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PREVALENCE: A TRANSLATION-INVARIANT "ALMOST EVERY"
ON INFINITE-DIMENSIONAL SPACES

BRIAN R. HUNT, TIM SAUER, AND JAMES A. YORKE

Abstract. We present a measure-theoretic condition for a property to hold
"almost everywhere" on an infinite-dimensional vector space, with particular
emphasis on function spaces such as Ck and LP . Like the concept of
"Lebesgue almost every" on finite-dimensional spaces, our notion of "preva-
lence" is translation invariant. Instead of using a specific measure on the entire
space, we define prevalence in terms of the class of all probability measures
with compact support. Prevalence is a more appropriate condition than the
topological concepts of "open and dense" or "generic" when one desires a prob-
abilistic result on the likelihood of a given property on a function space. We
give several examples of properties which hold "almost everywhere" in the sense
of prevalence. For instance, we prove that almost every C1 map on R" has
the property that all of its periodic orbits are hyperbolic.

1. Introduction

Under what conditions should it be said that a given property on an infinite-
dimensional vector space is virtually certain to hold? For example, how are
statements of the following type made mathematically precise?

(1) Almost every function /: [0, 1] —► R in Ll satisfies /J f(x)dx ^ 0.
(2) Almost every sequence {a,}^ in I2 has the property that ]T°^i a¡ di-

verges.
(3) Almost every C1 function /:R-»R has the property that f'(x) ^ 0

whenever f(x) = 0.
(4) Almost every continuous function /: [0, 1] —► R is nowhere differen-

tiable.
(5) If A is a compact subset of R" of box-counting dimension d, then for

1 < k < oo, almost every Ck function /: R" -* Rw is one-to-one on A,
provided that m > 2d. (When A is a C1 manifold, the conclusion can be
strengthened to say that almost every f is an embedding.)

(6) If A is a compact subset of R" of Hausdorff dimension d, then for
1 < k < oo, almost every Ck function /: R" —> Rm has the property that the
Hausdorff dimension of f(A) is d, provided that m>d.

(7) For 1 < k < oo, almost every Ck map on W has the property that
all of its fixed points are hyperbolic (and further, that its periodic points of all
periods are hyperbolic).
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(8) For 4 < k < oo, almost every Ck one-parameter family of vector fields
on R2 has the property that as the parameter is varied, every Andronov-Höpf
bifurcation which occurs is "typical" (in a sense to be made precise later).

In R", there is a generally accepted definition of "almost every", which is
that the set of exceptions has Lebesgue measure zero. The above statements
require a notion of "almost every" in infinite-dimensional spaces. We will be
concerned mainly with function spaces such as Lp for 1 < p < oo and Ck
for (integers) 0 < k < oo on subsets of R" ; many of these spaces are Banach
spaces, and all have a complete metric. The following are some properties of
"Lebesgue measure zero" and "Lebesgue almost every" which we would like to
preserve on these spaces.

(i) A measure zero set has no interior ("almost every" implies dense).
(ii) Every subset of a measure zero set also has measure zero.

(iii) A countable union of measure zero sets also has measure zero.
(iv) Every translate of a measure zero set also has measure zero.

One could define "almost every" on a given function space in terms of a spe-
cific measure. For example, the Wiener measure on the continuous functions
is appropriate for some problems. However, the notion of "almost every" with
respect to such a measure violates property (iv). The following paragraph il-
lustrates some of the difficulties involved in defining an analogue of Lebesgue
measure on function spaces. We assume all measures to be defined (at least) on
the Borel sets of the space.

In an infinite-dimensional, separable1 Banach space, every translation-invari-
ant measure which is not identically zero has the property that all open sets
have infinite measure. To see this, suppose that for some e, the open ball of
radius e has finite measure. Because the space is infinite dimensional, one can
construct an infinite sequence of disjoint open balls of radius e/4 which are
contained in the e-ball. Each of these balls has the same measure, and since the
sum of their measures is finite, the e/4-balls must have measure 0. Since the
space is separable, it can be covered with a countable collection of e/4-balls,
and thus the whole space must have measure 0. (Even if the space were not
separable, we would be left with the undesirable property that some open sets
have measure zero, violating property (i) above.)

