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We numerically study the dynamics after a parameter quench in the one-dimensional transverse-field

Ising model with long-range interactions (∝1/rα with distance r), for finite chains and also directly in the

thermodynamic limit. In nonequilibrium, i.e., before the system settles into a thermal state, we find a long-lived

regime that is characterized by a prethermal value of the magnetization, which in general differs from its thermal

value. We find that the ferromagnetic phase is stabilized dynamically: as a function of the quench parameter, the

prethermal magnetization shows a transition between a symmetry-broken and a symmetric phase, even for those

values of α for which no finite-temperature transition occurs in equilibrium. The dynamical critical point is shifted

with respect to the equilibrium one, and the shift is found to depend on α as well as on the quench parameters.

DOI: 10.1103/PhysRevB.95.024302

I. INTRODUCTION

In equilibrium, phase transitions and critical phenomena

are well established and much studied, and implications like

universality and scaling are well understood. Extending these

concepts to nonequilibrium is a topic of active research.

Fundamentally different notions of so-called dynamical

quantum phase transitions have been proposed, but their

mutual relations, and also the associated universality classes

and scaling laws, are only poorly understood. In this paper

we are concerned with a type of dynamical quantum phase

transition that is based on the notion of an order parameter,

similar to Landau’s theory of phase transitions in equilibrium.

The key idea is to identify a dynamical quantum phase

transition on the basis of a suitable order parameter in a

prethermal regime, i.e., a nonequilibrium regime in which the

system may be found before relaxing to thermal equilibrium,

and which persists sufficiently long such that a value can

be assigned to the order parameter [1–14]. A prethermal

state retains some memory of the initial state of the system,

therefore the prethermal value of the order parameter will in

general differ from its thermal equilibrium value, and it may

or may not show symmetry breaking and other signatures

associated with the occurrence of a phase transition [15].

A simple protocol for probing such a dynamical quantum

phase transition is a quantum quench into the vicinity of

an equilibrium quantum critical point. Consider a family of

Hamiltonians H (λ) = H1 + λH2, parametrized by λ ∈ R. In

equilibrium at zero temperature and some critical parameter

value λc, a quantum phase transition will in many cases occur,

i.e., an abrupt change of the ground-state properties of H .

The idea of a quantum quench is to prepare the system in

the ground state of H (λ0), and then, starting at time t = 0,

time-evolve that state under H (λ) with λ �= λ0. Depending

on the quench parameters and the system under investigation,

signatures similar to those of the equilibrium phase transition

may or may not persist and be visible after the quench,

critical properties may be modified, enhanced, or attenuated.

Questions of this sort have previously been addressed mostly

in mean-field models [5,6] and field theories [7,9,10].

Dynamical quantum phase transitions are expected to be

related in some way to their equilibrium counterparts, as they

show a similar kind of symmetry breaking and are signalled by

the same order parameter. Whether such a relation exists in all

cases, and what its precise nature is, is a question that we want

to address in this paper. A relation to equilibrium quantum

phase transitions at T = 0 is supported by the fact that in

previous work dynamical quantum phase transitions have been

observed by quenching into the vicinity of a quantum critical

point. Additionally, a relation to a finite-T phase transition

may be conjectured by noticing that a quench populates excited

states above the ground state of the postquench Hamiltonian,

which generically, at least after sufficiently long times, are

expected to approach a thermal distribution with T > 0.

