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Abstract

Current Electronic Toll Pricing (ETP) implementations rely on on-board units sending fine-grained
location data to the service provider. We present PrETP, a privacy-preserving ETP system in which
on-board units can prove that they use genuine data and perform correct operations while disclosing
the minimum amount of location data. PrETP employs a cryptographic protocol, Optimistic Payment,
which we define in the ideal-world/real-world paradigm, construct, and prove secure under standard
assumptions. We provide an efficient implementation of this construction and build an on-board unit on
an embedded microcontroller which is, to the best of our knowledge, the first self-contained prototype
that supports remote auditing. We thoroughly analyze our system from a security, legal and performance
perspective and demonstrate that PrETP is suitable for low-cost commercial applications.

1 Introduction

Vehicular location-based technologies [36, 43] are viewed by governments as a perfect tool to support ap-
plications such as electronic toll collection, automated law enforcement, or collection of traffic statistics.
In October 2009, the European Commission announced that the current flat road tax systems existing in
the Member States will be substituted by an European Electronic Toll Service (EETS) [12, 19]. In the
United States, there are also ongoing initiatives to introduce Electronic Toll Pricing (ETP), as for instance
the Regional High Occupancy Toll Network of the California Metropolitan Transportation Commission [1].

ETP allows road taxes to be calculated depending on parameters such as the distance covered by a
driver, the kind of road used, or the time of usage. This is beneficial both for citizens and governments.
The former pay only for their actual road use, while the latter can improve road mobility by applying
“congestion pricing”. This strategy assigns prices to roads depending on their traffic density such that
driving in congested roads implies a higher cost. This in turn will encourage users to change their route (or
even avoid using their vehicles) thus reducing congestion. Moreover, ETP has also environmental benefits
as it discourages driving hence reduces pollution.

ETP architectures proposed so far [1, 12, 19] require that vehicles are equipped with an on-board unit
necessary for collecting location data. At the end of each tax period, the fee corresponding to those data
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is computed either remotely [36, 43] or locally [45], and relayed to the service provider. In both cases the
service provider needs to be convinced that the fees correspond to the actual road usage of the driver, and
that they have been correctly calculated. The verification is straightforward in implementations in which all
the location data is sent to the service provider, but this constitutes an inherent threat to users’ privacy.

We propose PrETP, a privacy-preserving ETP system in which, without making impractical assump-
tions, on-board units i) compute the fee locally, and ii) prove to the service provider that they carry out cor-
rect computations while revealing the minimum amount of location data. PrETP employs a cryptographic
protocol, Optimistic Payment (OP), in which on-board units send along with the final fee commitments to
the locations and prices used in the fee computation. These commitments do not reveal information on the
locations or prices to the service provider. Moreover, they ensure that drivers cannot claim that they were
at any other position, nor used different prices, from the ones used to create the commitments. In order to
check the veracity of the committed values, we rely on the service provider having access to a proof (e.g.,
a photograph taken by a road-side radar or a toll gate) that a car was at a specific point at a particular time,
as previously suggested in [16, 39]. Upon being challenged with this proof, the on-board unit must respond
with some information proving that the location point where it was spotted was correctly used in the calcu-
lation of the final fee. To this end, it opens the commitment containing this location, thus revealing only the
location data and the price at the instant specified in the proof. This information suffices for the provider to
verify that correct input data (location and price) was used to calculate the fee.

We formally define Optimistic Payment and propose a construction based on homomorphic commit-
ments and signature schemes that allow for efficient zero-knowledge proofs of signature possession. We
prove our construction secure under standard assumptions. Finally, we present a prototype implementation
on an embedded platform, and demonstrate that the cryptographic overhead of Optimistic Payment is effi-
cient enough to be practically deployed in commercial in-car devices. Further, the fact that on-board units
carry out all operations without interaction with the driver makes our system ideal in terms of usability.

The rest of the paper is organized as follows: we describe our system models and the security properties
we seek in Sect. 2. Sect. 3 presents a high level description of our construction. Our prototype implementa-
tion and its evaluation are presented in Sect. 4, and we discuss some practical issues in Sect. 5. We situate
our work within the landscape of proposals for privacy-friendly vehicular applications in Sect. 6, and we
conclude in Sect. 7. Finally, we define the concept of Optimistic Payment in Appendix A, and describe in
detail our cryptographic construction in Appendix B.

2 System model

PrETP employs the architecture and technologies recommended at European level [12, 19], although it
could be adapted to other systems, such as [1]. The system model, illustrated in Fig. 1 (left), comprises
three entities: an On-Board Unit (OBU), a Toll Service Provider (TSP), and a Toll Charger (TC). The OBU
is an electronic device installed in vehicles subscribed to an ETP service, and it is in charge of collecting
GPS data and calculating the fee at the end of each tax period. The TSP is the entity that offers the ETP
service. It is responsible for providing vehicles with OBUs and monitor their performance and integrity.
Finally, the TC is the organization (either public or private) that levies tolls for the use of roads and defines
the correct use of the system. In agreement with the TC, the TSP establishes prices for driving on each
of the roads. Such pricing policy can depend on the type of road (e.g., highways vs. secondary roads), its
traffic density, or the time of the day (e.g., rush hours vs. the middle of the night). Additionally, prices can
also depend on attributes of the vehicle or of the driver (e.g., low-pollution vehicles, or discounts for retired
people). For the sake of clarity, in this work we focus on the core functionality of PrETP, and defer the
discussion of practical issues to Sect. 5.

When the vehicle is driving, the OBU calculates the subfees corresponding to the trajectories according
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Figure 1: Entities in our Electronic Toll Pricing architecture (left.) Enforcement spot-check model (right.)

to the TSP pricing policy. At the end of each tax period, the OBU aggregates all the subfees to obtain a
total fee and sends it to the TSP. This process safeguards the privacy of the driver from the TSP, the TC, or
any other third party eavesdropping the communications, as no location data leaves the OBU. The privacy
objectives of PrETP focus on the limitation of deliberate surveillance by any external party with limited
access to the vehicle. We note that for an adversary with physical access to the vehicle it would be trivial to
track it, e.g. by installing a tracking device. In order to further protect the privacy of users from adversaries
that have occasional access to OBUs (e.g., mechanic, valet), all location data stored in the OBU is securely
encrypted as specified in [45].

Besides preserving users’ privacy, the system has to protect the interests of both TC and TSP and
provide means to prevent users from committing fraud. Our threat model considers malicious drivers capable
of tampering with the internal functionality of the OBU, as well as with any of its interfaces. Under these
considerations, we define the security goals of our system as the detection of:

Vehicles with inactive OBUs. Drivers should not be able to shut down their OBUs at will to simulate
they drove less.

OBUs reporting false GPS location data. Drivers should not be able to spoof the GPS signal and
simulate a cheaper route than the actual roads on which they are driving.

OBUs using incorrect road prices. Drivers should not be able to assign arbitrary prices to the roads on
which they are driving.

OBUs reporting false final fees. Drivers should not be able to report an arbitrary fee, but only the result
from the correct calculations in the OBU.

Focusing on the detection of tampering rather that at its prevention allows us to consider a very simple
OBU with no trusted components, reducing the production costs of the device.

In order to perform this detection, reliable information about the vehicle’s whereabouts is required.
We consider that the TC can perform random “spot checks” that are recorded as proof of the time and
location where a vehicle has been seen. Such spot checks can be carried out by using an automatic license
plate reader, a police control, or even challenging the OBUs using Dedicated Short-Range Communications
(DSRC) [12]. Without loss of generality in this work we assume that the proof is gathered using an automatic
license plate reader. This proof can be used to challenge the vehicle’s OBU to verify its functioning. In order
to be able to respond to this challenge, the OBU slices the trajectories recorded in segments, and computes
the subfees corresponding to them, such that these subfees add up to the final fee transmitted to the TSP. For
each segment, the TSP receives a payment tuple that consists of a commitment to location data and time, a
homomorphic commitment to the subfee, and a proof that the committed subfee is computed according to
the policy. These payment tuples, explained in detail in the next section, bind the reported final fee to the
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committed values such that the OBU cannot claim having used other locations or prices in its computations.
Furthermore, they are signed by the OBU to prevent a malicious TSP from framing an honest driver.

The verification process, depicted in Fig. 1 (right), is initiated when the TC gathers a proof of location of
a vehicle. Then it forwards this information to the TSP, along with a request to check the correct functioning
of the vehicle’s OBU. To this end, the TSP challenges the OBU to open a commitment containing the
location and time appearing in the proof. The TSP verifies that both challenge and response match, for
instance as explained in [39], and reports to the TC whether or not the functioning of the OBU is correct.
We assume that the TC (e.g., the government in the EETS architecture) is honest and does not use fake
proofs to challenge OBUs.

3 Optimistic Payment

In this section we sketch the technical concepts necessary to understand the construction of Optimistic
Payment, and we outline our efficient implementation of the protocol. For a comprehensive and more
formal description of OP, we refer the reader to Appendix B.

3.1 Technical Preliminaries

Signature Schemes. A signature scheme consists of the algorithms SigKeygen, SigSign and SigVerify.
SigKeygen outputs a secret key sk and a public key pk . SigSign(sk , x) outputs a signature sx of message x.
SigVerify(pk , x, sx) outputs accept if sx is a valid signature of x and reject otherwise. A signature scheme
must be correct and unforgeable [25]. Informally speaking, correctness implies that the SigVerify algorithm
always accepts an honestly generated signature. Unforgeability means that no p.p.t adversary should be able
to output a message-signature pair (x, sx) unless he has previously obtained a signature on x.

Commitment schemes. A non-interactive commitment scheme consists of the algorithms ComSetup,
Commit and Open. ComSetup(1k) generates the parameters of the commitment scheme paramsCom .
Commit(paramsCom , x) outputs a commitment cx to x and auxiliary information openx. A commitment is
opened by revealing (x, openx) and checking whether Open(paramsCom , cx, x, openx) is true. A commit-
ment scheme has a hiding property and a binding property. Informally speaking, the hiding property ensures
that a commitment cx to x does not reveal any information about x, whereas the binding property ensures that
cx cannot be opened to another value x′. Given two commitments cx1 and cx2 with openings (x1, openx1

)
and (x2, openx2

) respectively, the additively homomorphic property ensures that, if c = cx1 · cx2 , then
Open(paramsCom , c, x1 + x2, openx1

+ openx2
).

Proofs of Knowledge. A zero-knowledge proof of knowledge is a two-party protocol between a prover
and a verifier. The prover proves to the verifier knowledge of some secret values that fulfill some statement
without disclosing the secret values to the verifier. For instance, let x be the secret key of a public key
y = gx, and let the prover know (x, g, y), while the verifier only knows (g, y). By means of a proof of
knowledge, the prover can convince the verifier that he knows x such that y = gx, without revealing any
information about x.