In the absence of a reasonable translation-invariant measure on a given func-
tion space, one might hope there is a measure which at least satisfies condition
(iv) above; such a measure is called quasi-invariant. In R" , there are an abun-
dance of finite measures which are quasi-invariant, such as Gaussian measure.
However, for an infinite-dimensional, locally convex topological vector space, a
rj-finite,2 quasi-invariant measure defined on the Borel sets must be identically
zero [5, 31, 32] (see also pp. 138-143 of [35]).

Rather than search for a partial analogue of Lebesgue measure on function
spaces, our strategy is to find an alternate characterization of the concepts of

1 By separable we mean that the space has a countable dense subset.
2By o-finite we mean that the entire space can be expressed as a countable union of sets of

finite measure. This rules out measures such as "counting measure", which assigns to each set its
cardinality.



PREVALENCE 219

"Lebesgue measure zero" and "Lebesgue almost every" which has a natural ex-
tension to function spaces. Properties (i)-(iv) alone do not uniquely determine
these concepts, but there is a more subtle property which does. In R", let
us consider the class of "probability measures with compact support", that is,
those measures ß for which there exists a compact set T c R" such that
ß(T) = n(W) = 1 .

(v) Let S1 be a Borel set. If there exists a probability measure ß with
compact support such that every translate of S has //-measure zero,
then S has Lebesgue measure zero.

Property (v) is proved in §2 (see Fact 6) by a simple application of the Tonelli
theorem (a variant of the Fubini theorem [4]). Notice that conversely, if S c R"
has Lebesgue measure zero, then the hypothesis of property (v) is satisfied with
ß equal to (for instance) the uniform probability measure on the unit ball.

Given a probability measure ß with compact support, we can define a trans-
lation-invariant measure ß on Borel sets S by ß(S) = 0 if every translate of S1
has /¿-measure zero and ß(S) = oo otherwise. What property (v) above says is
that every such measure fi is greater than or equal to Lebesgue measure on the
Borel sets of R" . Thus one way to show that a Borel set is small, in a translation-
invariant probabilistic sense, is to show that fi(S) = 0 for some ß. Such a
strategy is plausible on infinite-dimensional spaces because it is not hard to find
probability measures with compact support (for example, uniform measure on
a line segment, or on the unit ball of any finite-dimensional subspace).

In general, we will call a Borel set "shy" if fi(S) = 0 for some probability
measure ß with compact support, and we call any other set shy if it is contained
in a shy Borel set (just as every Lebesgue measure zero set is contained in a
Lebesgue measure zero Borel set). We then define a "prevalent" set to be a set
whose complement is shy. This definition may not characterize all sets for which
the label "almost every" is appropriate; our claim is rather that properties which
hold on prevalent sets are accurately described as holding "almost everywhere".

In the absence of a probabilistic notion of "almost every", statements such
as 1-8 above have often been formulated in terms of the topological notion of
"genericity". In this terminology, a property on a complete metric space is said
to be generic if the set on which it holds is residual, meaning that it contains
a countable intersection of open dense sets.3 The complement of a residual set
is said to be of the first category; equivalently, a first category set is a countable
union of nowhere dense sets. The notion of "first category" was introduced
by Baire in 1899, and his category theorem ensures that a residual subset of a
complete metric space is nonempty, and in fact dense [20].

The concepts of "first category" and "generic" have formal similarities to
"measure zero" and "almost every", satisfying a set of properties analogous to
(i)-(iv) above. They also agree for some sets in R" ; for example, the set of
rational numbers has measure zero and is of the first category. But perhaps too
much emphasis has been placed on those examples in which first category sets
happen to have measure zero. Sets which are open and dense in R" can have
arbitrarily small Lebesgue measure, and residual sets can have measure zero.