II. LONG-RANGE TRANSVERSE-FIELD ISING MODEL

To probe the relation between equilibrium and dynamical

quantum phase transitions, we study a model that has a

quantum phase transition at zero temperature, and additionally,

depending on a parameter, may or may not have a finite-T

transition as well. A model that has these desired properties

is the transverse-field Ising model (TFIM) with ferromagnetic

power-law interactions,

H (h) = −

L∑

i>j=1

σ z
i σ z

j

|i − j |α
− h

L∑

i=1

σ x
i . (1)

We consider one-dimensional lattices consisting of L lattice

sites, and σ a
i with a ∈ {x,y,z} denote the components of Pauli

spin-1/2 operators on lattice site i. The exponent α in (1)

tunes the range of the spin-spin interaction, from all-to-all

coupling at α = 0 to nearest-neighbor coupling in the limit

α → ∞. We restrict the discussion to exponents α > 1, so

that an N -dependent scaling factor to make the Hamiltonian

(1) extensive is not needed. For all values of α, this model has
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FIG. 1. Schematic phase diagram of the long-range TFIM (1).

The model exhibits an equilibrium quantum phase transition at a

critical point hc(α) for all values of α. A finite-T phase transition

occurs only for α < 2 (left), but not for α > 2 (right). Quenching

from hi = 0 to hf = h and letting the system thermalize, equilibrium

states on a line Tf(h) (blue line in the left plot) are reached at long

times. The phase-transition line is crossed at a field h̃c < hc(α), which

results in a shift of the critical field with respect to the quantum critical

point.

a quantum phase transition at some critical magnetic field

hc(α), whereas a finite-T phase transition occurs only for

α � 2 [16,17] (see Fig. 1 for an illustration).

We use the magnetic field h as a quench parameter, starting

in the ground state |ψi〉 of an initial Hamiltonian H (hi) at time

t = 0, and then time-evolving that state under the evolution

generated by a Hamiltonian H (hf) with a field hf different from

hi. We will mainly consider quenches starting from hi = 0, i.e.,

initial states from the degenerate ground space, where we pick

the symmetry-broken, fully polarized state in the +z direction.

Our aim is to detect the occurrence of a dynamical quantum

phase transition by monitoring the magnetization

m(t) =
1

L

L∑

j=1

〈ψi(t)|σ
z
j |ψi(t)〉, (2)

where |ψi(t)〉 = exp[−iH (hf)t]|ψi〉 is the time-evolved state

after the quench.

Except for the extreme cases α = 0 and α = ∞, the model

(1) is nonintegrable, and is expected to thermalize in the

long-time limit. Hence, in that limit, the magnetization (2) will

show order-parameter-like behavior for α < 2, or be vanishing

throughout for α > 2, as predicted by the phase diagrams

in Fig. 1. While thermalization will happen eventually, the

corresponding time scale can be extremely long, so long in fact

that it may become irrelevant for experimental observations.

III. DYNAMICAL QUANTUM PHASE TRANSITIONS

A dynamical quantum phase transition may be detected by

studying the order parameter m as a function of the final quench

parameter hf in a nonequilibrium regime corresponding to

intermediate time scales. To generate some intuition on what

kind of behavior to expect, it is instructive to consider two

limiting cases: (i) For small quenches from hi = 0 to hf � 0,

excitations above the ground state of H (hf) are only sparsely

populated, the dynamics towards a finite-T thermal state of

Hamiltonian will take place very slowly, and a memory of the

nonvanishing magnetization of the ground state of H (0) will be

retained for a long time. (ii) For a large quench well beyond the

critical point, hf ≫ hc(α), excitations are massively populated,

no slow variables are expected to exist, and a rapid approach

to m = 0 is expected. In between these two extreme cases (i)

and (ii), one may expect a transition between a regime with

nonvanishing magnetization at small hf and a regime with

vanishing m at large hf. Such a dynamical quantum phase tran-

sition has previously been observed in the TFIM with all-to-all

interactions (α = 0) [12,18,19], but this case is special in more

than one way and its behavior is not expected to be generic.