3.2 Intuition Behind Our Construction

We consider a setting with the entities presented in Sect. 2. During each tax period tag , the OBU slices
the trajectories of the driver in segments formed by a structure containing GPS location data and time.
Additionally, this data structure can contain information about any other parameter that influences the price
to be paid for driving on the segment. We represent this data structure as a tuple (loc, time). The TSP
establishes a function f : (loc, time)→ Υ that maps every possible tuple (loc, time) to a price p ∈ Υ. For
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each segment, the OBU calculates f on input (loc, time) to get a price p, and computes a payment tuple
that consists of a randomized hash h on the data structure (loc, time), a homomorphic commitment cp to
its price, and a proof π that the committed price belongs to Υ. The randomization of the hash is needed in
order to prevent dictionary attacks to recover (loc, time).

At the end of the tax period, the OBU and the TSP engage in a two-party protocol. The OBU adds the
fees of all the segments to obtain a total fee fee. The OBU adds all the openings openp to obtain an opening
open fee . Next, the OBU composes a payment message m that consists of (tag , fee, open fee) and all the
payment tuples (h, cp , π). The OBU signs m and sends both the message m and its signature sm to the
TSP. The TSP verifies the signature and, for each payment tuple, verifies the proof π. Then the TSP, by
using the homomorphic property of the commitment scheme, adds the commitments cp of all the payment
tuples to obtain a commitment c′fee , and checks that (fee, open fee) is a valid opening for c′fee .

When the TC sends the TSP a proof φ that a car was at some position at a given time, the TSP relays φ
to the OBU. The OBU first verifies that the request is signed by the TC, and then it searches for a payment
tuple (h, cp , π) for which µ(φ, (loc, time)) outputs accept. Here, µ : (φ, (loc, time)) → {accept, reject}
is a function established by the TSP that outputs accept when the information in φ and in (loc, time) are
similar in accordance with some metric, such as the one proposed in [39]. Once the payment tuple is found,
the OBU sends the number of the tuple to the TSP together with the preimage (loc, time) of h and the
opening (p, openp) of cp . The TSP checks that (p, openp) is the valid opening of cp , that (loc, time) is the
preimage of h and that µ(φ, (loc, time)) outputs accept.

Intuitively, this protocol ensures the four security properties enunciated in the previous section. Drivers
cannot shut down their OBUs, nor report false GPS data as they run the risk of not having committed to
a segment containing the (loc, time) in the challenge φ. We note that after sending (m, sm) to the TSP,
OBUs cannot claim that they were at any position (loc′, time ′) different from the ones used to compute
the message m. Similarly, OBUs cannot use incorrect road prices without being detected, as the TSP can
check whether the correct price for a segment (loc, time) was used once the commitments are opened. The
homomorphic property ensures that the reported final fee is not arbitrary, but the sum of all the committed
subfees. Moreover, by making the OBU prove that the committed prices belong to the image of f , we avoid
that a malicious OBU could decrease the final fee by sending only one wrong commitment to a negative
price in the payment message, which would give it an overwhelming probability of not being detected by the
spot checks. Additionally, the fact that the OBU signs the payment message m ensures that no malicious
TSP can frame an OBU by modifying the received commitments, and that a malicious OBU cannot plead
innocent by invoking the possibility of being framed by a malicious TSP. Similarly, the fact that the TC
signs the challenge φ prevents a malicious TSP sending fake proofs to the OBU, e.g. with the aim of
learning its location. Finally, the privacy of the drivers is preserved as the OBU does not need to disclose
more location information than that in the payment tuple that matches the proof φ (already known to TSP).

3.3 Efficient Instantiation: High Level Specification

We now outline at high level our efficient instantiation of Optimistic Payment. We employ the integer
commitment scheme due to Damgård and Fujisaki [14] and the CL-RSA signature scheme proposed by
Camenisch and Lysyanskaya [8]. Both schemes use cryptographic keys based on special RSA modulus
n of length ln. A commitment cx to a value x is computed as cx = g0

xg1
openx (mod n), where the

opening openx is a random number of length ln and the bases (g0, g1) correspond to the commitment public
parameters. Given a public key pk = (n,R, S, Z), a CL-RSA signature has the form (A, e, v), with lengths
ln, le, and lv respectively, such that Z ≡ AeRxSv(mod n). To prove that a price belongs to Υ, we use a
non-interactive proof of possession of a CL-RSA signature on the price. We also employ a collision resistant
hash function H : {0, 1}∗ → {0, 1}lc .
Initialization. The pricing policy f : (loc, time) → Υ, where each price p ∈ Υ has associated a valid

5



OBU TSP
Pay() algorithm VerifyPayment() algorithm

1 // Main loop 1
2 For all 1 ≤ k ≤ N tuples do: 2
3 pk = f(lock, timek) 3
4 // Hash computation 4
5 hk = H((lock, timek)) 5
6 // Commitment computation 6
7 openpk ← {0, 1}ln 7
8 cpk = g0

pkg1
openpk (mod n) 8

9 // Proof computation 9
10 openw, w ← {0, 1}ln 10
11 Ã = Ag0

w (mod n) 11
12 cw = g0

wg1
openw (mod n) OBUverify(pkOBU,m, sm) 12

13 rα ← {0, 1}lα // Main loop 13
14 tcpk = g0

rpk g1
ropenpk (m, sm)

−−−−−−−−−−−−−→
For all 1 ≤ k ≤ N tuples do: 14

15 tZ = ÃreRrpkSrv(g−1
0 )rw·e t′cpk

= cchpkg0
spk g1

sopenx 15
16 tcw = grw0 g

ropenw
1 t′Z = ZchÃseRspkSsv(1/g0)sw·e 16

17 t = crew (g−1
0 )rw·e(g−1

1 )ropenw·e t′cw = cchw g0
swg1

sopenw 17
18 ch = H(β||tcpk ||tZ ||tcw ||t) t′ = Csew (1/g0)sw·e(1/g1)sopenw·e 18
19 sα = rα − ch · α ch′ = H(β||t′cpk ||t

′
Z ||t′cw ||t

′)? = ch 19
20 πk = (Ã, cw, ch, sα) se ∈ {0, 1}le+lc+lz 20
21 End for spk ∈ {0, 1}lp+lc+lz 21
22 // Fee reporting End for 22
23 fee =

∑N
k=1 pk // Commitment validation 23

24 openfee =
∑N

k=1 openpk c′fee =
∏N
k=1 cpk 24

25 m = [tag , fee, openfee, (hk, cpk , πk)
N
k=1] cfee = g0

feeg1
openfee (mod n) 25

26 sm = OBUsign(skOBU,m) cfee? = c′fee 26
α ∈ {pk, openpk , e, v, w, openw, w · e, openw·e}
β = (n||g0||g1||Ã||R||S||g−1

0 ||g
−1
1 ||cpk ||Z||cw||1)

Protocol 1: Protocol between OBU and TSP during taxing phase

CL-RSA signature (A, e, v) generated by the TSP, the cryptographic key pair (pkOBU, skOBU), the public
key of the TSP (n,R, S, Z), the public key of TC, and the public parameters (g0, g1) of the commitment
scheme are stored on the OBU. Similarly, the TSP possesses its own secret key (skTSP) and knows all the
public keys in the system.

Tax period. Protocol 1 illustrates the calculations and interactions between the OBU and the TSP under
normal functioning during the tax period. We denote the operations carried out by the OBU as Pay(), and
the operations executed by the TSP as VerifyPayment(). While driving, the OBU collects location data and
slices it in segments (loc, time) according to the policy. For each of the N collected segments, the OBU
generates a payment tuple (hk, cpk , πk). This iterative step is broken down in lines 1 to 21 in Protocol 1.
The most resource consuming operation is the computation of πk, which proves the possession of a valid
CL-RSA signature on the price pk (lines 9 to 20). The length of the random values used in this step is
specified in Appendix B.2. At the end of the tax period the OBU generates and signs the payment message
m including the tag tag , the total fee, the opening openfee, and all the payment tuples (hk, cpk , πk), lines

6



22 to 26. Finally it sends (m, sm) to the TSP.
Upon reception of a payment message, the TSP executes the VerifyPayment() algorithm. First the TSP

verifies the signature sm using the OBU’s public key pkOBU. Next, it proceeds to the verification of the
proof πk included in each of the N payment tuples contained in m, lines 13 to 22. In each iteration it
performs a series of modular exponentiations, and uses the intermediate results to compute the hash ch′.
Then, it checks whether ch′ is the same as the value ch contained in πk. If this verification, together with
the two range proofs in lines 20 and 21, is successful, the TSP is convinced that all the prices pk used by
the OBU are indeed a valid image of f . Finally, the TSP validates the commitments cpk to ensure that the
aggregation of all subfees add up to the final fee (lines 24 to 26). For this, it calculates c′fee as the product
of all commitments cpk , and computes the commitment cfee using the values fee and openfee provided by
the OBU. If both values are the same, the TSP is convinced that the final fee reported by the OBU adds up
to the sum of all subfees reported in the payment tuples.

Proof Challenge. We denote as OBUopen() and Check() the algorithms carried out by the OBU and the
TSP, respectively, when the former is challenged with φ. When running the OBUopen() algorithm, the
OBU searches for the pre-image (lock, timek) of a hash hk containing the location and time satisfying φ,
and sends this information to the service provider along with the price pk and the opening openpk .

Upon reception of this message, the TSP executes the Check() algorithm. First, it verifies whether the
segment (lock, timek) actually contains the location in φ. Then, it computes the value h′k = H(lock, timek)
and checks whether the OBU had committed to this value in one of the payment tuples reported during
the tax period. Lastly, the TSP uses openpk to open the commitment cpk and verifies whether p′k =
f(lock, timek) equals the price pk reported by the OBU during the OBUopen() algorithm. If all verifi-
cations succeed, the TSP is convinced that the location data used by the OBU in the fee calculation and the
price assigned by the OBU to the segment (lock, timek) are correct.

4 PrETP Evaluation

In this section we evaluate the performance of PrETP. We start by describing the test scenario and both our
OBU and TSP prototypes. Next, we analyze the performance of the prototypes for different configuration
parameters. Finally, we study the communication overhead in PrETP, and compare it to existing ETP
systems.

