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Abstract

Conventional knowledge graph embedding

(KGE) often suffers from limited knowledge

representation, leading to performance degra-

dation especially on the low-resource problem.

To remedy this, we propose to enrich knowl-

edge representation via pretrained language

models by leveraging world knowledge from

pretrained models. Specifically, we present a

universal training framework named Pretrain-

KGE consisting of three phases: semantic-

based fine-tuning phase, knowledge extract-

ing phase and KGE training phase. Extensive

experiments show that our proposed Pretrain-

KGE can improve results over KGE models,

especially on solving the low-resource prob-

lem.

1 Introduction

Knowledge graphs (KGs) constitute an effective

access to world knowledge for a wide variety of

NLP tasks, such as entity linking (Luo et al., 2017),

information retrieval (Xiong et al., 2017), ques-

tion answering (Hao et al., 2017) and recommen-

dation system (Zhang et al., 2016). A typical KG

such as Freebase (Bollacker et al., 2008) and Word-

Net (Miller, 1995), consists of a set of triplets in

the form of (h, r, t) with the head entity h and

the tail entity t as nodes and relation r as edges

in the graph. A triplet represents the relation be-

tween two entities, e.g., (Steve Jobs, founded, Ap-

ple Inc.). To learn effective representation of en-

tities and relations in the graph, knowledge graph

embedding (KGE) models are one of prominent

approaches (Bordes et al., 2013; Ji et al., 2015; Lin

et al., 2015; Sun et al., 2019; Nickel et al., 2011;

Yang et al., 2015; Kazemi and Poole, 2018; Trouil-

lon et al., 2016; Zhang et al., 2019).

However, traditional KGE models often suffer

from limited knowledge representation due to the

sparse and noisy dataset annotations. It leads to

performance degradation, especially on the low-

resource problem. To address this issue, we pro-

pose to enrich knowledge representation via pre-

trained language models (i.e., BERT (Devlin et al.,

2019)) given a semantic description of entities and

relations. We propose to incorporate world knowl-

edge from BERT to the entity and the relation rep-

resentation. Although simply fine-tuning BERT

can enrich the knowledge representation, it suf-

fers from learning inadequate structure informa-

tion observed in training triplets, which we have

demonstrated when we analyze the rationality of

the KGE-training phase.

We propose a model-agnostic training frame-

work for learning knowledge graph embedding con-

sisting of three phases: semantic-based fine-tuning

phase, knowledge extracting phase and KGE train-

ing phase (see Fig. 1). During the semantic-based

fine-tuning phase, we learn knowledge representa-

tion via BERT given the semantic description of

entities and relations as the input sequence. In this

way, we incorporate world knowledge from BERT

into the knowledge representation. Then during the

knowledge extracting phase, we extract the entity

and the relation representations encoded by BERT

and inject them into embeddings of a KGE model.

Finally, during the KGE training phase, we train the

KGE model to learn adequate structure information

of dataset, while reserving partial knowledge from

BERT to learn better knowledge graph embedding.

Extensive experiments show that our proposed

Pretrain-KGE can improve performance over KGE

models on four benchmark KG datasets. Further

analysis and visualization of the knowledge learn-

ing process demonstrate that our method can enrich

knowledge representation via pretrained language

models through the training framework.
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Figure 1: An illustration of our proposed three-phase Pretrain-KGE. “KGE loss” is the score function of an arbi-

trary KGE model, thus our method can be applied to any variant of KGE models. “BERT Encoder” represents the

entity/relation encoder given semantic description of entities and relations.

2 Related Work

KGE models can be roughly divided into transla-

tional models and semantic matching models ac-

cording to the score function (Wang et al., 2017).