IV. NUMERICAL METHODS

In this paper we use two complementary numerical meth-

ods to study dynamical quantum phase transitions after a

quench in the general (nonintegrable) TFIM with long-range

interactions (1). The first is the time-dependent density ma-

trix renormalization-group (t-DMRG) [20–27] method with

Krylov [28] time evolution, which we apply to finite chains

of up to 128 sites. The second is a method based on a

time-dependent variational principle for matrix product states

[22,29–31], tailored for simulating the dynamics of long-range

lattice systems in the thermodynamic limit. Details on this

numerical method, which we abbreviate by iMPS, are provided

in the companion paper [32]. The combination of the two

methods allows us to observe finite-size effects as would be

visible in experimental realization on the one side, but also

clean infinite-system idealizations as they are used in theoret-

ical approaches. Both numerical methods are certified in the

sense that they use well controlled approximations, tunable by

an upper bound of the entanglement of the simulated states,

which we set to achieve good simulation accuracies. During the

simulation we monitor the order parameter m as a function of

time (2), as illustrated in Fig. 2 for different quench parameters.

FIG. 2. Time evolution of the order parameter m as obtained

from iMPS simulations for long-range exponent α = 3. (Data from

finite-size t-DMRG simulations look very similar.) For a strong

quench from hi = 0 to hf = 0.99, the magnetization quickly decays

towards zero (yellow line) and is well approximated by a power law

(lower black line). For a small quench from hi = 0 to hf = 0.28, the

magnetization shows an initial decay away from its initial value of

1 on a fast time scale (inset), and then saturates to a nonzero value

for rather long times (blue line). Eventually, for the chosen parameter

values and on a time scale not accessible in simulations, the system

will thermalize to a state with zero magnetization.
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The time scales that can be reached in the simulation depend

on the lattice size L, but also on other system and quench

parameters. The simulation methods used are considered the

current state of the art for one-dimensional spin systems.

V. THERMAL BEHAVIOR AFTER A QUENCH

Before discussing dynamical quantum phase transitions at

intermediate times, it is instructive to review the well-known

equilibrium physics of the long-range TFIM [16,17] in the

context of quantum quenches and long-time limits. Starting

in the ground state corresponding to hi = 0 and quenching to

hf �= 0, the system will not be in the ground state of H (hf).

A nonintegrable model like the one we are studying is then

believed to thermalize after a sufficiently long time towards a

finite-temperature Gibbs state. The temperature of that state

depends on hf, and this dependence can be described by some

function Tf(hf). This implies that, by performing a quench

and waiting sufficiently long for the system to thermalize,

one explores the (T ,h) equilibrium phase diagram along the

line (Tf(hf),hf) parametrized by hf (blue line in Fig. 1). A

phase transition will be observed for all α � 2 as predicted

by equilibrium thermodynamics, and it will occur at a critical

field h̃c [corresponding to the value at which Tf(h) crosses the

thermal equilibrium transition line] that is smaller than hc of

the quantum phase transition.

VI. DYNAMICAL QUANTUM PHASE TRANSITION

OF THE LONG-RANGE TFIM

Quenching and waiting for thermalization to occur is

therefore not a way of observing nonequilibrium physics. To

probe dynamical features we have to look at shorter time scales.

The inset of Fig. 2 indicates that it is indeed reasonable and

beneficial to use equilibrium concepts for the description of

nonequilibrium observations on intermediate time scales. The

magnetization in that plot starts at 1, and quickly decays away

from this value to reach a plateau of m̃ = 0.97 around which it

oscillates for the times reached in simulations. This prethermal

value differs from thermal equilibrium, which is known to be

m = 0 for the parameters used in Fig. 2. The existence of two

separate time scales is a key ingredient for making dynamical

quantum phase transitions a meaningful concept: a fast time

scale, on which the system evolves away from its trivial initial

state, is needed, and a much longer time scale on which thermal

equilibrium is reached, such that a long-lived almost-constant

nonequilibrium value m̃ can be assigned at intermediate

times. Our aim is to extract from the simulation data such

prethermal magnetization values m̃, which are indicative of the

nonequilibrium physics on intermediate time scales relevant in

various experimental settings. For some parameter values, the

quasistationary value m̃ is clearly visible and easy to extract,

while in other cases the limited simulation times require a fit

and subsequent extrapolation to later times. These fitting and

extrapolation procedures, which are described in more detail in

the Appendix, are part of the “definition” we use to extract the

prethermal magnetization m̃. While the bare simulation data

are essentially free of errors, the fitting procedure introduces

some uncertainty, and extrapolation of the fit function to later

times can lead to a significant enhancement of these errors in m̃.