4.1 Test Scenario

Policy model. The first step in the implementation of PrETP consists in specifying a policy model in the
form of the mapping function f : (loc, time) → Υ. We decide to follow the same criteria as currently
existing ETP schemes [36], i.e., road prices are determined by two parameters: type of road and time of the
day. More specifically, we define three categories of roads (‘highway’, ‘primary’, and ‘others’) and three
time slots during the day. For each of the possible nine combinations we assign a price per kilometer p and
we create a valid signature (A, e, v) using the TSP’s secret key. We note that the choice of this policy is
arbitrary and that PrETP, as well as OP, can accommodate other price strategies.

Location data. We provide the OBU with a set of location data describing a real trajectory of a vehicle .
These data are obtained by driving with our prototype for one hour in an urban area, covering a total distance
of 24 kilometers. We note that such dataset is sufficient to validate the performance of PrETP, since results
for different driving scenarios (e.g., faster or slower) can easily be extrapolated from the results presented in
this section.

Parameters of the instantiation. The performance of OP depends directly on the length of the protocol
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instantiation parameters, and in particular, on the size of the cryptographic keys of the entities (ln). In our
experiments we consider three case studies: medium security (ln = 1024 bits), high security (ln = 1536 bits),
and very high security (ln = 2048 bits). The value lp is determined by the length of the prices p, which in
turn determines the value of le. Therefore, both lengths are constant for all security cases. The value of lv
varies depending on the value of ln. Finally, the rest of parameters (lh, lr, lz , and lc) are set as the output
length of the chosen hash function primitive (see Sect. 4.2). These lengths determine the size of the random
numbers generated in line 13 in Protocol 1 (see Appendix B for a detailed explanation). Table 1 summarizes
the parameter lengths considered for each security level.

Table 1: Length of the parameters (in bits)
Parameter ln le lv lp lr,lh,lz ,lc
Normal Sec. 1 024 128 1 216 32 160
High Sec. 1 536 128 1 728 32 160
Very high Sec. 2 048 128 2 240 32 160

OBU Platform. In order to make our prototype as realistic as possible, we implement PrETP using as
starting point the embedded design described in [3], which performs the conversion of raw GPS data into a
final fee internally. We extend and adapt this prototype with the functionalities of OP to make it compatible
with PrETP.

At high-level, the elements of our OBU prototype [3] are: a processing unit, a GPS receiver, a GSM
modem, and an external memory module. We use as benchmark the Keil MCB2388 evaluation board [30],
which contains an NXP LPC2388 [34] 32-bit ARM7TDMI [2] microcontroller. This microcontroller im-
plements a RISC architecture, it runs at 72 MHz, and it offers 512 Kbytes of on-chip program memory and
98 Kbytes of internal SRAM. As external memory, we use an off-the-shelf 1 GByte SD Card connected to
the microcontroller. Finally, we use the Telit GM862-GPS [44] as both GPS receiver and GSM modem.

As our platform does not contain any cryptographic coprocessors, we implement all functionalities
exclusively in software. Note that although we could easily add a hardware coprocessor (e.g., [35]) to
the prototype in order to carry out the most expensive cryptographic computations, we choose the option
that minimizes the production costs of the OBU. Besides, this approach allows us to identify the bottlenecks
in the protocol implementation, leaving the door open to hardware-based improvements if needed.

We have constructed a cryptographic library with the primitives required by our instantiation of the OP
protocol, namely: i) a modular exponentiation technique, ii) a one-way hash function, and iii) a random
number generator. For the first primitive we use the ACL [4] library, a collection of arithmetic and modular
routines specially designed for ARM microcontrollers. As hash function we choose RIPEMD-160 [21], with
an output length lh of 160 bits. As our platform does not provide any physical random number generator,
we use the Salsa20 [5] stream cipher in keystream mode as third primitive. We note that a commercial OBU
should include a source of true randomness.

In order to keep the OBU flexible and easily scalable, we arrange data in different memory areas de-
pending on their lifespan. Long-term parameters (pkOBU, skOBU, pkTSP, commitment parameters) are di-
rectly embedded into the microcontroller’s program memory, while short-term parameters (payment tuples,
(loc, time) segments) and updatable parameters (digital road map, policy f ) are stored separately on the SD
Card. We note that our library provides a byte-oriented interface with the SD Card, resulting in a consider-
able overhead when reading/writing values.

TSP Platform. We implement our TSP prototype on a commodity computer equipped with an Intel
Core2 Duo E8400 processor at 3 GHz, and 4 Gbyte of RAM. We use C as programming language, and
the GMP [24] library for large-integer cryptographic operations.
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4.2 Performance Evaluation

Table 2: Execution times (in seconds) for an hour journey of 24 km, for all possible security scenarios.
Medium Security High Security Very high Security

Algorithm Segment Full trip Segment Full trip Segment Full trip
Mapping() 76.10 s 839.11 s 76.10 s 839.11 s 76.10 s 839.11 s

Pay()

7.88 s 183.91 s 22.13 s 528.47 s 47.79 s 1 143.30 s
hk 0.08 s 1.08 s 0.08 s 1.08 s 0.08 s 1.08 s
Ek 0.43 s 6.35 s 0.43 s 6.35 s 0.43 s 6.35 s
cpk

0.76 s 18.19 s 2.25 s 54.08 s 5.69 s 136.82 s
πk 6.20 s 158.09 s 19.45 s 466.96 s 41.64 s 999.05 s

OBU performance. The most time-consuming operations carried out by the OBU during the taxing phase
are the Mapping() algorithm and the Pay() algorithm. The Mapping() algorithm is executed every time a
new GPS string is available in the microcontroller. Its function is to search in the digital road map the type
of road given the GPS coordinates. When the vehicle drives for a kilometer, the OBU maps the segment
to the adequate price pk as specified in the policy. At this point, the Pay() algorithm is executed in order
to create the payment tuple. For each segment, the OBU generates: i) a hash value hk of the location data,
ii) a commitment cpk to the price pk, and iii) a proof πk proving that the price pk is genuinely signed by
the TSP (and thus belongs to the image of f ). To protect users’ privacy we also require that no sensitive
data is stored in the SD Card in plaintext form. For this purpose we use the AES [33] block cipher in CCM
mode [22] with a key length of 128 bits. We denote this operation as Ek. At the end of the taxing phase, the
OBU adds all the prices pk mapped to each segment to obtain the fee, and all the openings openk to obtain
open fee . Finally, the OBU constructs and signs the payment message m and sends it to the TSP.

As it does not involve the key, the computing time of the Mapping() algorithm is independent of the
security scenario. Further, this time only depends on the duration of the trip and is independent of the speed
of the vehicle: the Mapping() algorithm is always executed 3 600 times per hour, taking a total of 839.11
seconds in our prototype. However, for each of the segments this time can vary depending on the number of
points that have to be processed, i.e., depending on the speed of the vehicle. In our experiments it requires
76.10 seconds for the longest segment, i.e., the one where the vehicle spent more time to drive one kilometer
and thus (lock, timek) contains the larger number of points.

Similarly, the execution time for hk andEk depends exclusively on the length of the segments (lock, timek),
as it is proportional to the number of GPS points in the segments. The amount of points per segment varies
not only with the average speed of the car but also depending on the length of the segments defined in the
pricing policy. In our experiments, computing hk and Ek take 0.08 seconds and 0.43 seconds, respectively,
for the shortest and the longest segments. For the Mapping() algorithm and both hk and Ek operations,
more than 90% of the time is spent in the communication with the SD card.

On the other hand, the execution time for cpk and πk is constant for all segments, as it does not depend
on the length of a particular slice (see lines 6 to 20 in Protocol 1). In order to calculate cpk , the OBU needs to
generate a random opening openpk and perform two modular exponentiations and a modular multiplication.
The computation of πk involves the generation of ten random numbers and a hash value, and the execution
of fourteen modular exponentiations, nine modular multiplications, eight additions, and eight multiplica-
tions. The bottleneck of both operations is determined by the modular operations. Although we could take
advantage of fixed-base modular exponentiation techniques, we choose to use multi-exponentiations algo-
rithms [17], which have less storage requirements. Multi-exponentiation based algorithms, which compute
values of the form abcd(mod n) in one step, allow us to considerably speed up the process. The average
execution times for computing cpk are 0.76 seconds, 2.25 seconds, and 5.69 seconds for medium, high, and
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very high security respectively. For πk, these times are 6.20 seconds, 19.45 seconds, and 41.64 seconds,
respectively.

Table 2 summarizes the timings for all OBU operations and routines for a journey of one hour. We
note that, even when 2048-bit RSA keys are used, the OBU can perform all operations needed to create
the payment tuples in real time. While the trip lasted one hour, the Mapping() and Pay() algorithms only
required 1 982.41 seconds. The computation time is dominated by the Pay() algorithm, which depends on
the number of GPS strings in each segment (loc, time). This number varies with the speed of the vehicle
and the pricing policy. If a vehicle is driving at a constant speed, policies that establish prices for small
distances result in segments containing less GPS points than policies that consider long distances. Similarly,
given a policy fixing the size of the segments, driving faster produces segments with less points than driving
slower. In both cases, πk has to be computed fewer times and the Pay() algorithm runs faster. Thus, the
policy can be used as tuning parameter to guarantee the real-time operation of the OBU.

Using the values in Table 2, for each of the levels of security we can calculate the time our OBU is
idle – in our case (3 600− 839.11) seconds, with 839.11 seconds being the time required by the Mapping()
algorithm. Then, considering our current policy, we can estimate the number of times the Pay() algorithm
could be executed, which in turn represents the number of kilometers that could have been driven by a car
in one hour, i.e., the average speed of the car. For normal security, our OBU could operate in real time even
if a vehicle was driving at 350 km/h. This speed decreases to 124 km/h when 1536-bit keys are used, and to
57 km/h if the keys have length 2048 bits. Only when using high security parameters our OBU would have
problems to operate in the field. However, as mentioned before, including a cryptographic coprocessor in
the platform would suffice to solve this problem whenever high security is required. Moreover, in our tests
we consider a worst-case scenario in which all GPS strings are processed upon reception. In fact, processing
fewer strings would suffice to determine the location of the vehicle. As the execution time required by the
Mapping() algorithm would decrease linearly, OBUs would be able to support higher vehicle speeds.

In the OBUopen() algorithm, only executed upon request from TC, the OBU searches its memory for
a segment (loc, time) in accordance to the proof sent by the TSP. Here, the time accuracy provided by the
GPS system is used to ensure synchronization between the data in φ and the segment (loc, time). The main
bottleneck of this operation is the decryption of the location data corresponding to the correct segment. On
average, our prototype can decrypt such a segment in 0.27 seconds.