Translational models consider the relation between

the head and tail entity as a translation between

the two entity embeddings, such as TransE (Bor-

des et al., 2013), TransH (Wang et al., 2014),

TransR (Lin et al., 2015), TransD (Ji et al., 2015),

RotatE (Sun et al., 2019), and TorusE (Ebisu

and Ichise, 2018); while semantic matching mod-

els define a score function to match latent se-

mantics of the head, tail entity and the relation,

such as, RESCAL (Nickel et al., 2011), Dist-

Mult (Yang et al., 2015), SimplE (Kazemi and

Poole, 2018), ComplEx (Trouillon et al., 2016) and

QuatE (Zhang et al., 2019). QuatE (Zhang et al.,

2019) is the recent state-of-the-art KGE model,

which represents entities as hypercomplex-valued

embeddings and models relations as rotations in

the quaternion space.

In a knowledge graph dataset, the names of each

entity and relation are provided as the semantic

description of entities and relations. Recent works

also leverage semantic description to enrich knowl-

edge representation but ignore contextual infor-

mation of the semantic description (Socher et al.,

2013a; Li et al., 2016; Speer and Havasi, 2012; Xu

et al., 2017; Xiao et al., 2017; Xie et al., 2016; An

et al., 2018). Instead, our method exploits world

information via pretrained models.

Recent approaches to modeling language repre-

sentations offer significant improvements over em-

beddings, such as pretrained deep contextualized

language models (Peters et al., 2018; Devlin et al.,

2019; Radford et al., 2019; Raffel et al., 2019).

KG-Bert (Yao et al., 2019) first utilizes BERT (De-

vlin et al., 2019) for knowledge graph completion,

which treats triplets in knowledge graphs as tex-

tual sequences. However, KG-Bert does not extract

knowledge representations from Bert and thus can-

not provide entity or relation embeddings. In this

work, we leverage world knowledge from BERT

to learn better knowledge representation of entities

and relations given semantic description.

3 Method

3.1 Training Framework

An overview of Pretrain-KGE is shown in Fig. 1.

The framework consists of three phases: semantic-

based fine-tuning phase, knowledge extracting

phase, and KGE training phase.

Semantic-based fine-tuning phase We first en-

code the semantic description by BERT (Devlin

et al., 2019). Define S(e) and S(r) as the semantic

description of entity e and relation r respectively.

BERT(·) converts S(e) and S(r) into the repre-

sentation of entity and relation. We then project

the entity and the relation representations into two

separate vector spaces Fd through linear transfor-

mations, where F
d denotes a vector space on the

number set F. Formally, we get the entity encoder

Ence(·) for each entity e and the relation encoder

Encr(·) for each relation r, then output the entity

and the relation representations as:

Ence(e) = σ(WeBERT(S(e)) + be) (1)

Encr(r) = σ(WrBERT(S(r)) + br) (2)

vh, vr, vt = Ence(h),Encr(r),Ence(t) (3)

where vh, vr, and vt represents encoding vectors

of the head entity, the relation, and the tail en-

tity in a triplet (h, r, t), respectively. We,Wr ∈
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F
d×n, be, br ∈ F

d, and σ denotes a nonlinear acti-

vation function.

The entity and the relation representations are

used to train the BERT encoder based on a KGE

loss. After fine-tuning, the entity encoder and the

relation encoder are used in the following knowl-

edge extracting phase.

Knowledge extracting phase In this phase, we

extract knowledge representation encoded by

BERT encoder and inject it into embedding of a

KGE model as initialization: the entity embedding

E = [E1;E2; · · · ;Ek] ∈ F
k×d; and the relation

embedding R = [R1;R2; · · · ;Rl] ∈ F
l×d, where

“;” means concatenating column vectors into a ma-

trix, k and l denote the total number of entities and

relations, respectively. Formally, we extract the

knowledge representation encoded by BERT and

inject it into a KGE model by setting Ei to Ence(ei)
and Rj to Encr(rj).