3Many authors require a residual set to be (not just contain) a countable intersection of open
dense sets. Our terminology follows [20].
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In fact, many properties are known to be topologically generic in R" but
have low probability. While the reader may be able to provide examples from
his or her own experience, we include some for completeness.

Example 1. For n > 1 let Un = {x e [0, 1] : 0 < 2nx (mod 1) < 2~n} . Notice
that Vm — \Jn>m U„ is open and dense but has measure less than 2~m . Hence
generically points in [0, 1] satisfy 0 < 2nx (mod 1) < 2~" for infinitely many
values of n , but the set of such points ( (~)m>l Vm) has measure zero. A similar
construction arises naturally in [11].

Example 2. Here we consider how well real numbers can be approximated by
rationals. The Liouville numbers are the real numbers X which have the prop-
erty that for all c, n > 0 there exist integers p and q > 0 such that

X-P- c

As in the previous example, the set of Liouville numbers is residual but has
Lebesgue measure zero [20]. In contrast are the Diophantine numbers, real
numbers ß which have the property that for every e > 0 there exists a c > 0
such that for all integers p and q > 0,

-I >q2+e-

The set of Diophantine numbers is of the first category but has full Lebesgue
measure in every interval.

Example 3. Arnold studied the family of diffeomorphisms on a circle

f(o,c(x) = x + co + esinx   (mod27r),

where 0 < co < 2n and 0 < e < 1 are parameters. For each e we can define
the set

SE = {co € [0, 2n] : fWiE has a stable periodic orbit}.
For 0 < e < 1, the set Se is a countable union of disjoint open intervals (one
for each rational rotation number), and is an open dense subset of [0, 2n].
However, the Lebesgue measure of SE approaches zero as i->0. For small
e, the probability of picking an co in this open dense set is very small. See pp.
108-109 of [1] for more details.

Example 4. Consider the dynamics of an analytic map in the complex plane
near a neutral fixed point. Suppose the fixed point is the origin; then the map
can be written in the form

z ,_> e2"i<*z + z2f(z)

with 0 < q < 1 and f(z) analytic. Siegel [30] proved that for Lebesgue
almost every a (specifically, if a is not a Liouville number), the above map is
conjugate to a rotation in a neighborhood of the origin under an analytic change
of coordinates. On the other hand, Cremer [3] previously showed that if / is
a polynomial (not identically zero), then for a residual set of a the above map
is not conjugate to a rotation in any neighborhood of the origin. These results
are discussed on pp. 98-105 of [2].
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Example 5. Consider the map z y-> ez on the complex plane. Misiurewicz [16]
proved that this map is "topologically transitive", which implies that a residual
set of initial conditions have dense trajectories. On the other hand, Lyubich
[13] and Rees [24] showed that Lebesgue almost every initial condition has a
trajectory whose limit set lies on the real axis (in fact, the limit set is just the
trajectory of 0). See [14] for a discussion of both results.

Example 6. For many families of dynamical systems in R2 depending on a
parameter, Newhouse [18] and Robinson [25] constructed a set of parameters
for which infinitely many attractors coexist. The constructed set is residual in
an interval, but is shown in [33] and [19] to have measure zero.

In view of these examples, one might ask why the concept of "residual" is
used. Sometimes, one just wants to show that a set obtained by a countable
intersection is nonempty, or further that it is dense. For example, the existence
of continuous but nowhere differentiable functions can be proved by showing
that they form a residual subset of the continuous functions; this argument
is due to Banach (see §III.34.VIII of [12]). Other times, one wants to show
that a set is "large" in a topological sense, perhaps because there has been no
probabilistic alternative. The concept of "prevalence" is intended for situations
where a probabilistic result is desired.