TSP performance. The most consuming task the TSP must perform corresponds to the VerifyPayment()
algorithm, which has to be executed each time the TSP receives a payment message. This algorithm involves
three operations: the verification of the proof πk for each segment, the multiplication of all commitments
cpk to obtain cfee, and the opening of cfee in order to check whether it corresponds to the reported final fee.
The most costly operation is the verification of πk, in particular the calculation of the parameters (t′cm , t′Z ,
t′cw , t′) which requires a total of eleven modular exponentiations (lines 14 to 22 in Protocol 1).

Table 4.2 (left) shows the performance of the VerifyPayment() algorithm for each of the considered
security levels when segments have length one kilometer. We also provide an estimation of the time required
to process all the proofs sent by OBU during a month, assuming that a vehicle drives an average of 18 000
km per year (1 500 km per month).

These results allow us to extrapolate the number of OBUs that can be supported by a single TSP in each
security scenario for different segment lengths. Intuitively, the capacity of TSP increases when segments
are larger, as the payment messages contain fewer proofs πk. The number of OBUs supported by a single
TSP is presented in Table 4.2 (right). For a segment length of 1 km, the TSP is able to support 164 000,
58 000, and 29 000 vehicles depending on the chosen security level. Even when ln is 2048 bits, only 36
servers are needed to accommodate one million OBUs. This number can be reduced by parallelizing tasks
at the server side, or by using fast cryptographic hardware for the modular exponentiations.
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Table 3: Timings (in seconds) for the execution of VerifyPayment() in TSP (left). Number of OBUs
supported by a single TSP (right).

VerifyPayment() Segment One Month
Medium Sec. 0.0105 s 15.750 s
High Sec. 0.0295 s 44.250 s
Very high Sec. 0.0587 s 88.050 s

Segment size Medium Sec. High Sec. Very high Sec.
0.5 km 82 000 29 000 14 000
0.75 km 123 000 43 000 22 000
1 km 164 000 58 000 29 000
2 km 329 000 117 000 58 000
3 km 493 000 175 000 88 000

4.3 Communication overhead

We now compare the communication overhead of PrETP with respect to straightforward ETP implemen-
tations and VPriv [39]. Both in straightforward ETP implementations and in VPriv the OBU sends all GPS
strings to the TSP. Let us consider that vehicles drive 1 500 km per month at an average speed of 80 km/h.
Then, transmitting the full GPS information to the the TSP requires 2.05 Mbyte (considering a shortened
GPS string of 32 bytes containing only latitude, longitude, date and time). VPriv requires more bandwidth
than straightforward ETP systems, as extra communications are necessary to carry out the interactive veri-
fication protocol (see Sect. 6). Using PrETP, the communication overhead comes from the payment tuples
that must be sent along with the fee. For each segment, the OBU sends the payment tuple (h, cp, π) to the
TSP. When sent uncompressed, this implies an overhead of approximately 1.5 Kbyte per segment, i.e.,
less than 2 Mbyte per month, for medium security (ln=1024 bits). Additionally, less than 50 Kbyte have to
be sent occasionally to respond a verification challenge after a vehicle has been seen at a spot check. We
believe this overhead is not excessive for the additional security and privacy properties offered by PrETP.

The communication overhead in PrETP is dominated by the payment message m sent by the OBU
to the TSP, the length of which depends on the number of segments covered by the driver. Therefore,
the segment length can be seen as a parameter of the system that tunes the tradeoff between privacy and
communication overhead. The smaller the segments, the larger the communication overhead, because more
tuples (hk, cpk , πk) need to be sent. Allowing larger segments reduces the communication cost but also
reduces privacy because the OBU must disclose a bigger segment when responding a verification challenge.

Further, the communication overhead can be almost eliminated by having the OBU sending only the
hash of the payment message at the end of each tax period and leave the correct operation verification
subject to random checks. Following the spirit of the random “spot checks” used for checking the input and
prices, the OBUs could occasionally be challenged to prove its correct functioning by sending the payment
message corresponding to the preimage of the hash sent at the end of a random tax period.

5 Discussion

Practical issues. Our OP scheme allows the OBU to prove its correct operation to the TSP while revealing
a minimum amount of information. Nevertheless, we note that fee calculation is not flexible. The reason is
that the OBU should store signatures created by the TSP on all the prices that belong to Im(f), and thus,
for the sake of efficiency, we need to keep Im(f) small. For this purpose, in our evaluation f is only defined
for trajectory segments of a fixed length (one kilometer) and of a fixed road type. There are two obvious
cases in which this feature is problematic: when a vehicle has driven a non-integer amount of kilometers,
and when one of the segments contains pieces of roads with different cost (e.g., when a driver leaves the
highway entering a secondary road). In both cases the OBU cannot produce a payment tuple because it does
not have the signature by the TSP on the price of the segment.
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There are two possible solutions to these issues. A first option would be to solve them at contractual
level. The policy designed by the TSP could include clauses that indicate how to proceed when these
conflicts arise. For instance, in the first case the TSP could dictate that the driver must pay for the whole
kilometer, and in the second case the policy could be that the price corresponds to the cheapest of the roads,
or to the most expensive. We note that these decisions do not conflict with the general purpose of the system:
congestion control, as in all cases, on average, drivers will pay proportionally to their use of the roads. The
second option would be to change the way the OBU proves that the committed prices belong to Im(f). In
the construction proposed in Sect. 3, the OBU employs a set membership proof, based on proving signature
possession, to prove that the committed prices belong to the finite set Im(f). Alternatively, we can define
Im(f) as a range of (positive) prices, and let the OBU use a range proof to prove that the committed prices
belong to Im(f). Since now Im(f) is much bigger, f can be defined for segments of arbitrary length that
include several types of road. We outline a construction that employs range proofs in Appendix D.

Another issue is that our OP scheme does not offer protection against OBUs that do not reply upon
receiving a verification challenge. In this case, the TSP should be able to demonstrate to the TC that the
OBU is misbehaving. To permit this, the TSP can delegate to the TC the verification of the “spot-check”,
i.e, the TSP sends the payment message m and the signature sm to the TC, and the TC interacts with the
OBU (electronically, or by contacting the driver through some other means) to verify that m is valid.

Although in Sect. 2 we mentioned that the cost associated with roads could depend on attributes of the
driver (e.g., retired users may get discounts) or on attributes of the car (e.g., ecological cars may have reduced
fees), the pricing policy used by our prototype is rather inflexible. We note that this is a limitation of our
prototype and that PrETP can support more flexible policies. For instance, the TSP can apply discounts
to the total fee reported by the OBU, without the knowledge of fine grained location data. Further, the
system model in this work considers only one service provider. However, the European legislation [12, 19]
points out that several TSPs may provide services in a given Toll Charger domain. PrETP can be trivially
extended to this setting.

Production cost. Our OBU prototype, constructed with off-the-shelf components, demonstrates that a
system like PrETP can be built at a reasonable cost 1. Although the security of our Optimistic Payment
scheme does not rely on any countermeasure against physical attacks by drivers, for liability reasons it is
desirable to use OBUs with a certain level of tamper resistance. Nevertheless, we note that on-board units
in the market [36, 43] already rely on tamper resistance. Further, secure remote firmware updates are also
required in privacy invasive designs, and additional updates in PrETP containing new maps and policies
can be considered occasional.

Privacy. Although we protect the privacy of the users by keeping the location data in the client domain
and exploiting the hiding property of cryptographic commitments, there exist a few sources of information
available to the TSP. First, as in many other services, users in PrETP must subscribe to the service by
revealing their identity, and most likely their home address, to the TSP. Second, the final fee and all the
commitments (which indicate the number of kilometers driven), must be sent to the TSP at the end of each
tax period. Decoding techniques (e.g., [15]) using these data could be employed by the TSP to infer the
trajectories followed by a vehicle by inspecting the possible combination of prices per kilometers that could
have generated the total fee. A possible solution to this problem consists in giving users the possibility to
send data associated to dummy segments. For this, a price p zero should be included in the pricing policy
so that it does not imply any cost for the drivers when aggregating the homomorphic commitments, and that
the proofs πk are still accepted by the TSP. The downside of this approach is that it introduces an overhead
in both the processing of the OBU and the communication link with the TSP. Apart from this, subliminal
channels in the communication or the encryption schemes must be avoided, e.g., by proving a true physical

1The cost of our prototype amounts to $500; such a number would be drastically reduced in a mass-production scenario.
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randomness source in the OBU (see [45] for further discussion on the topic).

Legal Compliance. We build on the analysis presented in [45] and discuss the compliance of PrETP with
European Legislation. With regard to data processing, the data controller (Art.6.2. in [12]) has to abide
by principles found in the Data Protection Directive 95/46/EC [20] (DPD) in Art. 6.1, 16 and 17. We use
these principles to assess compliance of the proposed architecture since these principles have been further
specified in the other provisions of the DPD. We only look at the principles of direct interest for this paper
which are that i) the data must be adequate, relevant and not excessive, ii) kept accurate and up to date,
iii) the data should be processed in a secure and confidential manner and iv) data should not be kept longer
than necessary. Firstly, data must be kept accurate and up-to-date (Art. 6.1(d) in [20]). In PrETP the OBU
commits to location data and to its price when reporting the final fee. These commitments do not reveal
any details on the location or the price calculation. Given that the controller is only allowed to process the
data adequate, relevant and not excessive for the provision of the service (Art. 6.1(c) in [20]), this seems a
good solution to the problem. The TC and the TSP should know that the information given by the user is
correct but the information that the commitment covers is not needed for PrETP [28, 38]. The commitments
implemented in PrETP are designed to guarantee that the OBU sends out the correct data without putting
all the user’s data in the hands of the TSP or the TC. The TC might want to execute checks at certain points
in time to verify the veracity of these commitments and sends “spot-checks” to the TSP, which interacts
with the OBU for the sake of verification. Only at those times will more data be disclosed because then
it is required to know the information the commitment is based on to know whether the commitment is
reliable. Data used for verification will however only be kept when an infringement is found. If there is no
infringement, the data will not be kept in accordance with data protection principles (Art. 6.1(E) in [28, 38]).
Secondly, the processing must be secure and confidential as stated by Art. 16-17 in [20]. A positive step
of PrETP in this regard is keeping all the data inside the OBU and the applied algorithms to protect these
data [28, 38]. The algorithms presented in this work are designed to reconcile the conflicting interest of the
users and the TSP, while protecting the user from excessive data processing (note that the data set in road
tolling could be potentially quite comprehensive – Art. 7, Annex VI in [12]) ). This criterion may be the
most important in a road tolling setting.

6 Related work

A privacy-friendly architecture for ETP in which location data is not revealed to the service provider was
presented in [45], and its viability was shown in [3]. However, the design by [45] does not take into account
that the TSP and the TC need to check the correctness of the operations carried out in the on-board unit
jeopardizing its applicability to real world scenarios.