KGE training phase After the knowledge ex-

tracting phase, we train a KGE model in the same

way as a traditional KGE model. For example, if

the max-margin loss function with negative sam-

pling are adopted, the loss is calculated as:

L =
[

γ + f(vh, vr, vt)− f(vh′ , vr′ , vt′)
]

+
(4)

where (h, r, t) and (h′, r′, t′) represent a candidate

and a corrupted false triplet respectively, γ denotes

the margin,
[

·
]

+
= max(·, 0), and f(·) denotes

the score function. The KGE training phase is indis-

pensable because simply fine-tuning a pretrained

language model cannot learn adequate structure in-

formation observed in training triplets. We demon-

strate the rationality of the three-phase training

framework in Section 5.2.

4 Experiments

4.1 Implementation of Baseline Models

To evaluate the universality of training framework

Pretrain-KGE, we select multiple public KGE mod-

els as baselines including translational models:

• TransE (Bordes et al., 2013), the translational-

based model which models the relation as

translations between entities;

• RotatE (Sun et al., 2019), the extension of

translational-based models which introduces

complex-valued embeddings to model the re-

lations as rotations in complex vector space;

and semantic matching models:

• DistMult (Yang et al., 2015), a semantic

matching model where each relation is rep-

resented with a diagonal matrix;

• ComplEx (Trouillon et al., 2016), the exten-

sion of semantic matching model which em-

beds entities and relations in complex space.

• QuatE (Zhang et al., 2019), the recent state-

of-the-art KGE model which learns entity and

relation embeddings in the quaternion space.

Our implementations of TransE, DistMult, Com-

plEx, RotatE are based on the framework pro-

vided by Sun et al. (2019)1. Our implementation

of QuatE is based on the framework provided by

Zhang et al. (2019)2. The score functions of base-

lines are listed in Table 1.

Method Score function F

TransE (Bordes et al., 2013) ‖vh + vr − vt‖ R

DistMult (Yang et al., 2015) 〈vh, vr, vt〉 R

ComplEx (Trouillon et al., 2016) Re(〈vh, vr, v̄t〉) C

RotatE (Sun et al., 2019) ‖vh ⊙ vr − vt‖ C

QuatE (Zhang et al., 2019) ‖vh ⊗ v̂r ⊙ vt‖ H

Table 1: Score functions and corresponding F.

vh, vr, vt denote head, tail and relation embeddings re-

spectively. R,C,H denote real number field, complex

number field and quaternion number division ring re-

spectively. ‖ · ‖ denotes L1 norm. 〈·〉 denotes general-

ized dot product. Re(·) and ·̄ denote the real part and

the conjugate for complex vectors respectively. ⊗ de-

notes circular correlation, ⊙ denotes Hadamard prod-

uct. ·̂ denotes the normalized operator.

4.2 Datasets and Evaluation Metrics

We evaluate our proposed training framework

on four benchmark KG datasets: WN18 (Bor-

des et al., 2013), WN18RR (Dettmers et al.,

2018), FB15K (Bordes et al., 2013) and FB15K-

237 (Toutanova and Chen, 2015). Detailed statis-

tics of datasets are in the appendix. WN18 and

WN18RR are two subsets of WordNet (Miller,

1995); FB15K and FB15K-237 are two subsets

of FreeBase (Bollacker et al., 2008). We use en-

tity names and relation names provided by the four

datasets as input semantic descriptions for BERT,

and we also utilize synsets definitions provided

by WordNet as additional semantic descriptions of

entities.

1https://github.com/DeepGraphLearning/

KnowledgeGraphEmbedding
2https://github.com/cheungdaven/QuatE

https://github.com/DeepGraphLearning/KnowledgeGraphEmbedding
https://github.com/DeepGraphLearning/KnowledgeGraphEmbedding
https://github.com/cheungdaven/QuatE
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Model
FB15K FB15K-237 WN18 WN18RR