In §2 we formally define prevalence, shyness (the opposite of prevalence),
and related concepts, and develop some of the basic theory of these notions.
Section 3 examines the eight statements from the beginning of this section in
the new framework. In §4 we develop some of the theory of "transversality"
(between functions and manifolds) in the context of prevalence, and use it to
prove the third, seventh, and eighth statements. Finally, §5 discusses some other
ideas related to prevalence.

2. Prevalence

Let F be a complete metric linear space, by which we mean a vector space
(real or complex) with a complete metric for which addition and scalar multi-
plication are continuous. When we speak of a measure on V we will always
mean a nonnegative measure that is defined on the Borel sets of V and is not
identically zero. We write S + v for the translate of a set S c V by a vector
v eV.

Definition 1. A measure ß is said to be transverse to a Borel set S c V if the
following two conditions hold:

(i) There exists a compact set U c V for which 0 < ß(U) < oo .
(ii)  ß(S + v) = 0 for every v e V.

Condition (i) ensures that a transverse measure can always be restricted to
a finite measure on a compact set (see Fact 2 below), and in developing the
theory of transverse measures it is often useful to think in terms of probability
measures with compact support. For applications it will be convenient to use
measures which (like Lebesgue measure) are neither finite nor have compact
support. If V is separable, then all measures which take on a value other than
0 and oo can be shown to satisfy condition (i) [21].
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Definition 2. A Borel set S c V is called shy4 if there exists a measure trans-
verse to S. More generally, a subset of V is called shy if it is contained in a
shy Borel set. The complement of a shy set is called a prevalent set.

Strictly speaking, the above concepts could be called "translation shy" and
"translation prevalent". On manifolds for which there is no distinguished set
of translations, the corresponding theory is more difficult; this is a topic we
do not address in this paper. We again emphasize that the definitions of shy
and prevalent would be unchanged if we required transverse measures to be
probability measures with compact support.

Roughly speaking, the less concentrated a measure is, the more sets it is
transverse to. For instance, a point mass is transverse to only the empty set.
Also, we will later show (see Fact 6) that if any measure is transverse to a Borel
set Set", then Lebesgue measure is transverse to S too. When V is infinite
dimensional, a convenient choice for a transverse measure is often Lebesgue
measure supported on a finite-dimensional subspace.5 For example, Lebesgue
measure on the one-dimensional space spanned by a vector w e V is transverse
to a Borel set S c V if for all v e V, the set of k e R (or C if V is complex)
for which v + kw e S has Lebesgue measure zero. It immediately follows
that every countable set in V is shy, and every proper subspace of V is shy.
Notice that because it is possible to represent an infinite-dimensional space as
the continuous linear image of a proper subspace, the continuous linear image
of a shy set need not be shy.

We now present some important facts about transversality and shyness. The
first follows immediately from the above definitions, and in particular implies
that prevalence is translation invariant.

Fact 1. If S is shy, then so is every subset of S and every translate of S.

Fact 2. Every shy Borel set S has a transverse measure which is finite with com-
pact support. Furthermore, the support of this measure can be taken to have
arbitrarily small diameter.
Proof. Let ß be a measure transverse to a Borel set 5 c V. Then by condition
(i) of Definition 1 it can be restricted to a compact set U of finite and positive
measure, and the restriction is certainly also transverse to 5". Also, since U
is compact it can be covered for each e > 0 by a finite number of balls of
radius e, and at least one of these balls must intersect U in a set of positive
measure. The intersection of U with the closure of this ball is compact, and
the restriction of ß to this set is also transverse to S.   □

An immediate consequence of Fact 2 is that a shy Borel set has no interior.
The same is then true of every shy set, since every shy set is contained in a shy
Borel set. Hence we have the following fact.

Fact 2'. All prevalent sets are dense.