Another line of research has focused on the design of secure multi-party protocols between the TSP and
the OBUs that allow TSPs to compute the total fee and detect malicious OBUs while protecting location
privacy. Solutions proposed in [7, 6, 41] resort to general reductions for secure multi-party computation
and are very inefficient. A more efficient protocol, VPriv, was proposed in [39]. The basic idea consists
in sending the location data generated by a driver sliced into segments to the TSP, in such a way that it
remains hidden among segments from multiple drivers. Then the TSP calculates the subfees (fees of small
time periods that add to the final fee) of all segments and returns them to all OBUs. Each OBU uses this
information to compute its total fee and, without disclosing any location data, proves to the TSP that the
total fee is computed correctly, i.e., by only using the subfees that correspond to the location data input
by this particular OBU. Moreover, in order to prevent malicious users from spoofing the GPS signal to
simulate cheaper trips, VPriv has an out-of-band enforcement mechanism. This mechanism is based on the
use of random spot checks that demonstrate that a vehicle has been at a location at a time (e.g., a photograph
taken by a road-side radar). Given this proof, the TSP challenges the OBU to prove that its fee calculation
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includes the location where the vehicle was spotted.
The protocol proposed in [39] has several practical drawbacks. First, it requires vehicles to send anony-

mous messages to the server (e.g., by using Tor [18]) imposing high additional costs to the system. Sec-
ond, their protocol only avoids leaking any additional information beyond what can be deduced from the
anonymized database. As the database contains path segments, the TSP could use tracking algorithms to
recover paths followed by the drivers [29, 27, 32] and infer further information about them. Third, the scal-
ability of the system is limited by the complexity of the protocol on the client side, as it depends on the
number of drivers in the system. Practical implementations require simplifications such as partitioning the
set of vehicles into smaller groups, thus reducing the anonymity set of the drivers. Fourth, VPriv only uses
spot checks to verify correctness of the location, and thus needs an extra protocol to verify the correct pricing
of segments. This extra protocol produces an overhead both in terms of computation and communication
complexity.

Our solution, similar to PriPAYD [45], does not require messages between the OBU and the TSP to be
anonymous as the computation of the fee is made locally and no personal data is sent to the provider. Thus,
no database of personal data is created and we do not need to rely on database anonymization techniques
to ensure users’ privacy. Further, the OBU’s operations depend only on the data it collects, independently
of the number of vehicles in the system. Finally, our protocol can be integrated into a stand-alone OBU
without the need of external devices to carry out the cryptographic protocols.

To the best of our knowledge, the only protocol that so far employs spot checks to verify both correctness
of the location and of the fee calculation is due to Jonge and Jacobs [16]. In this solution, OBUs commit
to segments of location data and its corresponding subfees when reporting the total fee to the TSP. They
employ hash functions as commitments. Upon being challenged to ratify the information in the spot check,
OBUs must provide the hash pre-image of the corresponding segment, and demonstrate that indeed the
location was used to compute the final fee.

Jonge and Jacobs’ protocol is limited by the fact that using hash-based commitments one cannot prove
that the commitments to the subfees add to the total fee. As solution, they propose that the OBU also
commits to the subfees corresponding to bigger time intervals following a tree structure. Each tax period
is divided into months, each month is divided into weeks, and so forth, and subfees for each month, week,
day,. . . are calculated and committed. Then, instead of asking the OBU to open only one commitment
containing the instant specified in TC’s proof, the TSP asks the OBU to open all the commitments in the
tree that include that instant. This indeed proves that the sum is correct at the cost of revealing much more
information to the TSP.

PrETP avoids this information leakage. The reason is that, in our OP scheme, commitments are ho-
momorphic and thus allow TSP to check that the commitments to the subfees add to the total fee without
additional data. The use of homomorphic commitments was also proposed and briefly sketched in [16].
However, their scheme does not prevent the OBU from committing to a “negative” price, which would give
a malicious OBU the possibility of reducing the final fee by sending only one wrong commitment, thus with
an overwhelming probability of not being detected by the spot checks.

7 Conclusion

The revelation of location data in Electronic Toll Pricing (ETP) systems, besides conflicting with the users’
right to privacy, can also pose inconveniences and extra investments to service providers as the law demands
that personal data is stored and processed under strong security guarantees [20]. Furthermore, it has been
shown [31] that security and privacy concerns are among the main reasons that discourage the use of elec-
tronic communication services. Recent research [46] demonstrates that users confronted to a prominent
display of private information not only prefer service providers that offer better privacy guarantees but also
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are willing to pay higher prices to utilize more privacy protective systems. Consequently, it is of interest for
service providers to deploy systems where the amount of location information that users need to disclose is
minimized.

As ETP systems are becoming increasingly important [12, 1], it is a challenge to implement them re-
specting both the users’ privacy and the interest of the service provider. Previous work relied on too ex-
pensive solutions, or on unrealistic requirements, to fulfill both properties. In this work we have presented
PrETP, an ETP system that allows on-board units to prove that they operate correctly leaking the minimum
amount of information. Namely, upon request of the service provider, on-board units can attest that the input
location data for the calculation of the fee is authentic and has not been tampered with. For this purpose
we proposed a new cryptographic protocol, Optimistic Payment, that we define, construct and prove secure
under standard assumptions. For this protocol, we also provide an efficient instantiation based on known
secure cryptographic primitives.

We have performed a holistic analysis of PrETP. Besides the security analysis, we have built an on-
board unit prototype on an embedded platform, as well as a service provider prototype on a commodity
computer, and we have thoroughly tested the performance of both using real world collected data. The
result of our experiments confirms that our protocol can be executed in real time in an on-board unit con-
structed with off-the-shelf components. Finally, we have analyzed the legal compliance of PrETP under
the European Law framework and conclude that it fully supports the Data Protection Directive principles.
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A Security Definition of Optimistic Payment

Ideal-world/real-world paradigm. We use the ideal-world/real-world paradigm to prove our construction
secure. In this paradigm, parties are modeled as probabilistic polynomial time interactive Turing machines.
A protocol ψ is secure if there exists no environment Z that can distinguish whether it is interacting with
adversaryA and parties running protocol ψ or with the ideal process for carrying out the desired task, where
ideal adversary S and dummy parties interact with an ideal functionality Fψ. More formally, we say that
protocol ψ emulates the ideal process if, for any adversary A, there exists a simulator S such that for all
environments Z , the ensembles IDEALFψ ,S,Z and REALψ,A,Z are computationally indistinguishable. We
refer to [10] for a description of these ensembles.

Our construction operates in the FREG-hybrid model, where parties register their public keys at a trusted
registration entity and obtain from it a common reference string. Below we depict the ideal functionality
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FREG, which is parameterized with a set of participants P that is restricted to contain OBU, TSP and
TC only. We also describe an ideal functionality FOP for Optimistic Payment. Every functionality and
every protocol invocation should be instantiated with a unique session-ID that distinguishes it from other
instantiations. For the sake of ease of notation, we omit session-IDs from our description.
Functionality FREG. Parameterized with a set of parties P , FREG works as follows:
- On input (crs) from party P , if P /∈ P it aborts. Otherwise, if there is no value r recorded, it picks r ← D

and records r . It sends (crs, r) to P .
- Upon receiving (register, v) from party P ∈ P , it records the value (P , v).
- Upon receiving (retrieve,P) from party P ′ ∈ P , if (P , v) is recorded then return (retrieve,P , v) to P ′.

Otherwise send (retrieve,P ,⊥) to P ′.
Functionality FOP. Running with OBU, TSP and TC, FOP works as follows:
- On input a message (initialize, f, µ) from TSP, where f is a mapping f : (loc, time) → Υ and µ :

(φ, (loc, time))→ {accept, reject}, FOP stores (f, µ) and sends (initialize, f, µ) to OBU.
- On input a message (payment, tag , fee, (k, (lock, timek), pk)

N
k=1) from OBU, where tag identifies the tax

period, FOP checks that a message (payment, tag , . . .) was not received before, that for k = 1 to N ,
pk ∈ Υ, and that fee =

∑N
k=1 pk. If these checks succeed, FOP sends (payment, tag , fee, N) to TSP

and stores the tuple (tag , fee, (k, (lock, timek), pk)
N
k=1). Otherwise FOP sends (payment, tag ,⊥) and

stores (tag ,⊥).
- On input a message (proof, tag , φ) from TC, FOP stores (tag , φ) and sends (proof, tag , φ) to TSP.
- On input a message (verify, tag , φ) from TSP, FOP checks that it stores messages (payment, tag , . . .) and

(proof, tag , φ). If it is the case, FOP sends (verifyreq, tag , φ) to OBU. Upon receiving (verifyresp,
tag , (σ, (loc′σ, time ′σ), p ′σ)),FOP checks whether the stored payment tuple (k, (lock, timek), pk) equals
(σ, (loc′σ, time ′σ), p′σ) for k = σ, whether µ(φ, (loc′σ, time ′σ)) outputs accept, and whether p ′σ =
f(loc′σ, time ′σ). If these checks are correct, FOP sends (verifyresul, not guilty, (σ, (loc′σ, time ′σ), p′σ))
to TSP. Otherwise it sends (verifyresul, guilty, (σ, (loc′σ, time ′σ), p′σ)).

- On input a message (blame, tag) from TSP, FOP checks that messages (payment, tag , . . .), (proof, tag ,
φ) and (verifyresp, tag , . . .) were previously received, and in this case it proceeds with the same
checks done for (verify, . . .). It sends to TC either (guilty) or (not guilty).

B Construction of an Optimistic Payment Scheme

We use several existing results to prove statements about discrete logarithms: (1) proof of knowledge of a
discrete logarithm modulo a prime [42]; (2) proof of knowledge of the equality of some element in different
representations [11]; (3) proof with interval checks [37] and (4) proof of the disjunction or conjunction
of any two of the previous [13]. These results are often given in the form of Σ-protocols but they can
be turned into non-interactive zero-knowledge arguments in the random oracle model via the Fiat-Shamir
heuristic [23].

When referring to the proofs above, we follow the notation introduced by Camenisch and Stadler [9] for
various proofs of knowledge of discrete logarithms and proofs of the validity of statements about discrete
logarithms. NIPK{(α, β, δ) : y = g0

αg1
β ∧ ỹ = g̃0

αg̃1
δ ∧ A ≤ α ≤ B} denotes a “zero-knowledge Proof

of Knowledge of integers α, β, and δ such that y = g0
αg1

β , ỹ = g̃0
αg̃1

δ and A ≤ α ≤ B holds”, where
y, g0, g1, ỹ, g̃0, and g̃1 are elements of some groups G = 〈g0〉 = 〈g1〉 and G̃ = 〈g̃0〉 = 〈g̃1〉 that have the
same order. (Note that some elements in the representation of y and ỹ are equal.) The convention is that
letters in the parenthesis, in this example α, β, and δ, denote quantities whose knowledge is being proven,
while all other values are known to the verifier. We denote a non-interactive proof of signature possession
as NIPK{(x, sx) : SigVerify(pk , x, sx) = accept}.