H@10↑ MRR↑ MR↓ H@10↑ MRR↑ MR↓ H@10↑ MRR↑ MR↓ H@10↑ MRR↑ MR↓

TransE 0.866 0.731 40.3 0.528 0.330 171.6 0.920 0.773 265 0.528 0.223 3372

Pretrain-TransE 0.866 0.731 36.6 0.529 0.332 162.0 0.928 0.757 85 0.557 0.235 1747♠

DistMult 0.887 0.768 37.5 0.484 0.307 175.1 0.931 0.686 282 0.534 0.440 4886

Pretrain-DistMult 0.883 0.764 37.0 0.482 0.306 171.3 0.923 0.660 142 0.527 0.432 3550

ComplEx 0.887 0.771 47.1 0.511 0.322 166.1 0.925 0.893 323 0.555 0.469 5421

Pretrain-ComplEx 0.879 0.763 45.2 0.513 0.323 156.9 0.949 0.859 194 0.553 0.459 4468

RotatE 0.881 0.790♠ 41.7 0.531 0.336 177.0 0.960 0.949 269 0.574 0.474 3363

Pretrain-RotatE 0.881 0.784 38.4 0.534 0.337 168.3 0.962 0.927 125 0.580 0.447 2138

QuatE 0.898 0.778 17.4 0.550 0.349 86.2 0.960 0.951♠ 180 0.581 0.487 2290

Pretrain-QuatE 0.899♠ 0.764 17.2♠ 0.554♠ 0.350♠ 84.4♠ 0.964♠ 0.944 72♠ 0.586♠ 0.488♠ 2085

Table 2: Link prediction results on four KG datasets. The experiments here use entity names and relation names

as the semantic description. ↓ means that a lower metric is better. ↑ means that a higher metric is better. ♠ denotes

state-of-the-art performance.

Dataset Link prediction Class.

FB15K H@10 ↑ H@3 ↑ H@1 ↑ MRR ↑ MR ↓ Acc ↑

QuatE 0.898 0.832♠ 0.704♠ 0.778♠ 17.4 0.927

+Name 0.899♠ 0.832♠ 0.677 0.764 17.2♠ 0.928♠

FB15K-237 H@10 ↑ H@3 ↑ H@1 ↑ MRR ↑ MR ↓ Acc ↑

QuatE 0.550 0.383 0.249 0.349 86.2 0.816

+Name 0.554♠ 0.384♠ 0.250♠ 0.350♠ 84.8♠ 0.817♠

WN18 H@10↑ H@3↑ H@1↑ MRR↑ MR↓ Acc↑

QuatE 0.960 0.954 0.946♠ 0.951♠ 180 0.977

+Name 0.964♠ 0.954♠ 0.931 0.944 72 0.981♠

+Definition 0.963 0.954♠ 0.930 0.943 62♠ 0.980

WN18RR H@10↑ H@3↑ H@1↑ MRR↑ MR↓ Acc↑

QuatE 0.581 0.507 0.438♠ 0.487 2290 0.866

+Name 0.586♠ 0.509♠ 0.437 0.488♠ 2085♠ 0.874

+Definition 0.586♠ 0.509♠ 0.433 0.487 2106 0.876♠

Table 3: Link prediction and triplet classification

(“Class.”) results over QuatE. ↓ means a lower met-

ric is better. ↑ means a higher metric is better. ♠

denotes state-of-the-art performance of KGE models.

“+Name” means Pretrain-KGE uses entity and relation

names as semantic description. “+Definition” means

Pretrain-KGE also adopts definitions of word senses as

additional semantic description.

In our experiments, we perform the link predic-

tion task (filtered setting) mainly with the triplet

classification task. The link prediction task aims to

predict either the head entity given the relation and

the tail entity or the tail entity given the head entity

and the relation, while triplet classification aims to

judge whether a candidate triplet is correct or not.

For the link prediction task, we generate cor-

rupted false triplets (h′, r, t) and (h, r, t′) using

negative sampling. We get ranks of test triplets

and calculate standard evaluation metrics: Mean

Rank (MR), Mean Reciprocal Rank (MRR) and

Hits at N (H@N). For triplet classification, we fol-

low the evaluation protocol in Socher et al. (2013b)

and adopt the accuracy metric (Acc).