4The word "shy" was suggested to us by J. Milnor.
5An exact characterization of Lebesgue measure on a given finite-dimensional subspace depends

on the choice of a basis for the subspace, but since we are only interested in whether or not sets
have measure zero, the choice of basis is unimportant for our purposes.
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Next, we would like to know that the union of two shy sets is also shy.
Given Borel sets S, T c V containing the original sets and measures ß and
v transverse to S and T respectively, we must then find a measure which is
transverse to both S and T. We can assume by Fact 2 that ß and v are finite
with compact support. Then the measure we desire is the convolution ß * v of
ß and v , defined as follows.
Definition 3. Let ß and v be measures on V. Let ß x v be the product
measure of ß and v on the Cartesian product V x V, and for a given Borel
set S c V let Sz = {(x, y) e V x V : x + y e S} . Then Sz is a Borel subset
of V x V, and we define ß * v(S) = ß x v(Sz).

If ß and v are finite, then ß x ^ is finite, and the characteristic function
of S1, is integrable with respect to ß x v . Then by the Fubini theorem [4],

li*i/(S)= [ ß(S-y)dv(y)= [ v(S - x)dß(x).
Jv Jv

We thus have the following fact.
Fact 3. Let ß and v be finite measures with compact support. If ß is transverse
to a Borel set S, then so is ß * v .6

From Fact 3 it follows that the union of two shy sets is shy, and more generally
the following fact holds.
Fact 3'. The union of a finite collection of shy sets is shy.

Fact 3' extends to countable unions by a slightly more complicated argu-
ment.
Fact 3" . The union of a countable collection of shy sets is shy.
Proof. Given a countable collection of shy subsets of V, let Si, S2, ... be
shy Borel sets containing the original sets. Let ßi, ß2, ... be transverse to
Si, S2, ... , respectively. By Fact 2, we can assume without loss of generality
that each ßn is finite and supported on a compact set U„ with diameter at
most 2~n . By normalizing and translating the measures, we can also assume
that ßn(V) = 1 for all n and that each U„ contains the origin. With these
assumptions we can define a measure ß which is essentially the infinite convo-
lution of the ßn . We rely on the theory of infinite product measures; see pp.
200-206 of [4] for details.

The infinite Cartesian product Un = £/i x U2 x • • • is compact by the
Tychonoff theorem [4] and has a product measure ßn = ßi x ß2 x ■ • • defined
on its Borel subsets, with ßn(Un) = 1. Since V is complete and each vector in
U„ lies at most 2~n away from zero, there is a continuous mapping from Un
into V defined by (tit, v2, ... ) i-> vi + v2 -\-. The image U of Un under
this mapping is compact, and ßn induces a measure ß supported on U, given
by ß(S) - ßn(ST), where S* = {(vx, v2, ... ) e t7n : vx + v2 + • • • e S} . We
will be done if we show that ß is transverse to every Sn .

Since the Cartesian product of measures is associative (and commutative),
we can write ßn = ß„ x i/jf1 with v™ = ßX x • • • x ßn_x x ßn+l x • • • . Let vn be

6Notice that p. * v has compact support because its support is contained in the continuous
image, under the mapping (x, y) >-» x + y , of the Cartesian product of the supports of p. and v .
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the measure on V induced by i/*1 under the summation mapping (as ß was
induced by ßn). Then ß = ßn * vn , and therefore by Fact 3, ß is transverse to
Sn . This completes the proof.   D

We are now in a position to show that the conditions for shyness given in
the beginning of this section can be weakened in some cases. First, consider the
following definition.

Definition 4. A measure ß is essentially transverse to a Borel set S c V if
condition (i) of Definition 1 holds and ß(S + v) = 0 for a prevalent set of
vgV.

Though essential transversality is weaker than transversality, the following
fact holds.
Fact A. If a Borel set S c V has an essentially transverse measure, then S is
shy.
Proof. Let ß be a measure that is essentially transverse to S. As in Fact 2 we
may assume ß is finite with compact support. The set of all v e V for which
ß(S - v) > 0 is shy, and hence is contained in a shy Borel set T. Let v be
a finite measure with compact support which is transverse to T. Then for all
W € V,

ß * p(S + w)=     ß(S + w -y)dv(y) = 0
Jv

since the integrand is nonzero only on a subset of T + w and v(T + w) = 0.
Thus ß * v is transverse to S, and S is shy.   D

Next let us examine a local definition of shyness and prevalence.

