD-HIT, which

guaranteed the high diversity. Now we try to improve

the quality of the negative samples and check whether

the performance could be improved. We selected the

negative samples randomly several times, and built the

SVM classification models. Every time, we kept the sup-

port vectors negative samples. Then the support vectors

negative samples construct a new high quality negative

set, called plus Ωnon‐Tata.

The dataset is still ΩTata and plus Ωnon −Tata, but now

includes 559 positive sequences and 7908 negative

sequences. First, the program extracts negative se-

quences from ΩTata. The 20% of the original dataset that

has the longest Euclidean distance will be reserved, and

then the remaining 80% needed will be extracted from

Ωnon − Tata. Processing will not stop until the remaining

negative sequences cannot supply ΩTata. This process

creates the highest quality negative dataset possible.

Fig. 7 SN, SP, and ACC of the secondary step
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Experiment in section 4.2 is then repeated with this

highest quality negative dataset, instead of the random

sample. Primary and secondary step values were esti-

mated and PreTata was run to generate a scatter diagram

illustrating dimensionality and accuracy.

Figure 8 illustrates the coarse search. The best ACC is

83.60% by LIBSVM at 350D. ACC, SN, and SP also show

outstanding results with dimensionality ranging from

450D to 530D. Figures 9 illustrates the elaborate search.

The scatter plot clearly displays the best ACC, SN, and

SP as 84.05, 88.90, and 79.20%, respectively. However,

we found that there was still no clear mathematical rela-

tionship between dimensionality and accuracy from this

scatter plot distribution, and the performance of the ex-

periment was no better than Experiment in section 4.2.

In fact, the results may be even more misleading. We

concluded that the negative sequences of experiment in

section 4.2 were sufficiently equally distributed and had

large enough differences between themselves. Although

we selected high quality negative sequences with SVM

in this experiment, the performance of classification

and prediction did not improve. Furthermore, the ACC

does not get higher and higher as dimensionality gets

larger and larger, which is a characteristic of imbal-

anced data.

Comparing with state-of-arts software tools

Since there is no TBP identification web server or tool

with machine learning strategies to our knowledge, we

can only test BLASTP and PSI-BLAST for TBP identifica-

tion. We set P-value for BLASTP and PSI-BLAST less

than 1. And the sequences with least P-value were se-

lected. If it is a TBP sequence, we consider the query one

as TBP; otherwise, the query protein is considered as non-

TBP one. Sometimes, BLASTP or PSI-BLAST cannot

output any result for some queries, where we record as a

wrong result. Table 1 shows the SN, SP and ACC com-

parison. From Table 1 we can see that our method can

outperform BLASTP and PSI-BLAST. Furthermore, for

the no result queries in PSI-BLAST, our method can also

predict well, which suggested that our method is also

beneficial supplement to the searching tools.

Discussion

With the rapidly increasing research datasets associated

with NGS, an automatic platform with high prediction

Fig. 8 SN, SP, and ACC of the primary step with high quality negative samples
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accuracy and efficiency is urgently needed. PreTata is

pioneering work that can very quickly classify and

predict TBPs from imbalanced datasets. Continuous im-

provement of our proposed method should facilitate

even further researcher on theoretical prediction.

Our works employed advanced machine learning tech-

niques and proposed novel protein sequence fingerprint

features, which do not only facilitate TBP identification,

but also guide for the other special protein detection

from primary sequences.

Conclusions

In this paper, we aimed at TBP identification with

proper machine learning techniques. Three feature

extraction methods are described: 188D based on phys-

icochemical properties, 473D from PSIPRED secondary

structure prediction results. Most importantly, we

developed and describe PreTata, which is based on a

secondary dimensionality search, and achieves better

accuracy than other methods. The performance of our

classification strategy and predictor demonstrates that

our method is feasible and greatly improves prediction

efficiency, thus allowing large-scale NGS data predic-

tion to be practical. An online Web server and open

source software that supports massive data processing

were developed to facilitate our method’s use. Our

project can be freely accessed at http://server.malab.cn/

preTata/. Currently, our method exceeds 90% accuracy

in TBP prediction. A series of experiments demon-

strated the effectiveness of our method.
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