4.3 Main Results

We present the main results of our Pretrain-KGE

method in Table 2 and Table 3. As shown in Ta-

ble 2, our universal training framework can be ap-

plied to multiple variants of KGE models despite

different embedding spaces, and achieves improve-

ments over TransE, DistMult, ComplEx, RotatE

and QuatE on most evaluation metrics, especially

on MR but still being competitive on MRR. The

results in Table 3 demonstrate that our method can

facilitate the performance of QuatE on most eval-

uation metrics for link prediction and triplet clas-

sification. The results verify the effectiveness of

our proposed training framework and show that

our universal training framework can be applied

to multiple variants of KGE models and achieves

improvements on most evaluation metrics, which

shows the universality of our Pretrain-KGE.

5 Analysis

In this section, we evaluate our Pretrain-KGE on

the low-resource problem and further verify the

rationality of our training framework.

5.1 Performance on the Low-resource

Problem

We evaluate our training framework in the case of

fewer training triplets on WordNet, and test its per-

formance on OOKB entities as shown in Fig. 2. To

test the performance of our Pretrain-KGE given

fewer training triplets, we conduct experiments on

WN18 and WN18RR by feeding varying numbers

of training triplets as shown in Fig. 2a and 2b. We

also evaluate our Pretrain-KGE on WordNet for

the OOKB entity problem as shown in Fig. 2c and

2d. We use traditional TransE and the word averag-

ing model following Li et al. (2016) as baselines.

Experimental details are in the appendix.

Results show that our training framework

achieves the best performance in the case of fewer

training triplets and OOKB entities. Baseline-

TransE performs the worst when training triplets

are few and cannot address the OOKB entity prob-

lem because it does not utilize any semantic de-
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(a) MR results on WN18.
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(b) MR results on WN18RR.
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(c) OOKB MR on WN18.
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(d) OOKB MR on WN18RR.

Figure 2: Performance on the low-resource. “Random” and “Avg” denote a random and word averaging baseline.
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Figure 3: Visualization of knowledge learning process.

Different colors mark different supersenses in Word-

Net. Each point represents an entity. Red (act), yellow

(person) and blue (artifact) refer to word senses rele-

vant to human beings.

Model
FB15K FB15K-237

MRR↑ MR↓ MRR↑ MR↓

Pretrain-TransE 0.731 36.6 0.332 162.0

w/o KGE training phase 0.099 462.8 0.073 594.8

Model
WN18 WN18RR

MRR↑ MR↓ MRR↑ MR↓

Pretrain-TransE 0.757 85 0.235 1747

w/o KGE training phase 0.086 1020 0.096 1444

Table 4: MRR results of the full Pretrain-KGE method

and the ablation version (“w/o KGE training phase”).

The experiments here use entity names and relation

names as the semantic description.

scription. The word averaging model contributes

to better performance of TransE on fewer training

triplets, yet it does not learn knowledge representa-

tion as well as BERT because the latter can better

understand the semantic description of entities and

relations by exploiting world knowledge in the de-

scription. In contrast, our Pretrain-TransE can fur-

ther enrich knowledge representation by encoding

semantic description of entities and relations via

BERT, and uses the learned representation to initial-

ize the embedding for TransE. In this way, we can

incorporate world knowledge from BERT into the

entity and the relation embedding so that TransE

can perform better given fewer training triplets and

also alleviate the problem of OOKB entities.

5.2 Rationality of the Framework

We visualize the knowledge learning process of

Baseline-TransE and our Pretrain-TransE in Fig. 3.