FIG. 3. Prethermal magnetization m̃ plotted as a function of the

final quench parameter hf. Both plots are for quenches starting from

hi = 0, and for various system sizes as indicated in the legends. The

existence of a magnetized phase for small hf and an unmagnetized

phase for large hf is clearly visible for α = 1.6 (top) and α = 3

(bottom).

Plotting the thus obtained prethermal magnetization m̃ as a

function of the quench parameter hf, we find a behavior that

is reminiscent of an order parameter; see Fig. 3. Due to the

error bars of m̃ it is difficult to determine the precise transition

point of this dynamical quantum phase transition on the basis

of our numerical data, but we can confirm the existence of a

magnetized phase for small quenches, and an unmagnetized

phase for large quenches. Remarkably, the magnetized phase is

clearly visible also for α = 3, and hence the dynamical phase

diagram in this case differs drastically from its equilibrium

counterpart, which does not have a ferromagnetic phase for

α > 2. The comparison with iMPS data for infinite lattices

confirms that this finding is not a finite-size artefact and

indeed persists in the thermodynamic limit. Unfortunately,

the (rather conservatively estimated) error bars in Fig. 3 do

not allow us to clearly establish whether or not the transition

from the magnetized to the unmagnetized phase is indeed a

sharp one, or to even extract critical exponents of such a

dynamical quantum phase transition. As is evident from Fig. 3,

the critical field h̃c at which the transition occurs becomes

smaller for larger exponents α. This suggests that for such

shorter-ranged interactions the prethermalized state can be

dynamically stabilized only for smaller quenches, and in that
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FIG. 4. Prethermal magnetization m̃ plotted as a function of the

final quench parameter hf for α = 2.3. Top: quenching from hi =

0; bottom: quenching from hi = 0.2. Both plots show qualitatively

similar behavior. A slight dependence of the dynamical critical point

on hi, as expected for the thermal behavior in the long-time limit after

the quench, might also be present in the prethermalized regime on

intermediate time scales, but cannot be established beyond doubt.

sense the ferromagnetically ordered state is less robust. We

expect that h̃c approaches hi in the limit α → ∞, in agreement

with the observation that exponential decay to the (generalized

Gibbs) equilibrium value sets in immediately in the TFIM with

nearest-neighbor interactions.

VII. OTHER TYPES OF QUENCHES

As is usually the case in critical phenomena, the dynamical

critical point is expected to be nonuniversal, but to depend

on details of the Hamiltonian and, in our case, also on the

quench protocol, in particular the initial quench parameter hi.

From the above discussion of the thermal equilibrium behavior

after a quench, it appears plausible that also the dynamical

critical point h̃c should be shifted towards slightly larger values

with increasing hi. To probe this effect, we consider quenches

with different prequench Hamiltonians H (hi), using initial

fields hi = 0 and 0.2. In Fig. 4 we show and compare the

corresponding dynamical phase diagrams. In both cases the

transition from a dynamically ordered to a disordered phase

is clearly established, but a shift of the dynamical transition

point, if present, is concealed by numerical noise.

It would be interesting to complement the results presented

in this paper by studying quenches in the opposite direction,

i.e., starting from the fully x-polarized ground state of the

Hamiltonian (1) in the limit hi → ∞ and quenching towards

and across the quantum critical point from above. This setting

is somewhat more difficult to investigate numerically, as in

this case, in addition to the Hamiltonian, the initial state is

also Z2 symmetric. As a consequence, the magnetization is

zero for all times and cannot be used to detect a dynamical

quantum phase transition. Alternatively, one could use second

cumulants of the order parameter as done in Ref. [12], but such

a signal is difficult to detect on the basis of limited-time data.