18



B.1 Construction

We begin with a high level description of the optimistic payment scheme. We assume that each party
registers its public key at FREG, and retrieves public keys from other parties by querying FREG. They also
retrieve the common reference string paramsCom , which is computed by algorithm SetupOP.
Optimistic Payment

When TSP is activated with (initialize, f, µ), TSP runs TSPkg(1k) to obtain (skTSP, pkTSP), and obtains
a setup params with TSPinit(f, skTSP). TSP stores TSP0 = (f, µ, skTSP, pkTSP, paramsCom ,
params) and sends (f, µ, params) to OBU. OBU runs OBUkg(1k) to get (skOBU, pkOBU) and
executes OBUinit(params, pkTSP) to get a bit b. If b = 0, OBU rejects params . Otherwise OBU
stores the tuple OBU0 = (f, µ, skOBU, pkOBU, pkTSP, paramsCom , params).

When OBU is activated with (payment, tag , fee, (k, (lock, timek), pk)
N
k=1) and OBU has previously re-

ceived (f, µ, params), OBU runs algorithm Pay(paramsCom , params, pkOBU, skOBU, pkTSP, tag ,
fee, (k, (lock, timek), pk)

N
k=1) to obtain a payment message m along with a signature sm, and auxil-

iary information aux. OBU sets aux = (aux, (k, (lock, timek), pk)
N
k=1), stores OBUtag = (OBU0,

m, sm, aux) and sends (m, sm) to TSP. TSP runs VerifyPayment(paramsCom , pkOBU, pkTSP,m,
sm) to obtain a bit b. If b = 0, TSP rejects (m, sm). Otherwise TSP stores TSPtag = (TSP0,m,
sm, pkOBU).

When TC is activated with (proof, tag , φ), TC runs TCkg(1k) to get (pkTC, skTC), runs Prove(skTC,
tag , φ) to obtain a proof Q and sends (Q) to TSP. TSP runs VerifyProof(pkTC, Q) and aborts if
b = 0. Otherwise TSP stores TSPtag = (TSPtag , Q).

When TSP is activated with (verify, tag , φ), and TSP has previously obtained (m, sm) and (Q), TSP
sends (Q) to OBU. OBU executes VerifyProof(pkTC, Q) and aborts if b = 0. Otherwise OBU runs
OBUopen(skOBU, Q, aux) to get a responseR and sends (R) to TSP. TSP runs Check(paramsCom ,
pkOBU, pkTSP,m, sm, Q,R) to obtain either (not guilty, (k, (lock, timek), pk) or (guilty, (k, (lock,
timek), pk)).

When TSP is activated with (blame, tag), and messages (m, sm), (Q) and (R) were previously received,
TSP sends ((m, sm), R) to TC. TC runs Check(paramsCom , pkOBU, pkTSP,m, sm, Q,R) to obtain
(not guilty, (k, (lock, timek), pk)) or (guilty, (k, (lock, timek), pk)).

In the following, we denote the signature algorithms used by TSP, OBU and TC as (TSPkeygen,
TSPsign,TSPverify), (OBUkeygen,OBUsign,OBUverify) and (TCkeygen,TCsign,TCverify). H stands
for a collision-resistant hash function, which is modeled as a random oracle.
SetupOP(1k). Run ComSetup(1k) and output paramsCom .
TSPkg(1k). Run TSPkeygen(1k) to get a key pair (pkTSP, skTSP). Output (pkTSP, skTSP).
OBUkg(1k). Run OBUkeygen(1k) to get a key pair (pkOBU, skOBU). Output (pkOBU, skOBU).
TCkg(1k). Run TCkeygen(1k) to obtain a key pair (pkTC, skTC). Output (pkTC, skTC).
TSPinit(f, skTSP). For all possible prices p ∈ Υ, run s = TSPsign(skTSP, p) and output the set params =

(p, s).
OBUinit(params, pkTSP). Parse params as (p, s) and run TSPverify(pkTSP, p, s) for all p ∈ Υ. If all the

signatures are correct, output b = 1 else b = 0.
Pay(paramsCom , params, pkOBU, skOBU, pkTSP, tag fee, (k, (lock, timek), pk)

N
k=1). For k = 1 to N , ex-

ecute hk = H(lock, timek), calculate a commitment to the price (ck, openk) = Commit(paramsCom ,
pk) and compute a proof of possession of a signature on the price πk = NIPK{(pk, openk, sk) :
TSPverify(pkTSP, pk, sk) = accept ∧ (ck, openk) = Commit(paramsCom , pk)}. Add all the prices
to obtain the total fee fee and all the openings openk to get an opening open fee to the commit-
ment to the fee. Set payment message m = (tag , fee, open fee , (hk, ck, πk)

N
k=1) and run sm =

OBUsign(skOBU,m). Output (m, sm) and aux = (openk)
N
k=1.
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VerifyPayment(paramsCom , pkOBU, pkTSP,m, sm). Parse m as (tag , fee, open fee , (hk, ck, πk)
N
k=1). For

k = 1 to N , verify πk. Add all the commitments to obtain a commitment to the total fee cfee , and
run Open(paramsCom , cfee , fee, open fee). If the opening is correct, output b = 1. Otherwise output
b = 0.

Prove(skTC, tag , φ). Set q = (tag , φ) and run sq = TCsign(skTC, q). Output Q = (q, sq).
VerifyProof(pkTC, Q). Parse Q as (q, sq) and run TCverify(pkTC, q, sq). Output b = 1 if the signature is

correct and b = 0 otherwise.
OBUopen(skOBU, Q, aux). Parse proof Q as (q, sq), q as (tag , φ) and aux as (openk, (k, (lock, timek),

pk))
N
k=1. Find the data structure (lock, timek) such that µ(φ, (lock, timek)) outputs accept. Set

r = (tag , (k, (lock, timek), pk), openk) and run sr = OBUsign(skOBU, r). Output R = (r, sr).
Check(paramsCom , pkOBU, pkTSP,m, sm, Q,R). Parse R as (r, sr) and run OBUverify(pkOBU, r, sr). If

the signature is correct, parse r as (tag , (σ, (loc′σ, time ′σ), p′σ), openσ), Q as ((tag , φ), sq) and m
as (tag , fee, open fee , (hk, ck, πk)

N
k=1). Check that open fee was picked from the adequate interval.

Compute h′σ = H(loc′σ, time ′σ), check if h′σ = hσ and if µ(φ, (loc′σ, time ′σ)) outputs accept. If it is
the case, set reasonpos = 0 and otherwise reasonpos = 1. Compute pσ = f(loc′σ, time ′σ) and check
if pσ = p′σ. Run Open(paramsCom , ck, pk, openk). If it opens correctly set reasonprice = 0 and
otherwise reasonprice = 1. If reasonpos = reasonprice = 0, output (not guilty, (k, (lock, timek),
pk)). If not, output (guilty, (k, (lock, timek), pk)).

Theorem 1 This OP scheme securely realizes FOP.

We prove Theorem 2 in Appendix C.

B.2 Efficient Instantiation

We propose an efficient instantiation for the commitment scheme, TSP’s signature scheme and the non-
interactive proof of signature possession that are used in the construction described in the previous section.
The signature schemes of TC and OBU can be instantiated with any existentially unforgeable signature
scheme.

Signature Scheme. We select the signature scheme proposed by Camenisch and Lysyanskaya [8].
- SigKeygen. On input 1k, generate two safe primes p, q of length k such that p = 2p′ + 1 and q = 2q′ + 1.

The special RSA modulus of length ln is defined as n = pq. Output secret key sk = (p, q). Choose
uniformly at random S ∈R QRn, and R,Z ∈R 〈S〉. Output public key pk = (n,R, S, Z).

- SigSign. On input message x of length lx, choose a random prime number e of length le ≥ lx + 3, and a
random number v of length lv = ln + lx + lr, where lr is a security parameter [8]. Compute the value
A such that Z ≡ AeRxSv(mod n). Output the signature (A, e, v).

- SigVerify. On inputs message x and signature (A, e, v), check that Z = AeRxSv(mod n) and 2le ≤ e ≤
2le−1.

Commitment Scheme. We select the integer commitment scheme due to Damgard and Fujisaki [14].
- ComSetup. Given a special RSA modulus, pick a random generator g1 ∈R QRn. Pick random α ←

{0, 1}ln+lz and compute g0 = gα1 . Output parameters (g0, g1, n).
- Commit. On input message x of length lx, choose a random number openx ∈ {0, 1}ln+lz , and compute

cx = g0
xg1

openx(mod n). Output the commitment cx and the opening openx.
- Open. On inputs message x and opening openx, compute c′x = g0

xg1
openx(mod n) and check whether

cx = c′x.

Non-Interactive Zero-Knowledge Argument. We employ the proof of possession of a signature in [8].
Given a signature (A, e, v) on message x and a commitment to the message cx = g0

xg1
openx , the prover
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computes Ã = Agw, a commitment cw = gwhopenw and a proof that:

NIPK{ (x, openx, e, v, w, openw, w · e, openw · e) : cx = g0
xg1

openx ∧ Z = ÃeRxSv(1/g0)w·e ∧
cw = g0

wg1
openw ∧ 1 = cew(1/g0)w·e(1/g1)openw·e ∧ e ∈ {0, 1}le+lc+lz ∧ x ∈ {0, 1}lx+lc+lz}

We turn it into a non-interactive zero-knowledge argument via the Fiat-Shamir heuristic. The prover picks
random values:
rx ← {0, 1}lx+lc+lz , ropenx ← {0, 1}

ln+lc+lz , rw ← {0, 1}ln+lc+lz , ropenw ← {0, 1}ln+lc+lz

re ← {0, 1}le+lc+lz , rw·e ← {0, 1}ln+le+lc+lz , rv ← {0, 1}lv+lc+lz , ropenw·e ← {0, 1}
ln+le+lc+lz

and computes commitments:

tcx = g0
rxg1

ropenx , tcw = grwhropenw , t′Z = ÃreRrxSrv(1/g0)rw·e , t′ = crew (1/g0)rw·e(1/g1)ropenw·e

Let the challenge computed by the prover be:

ch = H(n||g0||g1||Ã||R||S||1/g0||1/g1||cx||Z||cw||1||tcx ||tZ ||tcw ||t ).
The prover computes responses:

sx = rx − ch · x , sopenx = ropenx − ch · openx , sw = rw − ch · w
sopenw = ropenw − ch · openw , se = re − ch · e , sw·e = rw·e − ch · (w · e)
sv = rv − ch · v , sopenw·e = ropenw·e − ch · (openw · e)

and sends to the verifier:

π = (Ã, cw, ch, sx, sopenx , se, sv, sw, sopenw , sw·e, sopenw·e) .
The verifier computes:

t′cx = cchx g0
smg1

sopenx , t′cw = cchw g0
swg1

sopenw , t′Z = ZchÃseRsxSsv(1/g0)sw·e

t′ = Csew (1/g0)sw·e(1/g1)sopenw·e

and checks whether:

se ∈ {0, 1}le+lc+lz , sx ∈ {0, 1}lx+lc+lz

and finally:

ch = H(n||g0||g1||Ã||R||S||1/g0||1/g1||cx||Z||cw||1||t′cx ||t
′
Z ||t′cw ||t

′ ).