Definition 5. A set S c V is locally shy if every point in the space V has a
neighborhood whose intersection with S is shy. A set is locally prevalent if its
complement is locally shy.

Facts 1,2', and 3' immediately hold also for local shyness and local preva-
lence, but whether Fact 3" does is not clear in general. If V is separable though,
it turns out that the local definitions of shyness and prevalence are equivalent
to the global definitions. (On the other hand, it is not clear that these notions
are the same in spaces such as L°° and /°° .)

Fact 5. All shy sets are locally shy. If V is separable, all locally shy subsets of
V are shy.
Proof. The first part of this fact is trivial. To verify the second part, recall that
by the Lindelöf theorem [4], if F is a separable metric space then every open
cover of V has a countable subcover. Given a locally shy set S c V, the
neighborhoods whose intersections with S are shy cover V. Hence by taking
a countable subcover, S can be written as a countable union of shy sets. Thus
by Fact 3" , 51 is shy.   d

If V is finite dimensional, then shyness and local shyness are equivalent
by Fact 5. In this case we can show further that both of these concepts are
equivalent to having Lebesgue measure zero.

Fact 6. A set S c R" is shy if and only if it has Lebesgue measure zero.
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Proof We need only consider Borel sets, because every Lebesgue measure zero
set is contained in a Borel set with measure zero. If a Borel set S has Lebesgue
measure zero, then Lebesgue measure is transverse to S, and S is shy. On
the other hand, if a Borel set S is shy, then by Fact 2 there is a finite measure
ß which is transverse to S. Let v be Lebesgue measure. Though v is not
finite, it is ff-finite, so by the Tonelli theorem [4] we have (as in the equation
preceding Fact 3) that

0= / ß(S-y)dv(y)= [ v(S-x)dß(x) = ß(Rn)v(S).
Jr« Jr»

In other words, S has Lebesgue measure zero.   D

Fact 6 implies that in R" , Lebesgue measure is a best possible candidate to
be transverse to a given Borel set. As we mentioned earlier, when looking for
a transverse measure in an infinite-dimensional space, a useful type of measure
to try is Lebesgue measure supported on some finite-dimensional subspace.

Definition 6. We call a finite-dimensional subspace P c V a probe for a set
T c V if Lebesgue measure supported on P is transverse to a Borel set which
contains the complement of T.

Then a sufficient (but not necessary) condition for T to be prevalent is for it
to have a probe. One advantage of using probes is that a single probe can often
be used to show that a given property is prevalent on many different function
spaces by applying the following simple fact.

Fact 1. If ß is transverse to S c V and the support of ß is contained in a
subspace W c V, then S nlV is a shy subset of W.

Next we use one-dimensional probes to show that all compact subsets of an
infinite-dimensional space are shy. We prove in fact that given a compact set
S c V, there are one-dimensional subspaces L for which every translate of
L intersects S in at most one point. To do this we show that a residual set
of vectors in V span one-dimensional subspaces L with the above property.
Here then is an application of the fact that a residual set is nonempty.

Fact 8. If V is infinite dimensional, all compact subsets of V are shy.
Proof. We assume F is a real vector space; the proof is nearly identical for a
complex vector space. Let S c V be a compact set, and define the function
f:RxSxS^V by

f(a,x,y) = a(x-y).
If a vector v e V is not in the range of /, then v spans a line L such that
every translate of L meets S in at most one point; in particular, L is a probe
for the complement of S. We then need only show that the range of / is not
all of V ; we show in fact that it is a first category set. For each positive integer
N, the set [-N, N]x S x S is compact, and hence so is its image under /.
Thus the range of / is a countable union of compact sets. Since V is infinite
dimensional, a compact set in V has no interior (see p. 23 of [29]), and is
then nowhere dense (because it is closed). Therefore the range of / is of first
category as claimed.   D
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3. Applications of prevalence

From now on, when we say "almost every" element of V satisfies a given
property, we mean that the subset of V on which the property holds is preva-
lent. Given this terminology, the eight numbered statements from the introduc-
tion can be proved by constructing appropriate probes (see Definition 6).