We select top five common supersenses in WN18:

plant, animal, act, person and artifact, among

which the last three supersenses are all relevant

to the concept of human beings. In Fig. 3a, we

can observe that Baseline-TransE learns the struc-

ture information in training triplets and does not

distinguish plant and animal from the other three

supersenses. In contrast, Fig. 3b shows that our

Pretrain-TransE can distinguish entities belonging

to different supersenses. Especially, entities rele-

vant to the same concept human beings are more

condensed and entities belonging to significantly

different supersenses are more clearly separated.

The main reason is that we introduce knowledge

from BERT to enrich the knowledge representation

of entities and relations.

We also demonstrate the rationality of the KGE-

training phase. Table 4 shows that The full Pretrain-

KGE method outperforms the ablation version

which excludes the KGE training phase.

6 Conclusion

We propose Pretrain-KGE, an efficient pretraining

technique for learning knowledge graph embed-

ding. Pretrain-KGE is a universal training frame-

work that can be applied to any KGE model. It

learns knowledge representation via pretrained lan-

guage models and incorporates world knowledge

from the pretrained model into the entity and the

relation embedding. Extensive experimental results

demonstrate consistent improvements over KGE

models across multiple benchmark datasets. The

knowledge incorporation introduced in Pretrain-

KGE alleviates the low-resource problem and we

justify our three-phase training framework through

an analysis of the knowledge learning process.
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A Appendix

A.1 Dataset Statistics

We evaluate our proposed training framework on

four benchmark KG datasets: WN18, WN18RR,

FB15K and FB15K-237. We list detailed statis-

tics of datasets are in Table 5. Datasets can be

downloaded at this repository3.

Dataset Entities Relations Train Triplets Valid. Triplets Test Triplets

WN18 40943 18 141442 5000 5000

WN18RR 40943 11 86835 3034 3134

FB15K 14951 1345 483142 50000 59071

FB15K-237 14541 237 272115 17535 20466

Table 5: Statisics of datasets.

A.2 Detailed Implementation

A.2.1 Details in Semantic-based Fine-tuning

Phase

In semantic-based fine-tuning phase, we adopt the

following non-linear pointwise function σ(·): for

3https://github.com/DeepGraphLearning/

KnowledgeGraphEmbedding
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FB15K Dim. Dim.R Neg.1 Neg.2. Batch.1. Batch.2 Lr.1 Lr.2 Updates.1 Updates.2. Opt.1 Opt.2

TransE 1000 1000 3 256 8 1024 5e-6 1e-4 150k 150k adam adam

DistMult 2000 2000 3 256 8 1024 5e-6 1e-3 150k 150k adam adam

ComplEx 1000 2000 3 256 8 1024 5e-6 1e-3 150k 150k adam adam

RotatE 1000 2000 3 256 8 1024 5e-6 1e-4 150k 150k adam adam

QuatE 250 1000 10 20 4 50 batches 1e-5 0.1 40k 5000 epochs adam adagrad

FB15K-237 Dim. Dim.R Neg.1 Neg.2. Batch.1. Batch.2 Lr.1 Lr.2 Updates.1 Updates.2. Opt.1 Opt.2

TransE 1000 1000 3 256 8 1024 5e-6 5e-5 150k 150k adam adam

DistMult 2000 2000 3 256 8 1024 5e-6 5e-5 150k 150k adam adam

ComplEx 1000 2000 3 256 8 1024 5e-6 5e-5 150k 150k adam adam

RotatE 1000 2000 3 256 8 1024 5e-6 1e-3 150k 150k adam adam

QuatE 100 400 10 10 6 10 batches 1e-5 0.1 200k 15000 epochs adam adagrad

WN18 Dim. Dim.R Neg.1 Neg.2. Batch.1. Batch.2 Lr.1 Lr.2 Updates.1 Updates.2. Opt.1 Opt.2