C Security Proof

Theorem 2 This OP scheme securely realizes FOP.

In order to prove this theorem, we need to build a simulator S that invokes a copy of adversary A and
interacts with FOP and environment Z in such a way that ensembles IDEALFOP,S,Z and REALOP,A,Z are
computationally indistinguishable. In our setting TC is trusted: it always follows the protocol specification,
it inputs correct proofs φ and it colludes neither with TSP nor with OBU.

Simulation of TSP security. In this case only OBU is corrupted.
S runs SetupOP(1k) to get paramsCom , TSPkg(1k) to obtain (pkTSP, skTSP), and TCkg(1k) to obtain

(pkTC, skTC).
Upon receiving (crs) fromA, S returns (crs, paramsCom). Upon receiving (retrieve,TSP) (resp. (retrieve,

TC)), S returns (TSP, pkTSP) (resp. (TC, pkTC)). Upon receiving (register, pkOBU), S stores
(OBU, pkOBU).
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Upon receiving (initialize, f, µ) from FOP, S executes TSPinit(f, skTSP) to obtain a setup params , stores
(f, µ, skTSP, pkTSP, paramsCom , params) and sends (f, µ, params) to A.

S records each random oracle query H(loc, time) performed by A and responds by providing consistent
random values (i.e., if A queries a value twice, S returns the same result).

Upon receiving (m, sm) from A, S verifies the signature sm by using pkOBU and ignores the message if
it is not correct. S parses m as (tag , fee, open fee , (hk, ck, πk)

N
k=1). For k = 1 to N , S verifies πk

and then extracts the witness (pk, openk, sk) from πk. S aborts if pk is not included in params . S
maps to each value hk output by the random oracle the corresponding query (loc, time). For values
hk that were not output by the random oracle, S assigns a random pair (loc, time). S computes
cfee =

∏N
k=1 ck to obtain a commitment to the fee and runs Open(paramsCom , cfee , fee, open fee). If

the output is b = 1, S stores (m, sm) and sends (payment, tag , fee, (k, (lock, timek), pk)
N
k=1) to FOP.

Upon receiving (verifyreq, tag , φ) from FOP, S executes Prove(skTC, tag , φ) to obtain a proof Q and
sends (Q) to A.

Upon receiving (R) from A, S parses R as (tag , (σ, (loc′σ, time ′σ), p ′σ), openσ, sr) and verifies the sig-
nature sr. If it is correct, S parses m as (tag , fee, open fee , (hk, ck, πk)

N
k=1) and checks if hσ =

H(loc′σ, time ′σ). If it is not the case, S ignores the message. Otherwise S aborts if hσ was not output
by the random oracle on input (loc′σ, time ′σ). S runs Open(paramsCom , cσ, p

′
σ, openσ) and aborts if

the opening is correct but p′σ is different from the price extracted from πσ. If the price is the same, S
sends (verifyresp, tag , (σ, (loc′σ, time ′σ), p′σ)) to FOP.

Claim 1 When only OBU is corrupted, the distribution ensembles IDEALFOP,S,Z and REALOP,A,Z are
computationally indistinguishable under the existential unforgeability of TSP’s signature scheme, the bind-
ing property of the commitment scheme, the extractability of the proof system and the collision resistance
property of H in the random oracle model.

Proof. We show by means of a series of hybrid games that the environment Z cannot distinguish between
the real execution ensemble REALOP,A,Z and the simulated ensemble IDEALFOP,S,Z with non-negligible
probability. We denote by Pr [Game i] the probability that Z distinguishes between the ensemble of Game i
and that of the real execution.
Game 0: This game corresponds to the execution of the real-world protocol with an honest TSP. Therefore,

Pr [Game 0] = 0.
Game 1: This game proceeds as Game 0, except that paramsCom and the public keys pkTC and pkTSP

are replaced by other paramsCom
′, pkTC

′ and pkTSP
′ that are obtained by running SetupOP, TCkg

and TSPkg respectively. Moreover, params is replaced by another setup params ′, which is generated
by running TSPinit on input the same function f . Since the new values are taken from the same
distribution as (paramsCom , pkTC, pkTSP, params), then |Pr [Game 1]− Pr [Game 0]| = 0.

Game 2: This game proceeds as Game 1, except that, for k = 1 toN , we extract the witness (pk, openk, sk)
of each proof πk in message m. Since extraction fails with negligible probability, |Pr [Game 2] −
Pr [Game 1]| = ν1(k).

Game 3: This game proceeds as Game 2, except that Game 3 aborts if the extracted pk is not a price signed
in params ′. The probability that Z distinguishes between Game 3 and Game 2 is bounded by the
following lemma:

Lemma 1 If TSP’s signature scheme is existentially unforgeable, |Pr [Game 3] − Pr [Game 2]| =
ν2(k).

Proof. Given an adversary A that makes Game 3 abort with non-negligible probability, we con-
struct an algorithm B that breaks the existential unforgeability of TSP’s signature scheme with non-
negligible probability. B receives from the challenger E of the existential unforgeability game a public

22



key pk and assigns pkTSP = pk . B uses the signing oracle provided by E to compute params . Even-
tually, A sends a payment tuple (hk, ck, πk) such that the extracted witness (pk, openk, sk) contains
a price pk that was not queried to the signing oracle. B sends (pk, sk) to E as its forgery.

Game 4: This game proceeds as Game 3, except that the proof P is replaced by another valid proof P ′,
which is generated by running algorithm Prove on input the correct values (tag , φ). Therefore, since
P and P ′ are identically distributed, |Pr [Game 4]− Pr [Game 3]| = 0.

Game 5: This game proceeds as Game 4, except that Game 5 aborts if the pair (p ′σ, openσ) included in R
opens correctly the commitment cσ included in m, but p′σ is different from the price extracted from
proof πσ. The probability that Z distinguishes between Game 5 and Game 4 is bounded by the
following lemma:

Lemma 2 Under the binding property of the commitment scheme, |Pr [Game 5] − Pr [Game 4]| =
ν3(k).

Proof. Given an adversary A that makes Game 5 abort with non-negligible probability, we con-
struct an algorithm B that breaks the binding property of the commitment scheme with non-negligible
probability. B receives from the challenger E of the binding property game parameters of the com-
mitment scheme and uses them to set paramsCom . Upon receiving a payment tuple (hk, ck, πk), B
extracts the witness (pk, openk, sk) and stores (ck, pk, openk). Eventually, A outputs a response R
with a pair (p ′σ, open

′
σ) such that pσ 6= p′σ. B sends (cσ, pσ, openσ, p

′
σ, open

′
σ) to E in order to break

the binding property.
Game 6: This game proceeds as Game 5, except that Game 6 aborts if the pair (loc′σ, time ′σ) is a valid

preimage of the value hσ included in m, but hσ was output on input a different pair (locσ, timeσ).
The probability that Z distinguishes between Game 6 and Game 5 is bounded by the following
lemma:

Lemma 3 Under the collision resistance property of H , |Pr [Game 6]− Pr [Game 5]| = ν4(k).

Proof. Given an adversary A that makes Game 6 abort with non-negligible probability, we con-
struct an algorithm B that breaks the collision resistance property of the hash function with non-
negligible probability. B receives from the challenger E a hash function H . Upon receiving a random
oracle query (lock, timek), E stores (lock, timek) and outputs hk. When receiving a payment tu-
ple (hk, ck, πk), B records (hk, lock, timek). Eventually, A outputs a response R where the pair
(loc′σ, time ′σ) is a preimage of hk, but (loc′σ, time ′σ) 6= (lock, timek). B sends (hk, (lock, timek),
(loc′σ, time ′σ)) to E to break the collision resistance property of H .

S performs all the changes described in Game 6, and forwards and receives messages fromFOP as described
in our simulation. The distribution produced in Game 6 is identical to that of our simulation. Therefore, by
summation we have that |Pr [Game 6] ≤ ν5(k).

Simulation of OBU security. In this case only TSP is corrupted.
S runs SetupOP(1k) to get paramsCom and a trapdoor t, OBUkg(1k) to obtain (pkOBU, skOBU) and

TCkg(1k) to obtain (pkTC, skTC). Trapdoor t allows S to open a commitment to any value.
Upon receiving (crs) from A, S returns (crs, paramsCom). Upon receiving (register, pkTSP), S stores

(TSP, pkTSP). Upon receiving (retrieve,OBU) (resp. (retrieve,TC)) fromA, S returns (OBU, pkOBU)
(resp. (TC, pkTC)).

Upon receiving (f, µ, params) fromA, S runs OBUinit(params, pkTSP). If b = 0, S ignores the message.
Otherwise S stores params and sends (initialize, f, µ) to FOP.
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Upon receiving (payment, tag , fee, N) from FOP, S choosesN prices such that p1 + . . .+pN = fee. Then
S computes m = (tag , fee, open fee , (hk, ck, πk)

N
k=1) and the signature sm by following algorithm

Pay, except that hk is set to a random string of the required length. S sends (m, sm) to A.
Upon receiving (proof, tag , φ) from FOP, S runs Prove(skTC, tag , φ) to obtain a proof Q and sends (Q)

to A.
Upon receiving (Q′) from A, S runs VerifyProof(pkTC, Q

′) and ignores the message if the result is not
correct. Otherwise, S parses Q′ as (q′, sq′) and Q as (q, sq) and, if q 6= q′, S aborts. Otherwise S
sends (verify, tag , φ) to FOP.