Another possibility is to detect critical behavior on the basis

of a diverging correlation length, as proposed in Ref. [33], but

such an approach is tricky in long-range models, where, even

away from criticality, ground-state correlations are in general

not exponentially clustered and hence the correlation length is

diverging (or ill defined).

VIII. CONCLUSIONS

In summary, we have studied the occurrence of a dynamical

quantum phase transition after a quench of the magnetic field

in a transverse-field Ising model with long-range interactions.

We have provided evidence that a symmetry-broken, ferro-

magnetic phase can be stabilized dynamically, in the sense that

it persists for intermediate times in a prethermalized regime,

even in the absence of a ferromagnetically ordered equilibrium

phase at finite temperature. Our iMPS variational principle

allows us to clearly confirm that such a symmetry-broken

phase also persists in the thermodynamic limit. Whether the

transition to a symmetric phase with magnetization m̃ = 0 is

a sharp one, or a smooth crossover, cannot be establish with

absolute certainty on the basis of numerical data. So while our

results are not fully conclusive on this aspect, the numerical

data do not hint at a nonvanishing m̃ for sufficiently large hf.

We studied the dependence of the dynamical quantum phase

transition on model parameters and quench parameters, in

particular on the long-range exponent α and the prequench

magnetic field hi. While a specific model was chosen for

the numerical study, we expect our findings to be valid

more generally for long-range models, also in higher lattice

dimension.

The question studied in this paper is a numerically chal-

lenging one, and our results are obtained by state-of-the-

art implementations of t-DMRG for finite one-dimensional

lattices and an iMPS variational principle for infinite lattices.

The latter is particularly suited for the problem at hand. An

experimental investigation of the phenomena described in

this paper should also be feasible: one-dimensional [34,35]

or two-dimensional [36] arrays of trapped ions allow for the

emulation of long-range interacting Ising spins in a magnetic

field and, at least in principle, long-range exponents can

be tuned in the range 0 � α � 3 [37]. Preparation of fully

polarized initial states as well as parameter quenches are

feasible by standard experimental techniques. The required

time scales, like in the numerical simulations, are an issue, but

do not seem entirely out of reach.

Note added in proof. When finishing up this work we

became aware of a preprint by Žunkovič et al. [38] that
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addresses a similar question, but reaches different conclusions.

In particular, the finite-size scaling extrapolations of Ref. [38]

are inconsistent with our infinite-system data.

ACKNOWLEDGMENTS

The authors would like to thank P. Calabrese, L. Carr,

D. Draxler, M. Eckstein, J. Haegeman, D. Jaschke, S. Kehrein,

F. Piazza, and F. Verstraete for fruitful discussions. V.Z.-S.

acknowledges financial support by the Austrian Science Fund

(FWF), Grants No. F4104 SFB ViCoM and No. F4014 SFB

FoQuS. I.P.M. acknowledges support from the Australian

Research Council (ARC) Centre of Excellence for Engineered

Quantum Systems, Grant No. CE110001013, and the ARC Fu-

ture Fellowships scheme, FT140100625. I.d.V. acknowledges

support by the Nanosystems Initiative Munich (NIM) (Project

No. 862050-2). M.K. acknowledges support from the National

Research Foundation of South Africa via the Incentive Funding

and the Competitive Programme for Rated Researchers.

APPENDIX: FITTING PROCEDURE

When fitting numerical data like those of Fig. 2, the

situation can be summarized as follows: We have data of high

accuracy, limited to an interval of times up to the order of

10. The data show a decaying tendency, with fairly strong

oscillations superimposed, like in the inset of Fig. 2. Our

aim is to extrapolate the decay to intermediate times that

are, say, an order of magnitude longer than the times tf
reached in the simulations. This time scale of extrapolation

is reasonable for several reasons: (i) It is substantially longer

than the time scale on which the decay to a prethermalization

plateau occurs, hence we look at a time scale that is well

separated from the initial dephasing dynamics. (ii) It is at least

comparable to the time scales that, with some optimism, might

be reached in experimental implementations. (iii) The time

scale is short enough such that the error bar that propagates to

the extrapolated value is manageable. (Extrapolations to times

that are orders of magnitude longer than the simulated times

simply become unreliable.)