Proposition 1. Almost every function / : [0, 1] —» R in L1 satisfies ¡0 f(x)dx
¿0.

A probe for Proposition 1 is the one-dimensional space of all constant func-
tions. Notice that this probe is contained in Ck for 0 < k < oo, so the above
property also holds for almost every /in Ck . Similar remarks can be made
about most of the results below.

Proposition 2. For 1 < p < oo, almost every sequence {a,}°^i in lp has the
property that Y^li ai diverges.

For Proposition 2, the one-dimensional space spanned by the element
{1/OSi e lp is a probe for each 1 < p < oo.

The third statement in the introduction can be proved using the space of
constant functions as a probe; this follows immediately from the Sard theorem
[26]. Here we state a more general result, which uses a higher-dimensional
probe. We write /(/) for the rth derivative of /.

Proposition 3. Let k be a positive integer. Almost every Ck function /:!->!
has the property that at each x e R, at most one of {ßl\x) : 0 < /' < k} is zero.

The space of polynomials of degree < k is a probe for Proposition 3, as
we will prove in the next section. By Fact 3", Proposition 3 has the following
corollary.

Proposition 3'. Almost every C°° function f: R —> R has the property that at
each x e R, at most one of {fl'\x) : / > 0} is zero.

Because the dimension of the probe used to prove Proposition 3 goes to
infinity as k —► oo, it is not clear whether Proposition 3' can be proved directly
using a probe.

Proposition 4. Almost every continuous function f: [0, 1 ] —► R is nowhere difi
ferentiable.

Proposition 4 requires a two-dimensional probe. A one-dimensional probe
would be spanned by a continuous function g with the property that for all
continuous /: [0, 1] -> R, the function f + kg is nowhere differentiable for
almost every k e R. But if f(x) = -xg(x), then f + kg is differentiable
at x = k for every k between 0 and 1. The proof of Proposition 4 uses a
probe spanned by a pair of functions g and h for which kg + ßh is nowhere
differentiable for every (k, ß) e R2 aside from the origin [9].

Next we state a prevalence version of the Whitney Embedding Theorem.

Proposition 5. Let A be a compact C1 manifold of dimension d contained in
R" . For 1 < k < oo, almost every Ck function f: R" —> R2d+l is an embedding
of A.
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The probe used in the proof of Proposition 5 is the space of linear functions
from R" to R2á+1. Whitney [34] showed that a residual subset of the Ck
functions from R" to R2d+1 are embeddings of A. This result was preceded
by a topological version due to Menger in 1926 (see p. 56 of [10]), which states
that for a compact space A of topological dimension d, a residual subset of the
continuous functions from A to R2d+l are one-to-one. Proposition 5, and the
following generalization to compact subsets of R" which need not be manifolds
(or even have integer dimension), are proved in [28].

Proposition 5'. If A is a compact subset of R" of box-counting (capacity) di-
mension d, and 1 < k < oo, then almost every Ck function f: R" —> Rm is
one-to-one on A, provided that m > 2d.

Our next proposition concerns the preservation of Hausdorff dimension un-
der smooth transformations. Once again the probe is the space of all linear
functions from R" to Rm ; see [27] for a proof.

Proposition 6. If A is a compact subset of R" of Hausdorff dimension d, and
1 < k < oo, then for almost every Ck function f: R" -> Rm the Hausdorff
dimension of f(A) is d, provided that m> d.

