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Global quantum quenches

General problem: how does a generic initial state time-evolve?

General procedure:

1 Consider a short-ranged Hamiltonian H(U) isolated from
environment.

2 Prepare system in ground state |Ψ0〉 of Hamiltonian H(U0)

3 At time t = 0 change the Hamiltonian H(U0) → H(U)

4 Time-evolve the initial state |Ψ(t)〉 = exp[−iH(U)t]|Ψ0〉

General goal:

1 Study time-evolution of observables:

〈Ψ(t)|O(x)|Ψ(t)〉, 〈Ψ(t)|O1(x)O2(y)|Ψ(t)〉
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Time-evolution of observables – what’s understood?

1 Closed (isolated) quantum systems do not relax globally

Initial state |Ψ0〉 is pure
Time evolution |Ψ(t)〉 =

∑
a e

−iEat |Ea〉〈Ea|ψ0〉
Can construct observables that never relax
|Ea〉〈Eb|+H.c.→ e−i(Ea−Eb)t |Ea〉〈Eb|+H.c

2 It can relax locally. Picture: the rest of the system acts like a
bath to a subsystem.
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Time-evolution of observables – what’s understood?

Two paradigms for the long-time behavior of observables:

Non-integrable Hamiltonian

“Generic” system

Behaves thermally

Deutsch ’91, Srednicki ’94

Integrable Hamiltonian

More complicated

Doesn’t ‘thermalize’

Rigol, Dunjko, Yurosvki & Olshanii ’07
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Illustration: the quantum Newton’s cradle

Kinoshita, Wenger, Weiss ’06

1 Separate two bunches of
bosons in harmonic trap
and release.

2 Essentially unitary
time-evolution.

3 Approach steady state.

4 Big difference between 1D
and 3D confinement.
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Illustration: the quantum Newton’s cradle

Non-integrable Hamiltonian

3D quantum Newton’s cradle rapidly thermalizes (∼ 3 collisions)

Kinoshita, Wenger, Weiss ’06.
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Illustration: the quantum Newton’s cradle

Integrable Hamiltonian

1D quantum Newton’s cradle slowly approaches non-thermal

Kinoshita, Wenger, Weiss ’06.
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Time-evolution of observables – what’s understood?

Two paradigms for the long-time behavior of observables:

Non-integrable Hamiltonian

Thermalizes

〈O(x)〉t→∞ = Tr[O(x)ρth]

ρth = 1
Z
e
−βeffH

temperature 1/βeff fixed by

〈Ψ0|H|Ψ0〉 = Tr[Hρth]

Integrable Hamiltonian

Equilibrates

〈O(x)〉t→∞ = Tr[O(x)ρGGE]

ρGGE = 1
Z
e
−

∑
m λm Im

where [Im, In] = 0 are the conservation
laws of H.

Lagrange multipliers fixed by

〈Ψ0|Im|Ψ0〉 = Tr[ImρGGE].
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General Questions

Dichotomy in late-time behavior for integrable and non-integrable

Natural questions:

What happens when integrability is only “weakly” broken?
Is there memory of the integrable theory for some timescales?

What do we mean by weakly broken integrability?

Consider two-parameter family of non-integrable Hamiltonians

H(g ,U) = H0(g) + UH1(g) with H0(g) integrable.

Quench H(g0, 0) → H(g ,U) to break integrability.

We say integrability “weakly broken” when U ≪ all other
energy scales (g , g0, |g − g0|, . . .).
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Our quench protocol

To examine these questions, we want to study the influence of the
integrability breaking term on the time-evolution.

→ We want O(1) dynamics as well as O(U)!

1 Start with density matrix ρ0 which is not an eigenstate of
H(g ,U) for any U (including U = 0).

Example: ρ0 ground state of H(g0, 0) with g0 6= g .

2 Time-evolve and compare expectation values for integrable
H(g , 0) and non-integrable H(g ,U 6= 0).
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The model

H(δ, J2,U) = −J1
∑

j

(
1 + δ(−1)j

)(
c
†
j cj+1 +H.c.

)

−J2
∑

j

(
c
†
j cj+2 +H.c.

)
+ U

∑

j

njnj+1

Integrable limits:

J2 = 0, δ = 0: Anisotropic Heisenberg model

U = 0: free fermions

For our problem, we will use the free theory

H(δ, J2, 0) =
∑

α=±

∑

k

ǫα(k , δ, J2)a
†
α(k)aα(k)

cj =
1√
L

∑

k>0

∑

α=±

γα(j , k |δ)aα(k)
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Quenches in the free theory

Integrable: H(δ, 0, 0)

Prepare system in ground
state of H(δi , 0, 0)

Time-evolve according to
H(δf , 0, 0)

Green’s function 〈c†L
2

c L
2
+j
〉t→∞
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Computing the time-evolution: the equations of motion

Heisenberg Equations of motion (EoM)

d

dt
a†α(k)aβ(k) = i [H(δ, J2,U), a†α(k)aβ(k)]

Keep terms to second order. Apply Wick’s theorem (assume 4+
particle cumulants are negligible).