The main difficulty arises from the fact that the functional

form of the decay is not known. Depending on the type of

model, quench, and quantity monitored, the decay could be

exponential, power law, a combination of both, or something

else. To account for this lack of knowledge, we decided to fit

a variety of functions to the data,

m1(t) = A exp(−at), (A1a)

m2(t) = A exp(−at) + c, (A1b)

m3(t) = At−a, (A1c)

m4(t) = At−a + c, (A1d)

m5(t) = A(t − t0)−a, (A1e)

with A, a, c, and/or t0 as real fit parameters. Using Mathe-

matica’s NonlinearModelFit, optimal values are returned

together with standard error estimates for the fit parameters.

The error bars for the fit parameters give us a first indication

on which fit functions are suitable for a given data set: If,

for a given fit function, one or several of the fit parameters

FIG. 5. Illustration of the fitting and extrapolation procedure for

α = 3, hi = 0, hf = 0.28. The oscillating blue line shows the iMPS

data. Dashed lines (yellow and green, almost on top of each other and

hardly distinguishable on the scale of the plots) show the exponential

fit functions m1 and m2, solid lines (orange, brown, and purple, again

hardly distinguishable) show power law fits m3, m4, and m5. For

the three-parameter fits m2, m4, and m5, the optimal values of the

fit parameters come with large error bars, and those functions are

therefore discarded. Among the two-parameter fits, m3 (solid orange

line) has a significantly smaller mean squared deviation from the

simulation data than m1 (dashed yellow), and is therefore used for

determining the prethermal magnetization m̃ = m3(10tf).

are afflicted with large relative error bars, the fit function has

more parameters than is justified by the data and therefore

should be discarded. For the remaining fit functions the

accuracy with which they fit the data is assessed on the

basis of the mean-squared deviation, and the functions with

larger deviations are discarded; see Fig. 5 (top) for an

example.

After these two selection steps, depending on the specific

data set used, one or several suitable fit functions remain, and

those are extrapolated to a time 10tf (Fig. 5, bottom). The

arithmetic mean of the extrapolated values is used to define

the prethermal magnetization,

m̃ =
∑

i

mi(10tf), (A2)

where the summation is over those of the fit functions (A1a)–

(A1e) that survived the above described selection procedure.

The corresponding standard deviation is used as an error
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estimate for m̃. It is the lack of knowledge of the functional

form of the decay of m(t), and the resulting variety of possible

fits, that accounts for the fairly large error bars in Figs. 3 and 4.

While the above described fitting and extrapolation procedure

clearly contains some arbitrariness, the rather conservative

error estimation makes sure that the phase diagrams are

not biased by (possibly unjustified) assumptions about the

functional form of the decay of m(t) or the extrapolation time.
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dynamics in spin- 1

2
chains with adaptive time-dependent density

matrix renormalization group, Phys. Rev. E 71, 036102 (2005).

[28] A. N. Krylov, On the numerical solution of the equation by

which in technical questions frequencies of small oscillations of

material systems are determined, Izvestija AN SSSR (News of

Academy of Sciences of the USSR), Otdel. mat. i estest. nauk

VII, 491 (1931), in Russian.

[29] F. Verstraete, V. Murg, and J. I. Cirac, Matrix product states,

projected entangled pair states, and variational renormalization

group methods for quantum spin systems, Adv. Phys. 57, 143

(2008).

[30] J. Haegeman, J. I. Cirac, T. J. Osborne, I. Pižorn, H. Verschelde,
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