Upon receiving the message (verifyresul, not guilty, (σ, (loc′σ, time ′σ), p ′σ)) or the message (verifyresul,
guilty, (σ, (loc′σ, time ′σ), p′σ)) from FOP, S parses m to obtain (hσ, cσ, πσ) and uses the trapdoor t
to compute an opening open such that the output of Open(paramsCom , cσ, p

′
σ, open) is correct. S

sets R = ((tag , (σ, (loc′σ, time ′σ), p ′σ), openσ), sr) and sends (R) to A. When A submits an oracle
query of the form (loc, time), if (loc, time) = (loc′σ, time ′σ), S returns hσ. Otherwise S returns a
consistent random value.

Upon receiving ((m′, sm′), R
′) fromA, S executes VerifyPayment(paramsCom , pkOBU, pkTSP,m

′, sm′),
parses R′ as (r, sr) and runs OBUverify(pkOBU, r, sr). If all these checks verify but m′ 6= m or
r′ 6= r then S aborts. Otherwise S sends (blame, tag) to FOP.

Claim 2 When only TSP is corrupted, the distribution ensembles IDEALFOP,S,Z and REALOP,A,Z are
computationally indistinguishable under the hiding property of the commitment scheme, the zero-knowledge
property of the proof system, and the existential unforgeability of the signatures schemes of TC and OBU.

Proof.
Game 0: This game corresponds to the execution of the real-world protocol with an honest OBU. There-

fore, Pr [Game 0] = 0.
Game 1: This game proceeds as Game 0, except that paramsCom and the public keys pkTC and pkOBU

are replaced by other other paramsCom
′ and other public keys pkTC

′ and pkOBU
′ that are obtained by

running SetupOP, TCkg and OBUkg respectively. Since these public keys have the same distribution
as pkTC and pkOBU, then |Pr [Game 1]− Pr [Game 0]| = 0.

Game 2: This game proceeds as Game 1, except that, for k = 1 toN , the values hk are replaced by random
strings. Under the assumption that H behaves as a random oracle, values hk and random strings have
the same distribution. Therefore, |Pr [Game 2]− Pr [Game 1]| = 0.

Game 3: This game proceeds as Game 2, except that, for k = 1 to N , the commitment ck and the proof πk
are replaced by another valid commitment ck to a price p′k such that

∑N
i=1 p

′
k = fee, and by a proof

π′k that uses as witness (p′k, open
′
k) and the signature on p′k included in params . The probability that

Z distinguishes between Game 3 and Game 2 is bounded by the following lemma:

Lemma 4 Under the assumption that the commitment scheme is hiding and the non-interactive proof
system is zero-knowledge, |Pr [Game 3]− Pr [Game 2]| = ν1(k).

Proof. We employ a sequence of hybrid games. Let game-i be the game in which the payment tuples
(hk, ck, πk)

i
k=1 consist of a commitment ck and a proof πk that are computed by using an (incorrect)

price p′k, while the tuples (hk, ck, πk)
N
k=i+1 remain unchanged, i.e., (ck, πk) are computed on input the

valid price pk. Clearly, game-0 corresponds to Game 2, and game-N corresponds to Game 3. If an
environment Z distinguishes Game 3 from Game 2 with non-negligible probability ε, there must be
an index i such that Z distinguishes game-(i+1) from game-i with non-negligible probability at least
ε/N . Given such a Z , we construct an algorithm B that breaks the hiding property of the commitment
scheme with non-negligible probability. B receives from the challenger Ecom of the hiding property
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game the parameters of the commitment scheme and uses them to set up paramsCom . B computes
a payment message as follows. The first i payment tuples are replaced by tuples computed on input
random prices in Im(f), while, from k = i + 2 to N , payment tuples remain unchanged. (The sum
of all prices should be fee.) To compute the (i+ 1)-tuple, B submits a challenge (p0, p1), where p0 is
the original price of tuple i+ 1 and p1 is the new random price, to the challenger Ecom. E flips a coin
b, computes (cb, openb) = Commit(paramsCom , pb) and returns cb. B sets ci+1 = cb and uses the
zero-knowledge property of the proof system to compute a simulated proof πi+1. The (i+1)-payment
tuple is (hi+1, ci+1, πi+1). Clearly, if b = 0 the distribution corresponds to that of game-i, while if
b = 1 the distribution corresponds to that of game-(i + 1). Z outputs a bit b′, which is forwarded by
B to Ecom as its guess for the hiding property game.

Game 4: This game proceeds as Game 3, except that the proof Q that is sent to A is replaced by another
valid proof Q′, which is generated by running algorithm Prove on input the correct values (tag , φ).
Therefore, since Q and Q′ are identically distributed, |Pr [Game 5]− Pr [Game 4]| = 0.

Game 5: This game proceeds as Game 4, except that S parses Q′ as (q′, s′q) and Q as (q, sq) and aborts
if q′ 6= q. The probability that Z distinguishes between Game 5 and Game 4 is bounded by the
following lemma:

Lemma 5 Under the unforgeability of TC’s signature scheme , |Pr [Game 5]−Pr [Game 4]| = ν2(k).

Proof. Given an adversaryA that makes Game 5 abort with non-negligible probability, we construct
an algorithm B that breaks the existential unforgeability of TC’s signature scheme with non-negligible
probability. B receives from the challenger E of the existential unforgeability game a public key pk
and assigns pkTC = pk . B uses the signing oracle provided by E to obtain a signature sq on q.
Eventually, A sends a proof Q′ = (q′, sq′) where sq′ is valid signature on q′, but q′ was not submitted
to the signing oracle. B sends (q′, sq′) to E as its forgery.

Game 6: This game proceeds as Game 5, except that the opening openσ included in R is replaced by other
opening open , such that the commitment cσ can be opened to pσ in R. Under the assumption that
we use a trapdoor commitment scheme, trapdoor t always allows finding such an opening. Moreover,
since both openings are equally distributed, |Pr [Game 6]− Pr [Game 5]| = 0.

Game 7: This game proceeds as Game 6, except that Game 7 aborts if (m′, sm′) or (r′, sr′) received from
A are correct but m′ 6= m or r 6= r′, where (m, r) were previously sent to A. The probability that Z
distinguishes between Game 7 and Game 6 is bounded by the following lemma:

Lemma 6 Under the unforgeability of OBU’s signature scheme, |Pr [Game 7] − Pr [Game 6]| =
ν3(k).

Proof. Given an adversaryA that makes Game 7 abort with non-negligible probability, we construct
an algorithm B that breaks the existential unforgeability of TC’s signature scheme with non-negligible
probability. B receives from the challenger E of the existential unforgeability game a public key pk
and assigns pkOBU = pk . B uses the signing oracle provided by E to obtain a signature sm on each
payment message m and a signature sr on each response r. Eventually, A sends a pair (m′, sm′) or a
pair (r′, sr′) with valid signatures, but such that m′ or r′ were not submitted to the signing oracle. B
sends (m′, sm′) or (r′, sr′) to E as its forgery.

S performs all the changes described in Game 7, and forwards and receives messages fromFOP as described
in our simulation. The distribution produced in Game 7 is identical to that of our simulation. Therefore, by
summation we have that |Pr [Game 7] ≤ ν4(k).
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D Efficient Instantiation Based on Range Proofs

We describe another possible instantiation of the construction presented in Sect. B.1. It differs from the
instantiation described in Sect. B.2 in the way OBU proves that it uses prices that belong to Im(f). In Sect.
B.2, we employ a set membership proof where OBU proves possession of a signature by TSP on the price.
Now, we define Im(f) to be any non-negative value, and OBU employs a range proof to prove that it uses
non-negative prices.

The proof computed in algorithm Pay is now πk = NIPK{(pk, openk) : (ck, openk) = Commit
(paramsCom , pk) ∧ pk ≥ 0}. Moreover, TSP does not employ any signature scheme, and thus algorithms
TSPkg, TSPinit and OBUinit are unnecessary.

Commitment Scheme. We select the integer commitment scheme due to Groth [26].
- ComSetup. Given a special RSA modulus, pick a random generator h ∈ QRn. Pick random α, α1, α2,

α3, α4 ∈ {0, 1}ln+lz and compute g = hα, g1 = hα1 , g2 = hα2 , g3 = hα3 , g4 = hα4 . Output public
commitment parameters (g, g1, g2, g3, g4, h, n).

- Commit. On input integers 〈m,m1,m2,m3,m4〉 of length lm, choose a random open ∈ {0, 1}ln+lz , and
compute C = gmgm1

1 gm2
2 gm3

3 gm4
4 hopen (mod n). Output the commitment C and the opening open .

- Open. On inputs integers 〈m′,m′1,m′2,m′3,m′4〉 and open ′, computeC ′ = gm
′
g
m′1
1 g

m′2
2 g

m′3
3 g

m′4
4 hopen

′
(mod

n) and check whether C = C ′.

Non-Interactive Zero-Knowledge Argument. We employ the non-interactive zero-knowledge argument
due to Groth [26] to prove that an integer m ≥ 0. The proof is based on the fact that any positive integer m
of the form 4m+ 1 can be written as a sum of three squares a2 + b2 + d2. Therefore, to prove that m ≥ 0,
Groth proposes to prove that 4m+ 1 = a2 + b2 + d2. Values (a, b, c) can be computed via the Rabin-Shallit
algorithm [40]. The proof is:

NIPK{ (m, openm, a, b, d) : Cm = gmhopenm ∧ 4m+ 1 = a2 + b2 + d2}

The prover picks random rm, ra, rb, rd ∈ {0, 1}ln+lc+lz and computes ∆ = 4rm− 2ara− 2brb− 2drd.
Then the prover picks random openm, opensq ∈ {0, 1}ln+lz and computes a commitment to the message
Cm = gmhopenm and a commitment Csq = gmga1g

b
2g
d
3g

∆
4 h

opensq . The prover picks ropenm , ropensq ∈

{0, 1}ln+lz+lc+lz and computes tCm = grmhropenm and tCsq = grmgra1 g
rb
2 g

rd
3 g
−r2

a−r2
b−r

2
d

4 hropensq . Then
the prover computes the challenge c = H(n||g||g1||g2||g3||g4||h||Cm||Csq||tCm ||tCsq) and the responses
sm = rm − cm, sa = ra − ca, sb = rb − cb, sd = rd − cd, sopenm = ropenm − copenm and sopensq =
ropensq − copensq. The prover sends (Cm, Csq, c, sm, sa, sb, sd, sopenm , sopensq).

The verifier computes s∆ = −c(4sm + c) − s2
a − s2

b − s2
d. Then the verifier computes t′Cm =

Ccmg
smhsopenm and t′Csq = Ccsqg

smgsa1 g
sb
2 g

sd
3 g

s∆
4 hsopensq and checks whether c = H(n||g||g1||g2||g3||g4||h||

Cm||Csq||t′Cm ||t
′
Csq

).
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