TransE 500 500 3 512 8 512 5e-6 1e-4 80k 80k adam adam

DistMult 1000 1000 3 512 8 512 5e-6 1e-3 80k 80k adam adam

ComplEx 500 1000 3 512 8 512 5e-6 1e-3 80k 80k adam adam

RotatE 500 1000 3 512 8 512 5e-6 1e-4 80k 80k adam adam

QuatE 250 1000 10 20 1 10 batches 1e-5 0.1 200k/300k 1500 epochs adam adagrad

WN18RR Dim. Dim.R Neg.1 Neg.2. Batch.1. Batch.2 Lr.1 Lr.2 Updates.1 Updates.2. Opt.1 Opt.2

TransE 500 500 3 512 8 512 5e-6 5e-5 80k 80k adam adam

DistMult 1000 1000 3 512 8 512 5e-6 2e-3 80k 80k adam adam

ComplEx 500 1000 3 512 8 512 5e-6 2e-3 80k 80k adam adam

RotatE 500 1000 3 512 8 512 5e-6 5e-5 80k 80k adam adam

QuatE 100 400 10 20 8 10 batches 1e-5 0.1 60k/10k 40000 epochs adam adagrad

Table 6: Experimental settings. Dim. denotes embedding dimension. Dim.R denotes embedding dimension when

embeddings are flatten into the real number filed. Batch. denotes batch size. Norm. denotes p-norm in score

function, Lr. denotes learning rate. Neg. denotes entity negative sampling rate. 1. denotes in semantic-based fine-

tuning phase and 2. denotes in KGE training phase and during the training of traditional embedding-based models.

In column Batch.2, 50 batches means the dataset are devided into 50 batches. In column Updates.1, 200k/300k

means 200k updates in the proposed model utilizing entity and relation names as semantic description and 300k

in the proposed model utilizing entity and relation names as well as entity definition as semantic description. In

column Updates.2, 5000 epochs means the number of training updates is 5000 epochs.

x = x0 +
K−1
∑

i=1

xiei ∈ F (where F can be real num-

ber filed R, complex number filed C or quaternion

number ring H):

σ(x) = tanh(x0) +
K−1
∑

i=1

tanh(xi)ei (5)

where xi ∈ R and ei is the K-dimension

hypercomplex-value unit. For instance, when K =
1,F = R; when K = 2,F = C, e1 = i (the imag-

inary unit); when K = 4,F = H, e1,2,3 = i, j, k

(the quaternion units). For example:

σ
(

[

a+ bi

c+ di

]

)

=

[

tanh(a) + tanh(b)i
tanh(c) + tanh(d)i

]

(6)

where i, j, k denote the quaternion units.

A.2.2 Implementation of the Word-averaging

Baseline

We implement the word-averaging baseline to

utilize the entity names and entity definition in

WordNet to represent the entity embedding bet-

ter. Formally, for entity e and its textual descrip-

tion T (e) = w1w2 · · ·wL, where wi denotes the

i-th token in sentence T (e) and T (e) here together

utilizing the entity names and entity definition in

WordNet.

Avg(e) =
1

L

L
∑

i=1

ui (7)

where ui denotes the word embedding of token

wi, which is a trainable randomly initialized pa-

rameter and will be trained in the semantic-based

fine-tuning phase.

We also adopt our three-phase training method

to train word-averaging baseline. Similarly,

E = [E1;E2; · · · ;Ek] ∈ F
k×d and R =

[R1;R2; · · · ;Rl] ∈ F
l×d denote entity and rela-

tion embeddings. In semantic-based fine-tuning

phase, for head entity h, tail entity t and relation r,

the score function is calculated as:

vh, vr, vt = Avg(h), Rr,Avg(t) (8)

Score = ‖vh + vr − vt‖ (9)

where Rr denotes the relation embedding of rela-

tion r. In knowledge extracting phase, similar to

our proposed model, we initialize Ei with Avg(ei).
In KGE training phase, we optimize E and R with

the same training method to TransE baseline.

A.3 Experimental Settings

The hyper-parameters are listed in Table 6. Experi-

ments are conducted on a GeForce GTX TITAN X

GPU.