ṅαβ (k, t) = iǫαβ (k)nαβ (k, t) + 4iUe
itǫαβ (k) ∑

γ1

Kγ1α
(k; t)nγ1β (k, 0) − Kβγ1

(k; t)nαγ1
(k, 0)

− U
2
∫

t

0
dt

′
∑
γ

∑
k1,k2

L
γ
αβ

(k1, k2|k|t − t
′
)nγ1γ2 (k1, t

′
)nγ3γ4 (k2, t

′
)

− U
2
∫

t

0
dt

′
∑
~γ

∑
k1,k2,k3

M
~γ
αβ

(k1, k2, k3|k|t − t
′
)nγ1γ2 (k1, t

′
)nγ3γ4 (k2, t

′
)nγ5γ6 (k3, t

′
)

nαβ (k, t) = 〈Ψ(t)|a†α(k)a
β
(k)|Ψ(t)〉, ǫαβ (k) = ǫα(k) − ǫβ (k) .

See also: Nessi & Iucci ’14 ’15
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Non-integrable quenches comparison with TDMRG

First order EoMs
U = 0 → 0.15, δ = 0.75 → 0.25, J2 = 0
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U = 0 → 0.5, δ = 0.75 → 0.25, J2 = 0
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Second order EoMs
U = 0 → 0.4, J2 = 0, δ = 0.8 → 0.4
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Robust prethermalization!

See also: Moekel & Kehrein ’08, Kollar et al ’11,
Marcuzzi et al ’13
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Our definition of Prethermalization

On intermediate time scales correlation functions relax to a
non-thermal plateau which retains information about the proximate
integrable theory.
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Non-integrable quenches comparison to TDMRG

Equally good agreement for other separations of Green’s function.

U = 0 → 0.15, δ = 0.75 → 0.25, J2 = 0
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Non-integrable quenches: prethermalization and the dGGE

Truncating the EoM at first order, can construct operators
conserved up to U2 corrections.

Qα(q) ≡ nαα(q)− U
∑

γ

∑

k

Nγ
α(k|q)a†γ1(k1)aγ2(k2)a

†
γ3(k3)aγ4(k4).

Can be used to construct “deformed GGE” with charges O(U)
different to integrable quench.

ρdGGE =
1

ZdGGE

exp

[
−
∑

α,q

λαqQα(q)

]
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Non-integrable quenches: prethermalization and the dGGE

ρdGGE =
1

ZdGGE

exp

[
−
∑

α,q

λαqQα(q)

]

Approach dGGE as power law:
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Moving off the prethermalization plateau

Prethermalization is not the full story!

J2 = 0 has robust prethermalization plateau

→ no signs of drifting for times we can compute

Introduce J2 6= 0 in attempt to tune thermalization timescale

→ breaks particle-hole symmetry

→ can increase number of ∆E = 0 scattering channels
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Moving off the prethermalization plateau

Relaxation compatible with:

G (i , j ; t) ∼ G (i , j)th + Aij(J2, δ,U)e−t/τij (J2,δ,U)
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A quantum Boltzmann equation

EoMs: δf → 0 then n+−(k , t ≫ 1) ≈ 0

Derive QBE in limit U → 0, t → ∞ with τ = tU2 fixed.

ṅαα(k , τ) =−
∑

γ,δ

∑

p,q

K̃
γδ
αβ(p, q; k)nγγ(p, τ)nδδ(q, τ)

−
∑

γ,δ,ǫ

∑

p,q,r

L̃
γδǫ
αβ (p, q, r ; k)nγγ(p, τ)nδδ(q, τ)nǫǫ(r , τ)

See e.g. Erdös, Salmhofer, Yau ’04; Lukkarinen, Spohn, ’09.
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A quantum Boltzmann equation

Mode occupation numbers approach thermal values (computed via
perturbation theory) in the long-time limit for QBE
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Green’s functions:

G (i , j ; t) ∼ G (i , j)th + Aij(J2, δ,U)e−t/τij (J2,δ,U)

→ QBE compatible with τij(J2, δ,U) ∝ U−2
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Conclusions

Equations of motion useful for computing real-time dynamics

Prethermalization plateau well-approximated by dGGE

Introducing J2 (next-nearest neighbor hopping) we see drifting
from prethermalization plateau.

Strength of drifting is very strongly dependent on J2.

Exponential approach to thermalization: fixed J2, δ

τ(J2, δ,U) ∝ U−2.

For δf = 0 a QBE captures behavior well and mode
occupation number approach thermal distribution.

See also the poster presented by Stefan Groha
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