Remark. It is interesting that Proposition 5' fails for Hausdorff dimension (see
[28]), and Proposition 6 fails for box-counting dimension (see [27]), under any
reasonable definition of "almost every".

We now present a result about the prevalence of hyperbolicity for periodic
orbits of maps. We say that a period p point of a map /: R" -+ R" is hyperbolic
if the derivative of the pth iterate of F at the point has no eigenvalues (real
or complex) with absolute value 1.

Proposition 7. Let p be a positive integer. For 1 < k < oo, almost every
Ck map on R" has the property that all of its periodic points of period p are
hyperbolic.

Proposition 7 is proved in the next section using the space of polynomial
functions of degree at most 2p - 1 as a probe. Proposition 7 and Fact 3"
imply the following more elegant result.

Proposition 7'. For 1 < k < oo, almost every Ck map on R" has the property
that all of its periodic points are hyperbolic.

Next consider one-parameter families of dynamical systems. As the param-
eter varies, it is likely that nonhyperbolic points will be encountered, and at
such points bifurcations (creation or destruction of periodic orbits, or changes
in stability of orbits) can occur. In general one can expect to prove results of
the sort that for dynamical systems of a given type, almost every one-parameter
family has the property that all of its bifurcations are "nondegenerate" in some
fashion. A complete discussion of such results is beyond the scope of this paper,
but we include as an example a result about Andronov-Höpf bifurcations for
flows in the plane. For flows (as opposed to maps), a fixed point is hyperbolic
if the linear part of the vector field at the fixed point has no eigenvalues on the
imaginary axis. Generally, a zero eigenvalue results in a saddle-node bifurcation
and a pair of nonzero, pure imaginary eigenvalues results in an Andronov-Höpf
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bifurcation; see [6] for details. The following proposition is proved in the next
section.

Proposition 8. For 4 < k < oo, almost every Ck one-parameter family of vector
fields f(ß ,jc):lxl2-»R2 has the property that whenever f(ß0, xo) = 0 and
F>xf(ßo, xq) has nonzero, pure imaginary eigenvalues, the flow x = f(ß, x)
undergoes a nondegenerate Andronov-Höpf bifurcation in the sense that the fol-
lowing conditions hold in a neighborhood U of (ßo, Xo) :

(i) The fixed points in U form a curve (ß, x(ß)), where x(ß) is Ck .
(ii) The point (ß, x(ß)) is attracting when ß is on one side of ßo and

repelling when ß is on the other side.
(iii) There is a Ck~2 surface7 of periodic orbits in R x R2 which has a

quadratic tangency with the plane ß = ßo ■ The periodic orbits are at-
tracting if the fixed points for the same parameter values are repelling,
and are repelling if the corresponding fixed points are attracting.

4. Transversality and prevalence

The proofs of Propositions 3, 7, and 8 are based on the idea of "transversal-
ity", which we will discuss now in the context of functions from one Euclidean
space to another. Given 1 < k < oo and 0 < d < oo, we call M c R" a
Ck manifold of dimension d if for all x e M there is an open neighbor-
hood i/cR" of x and a Ck diffeomorphism tp: U -> V c R" such that
tp(M r\U) = (Rd x {0}) n V . The tangent space toMatx, denoted by TXM,
is defined to be the inverse image of Rd x {0} under D<p(x). Notice that an
open set in R" is a C°° manifold of dimension n , with tangent space R" at
every point.

Definition 7. Let A c Rn and Z c Rm be manifolds. We say that a C1
function F: A —> Rm is transversal to Z if whenever F(x) e Z, the spaces
DF(x)(TxA) and TF(x)Z span Rm.

Remark. If DF(x) maps TXA onto Rm for all x e A, then F is transversal
to every manifold in Rm ; in this case we say that F is a submersion.

In our applications A is always an open set in R" , so the results below are
stated only for this case, though they remain valid for functions whose domains
are sufficiently smooth manifolds. A basic result is the following (see [7] for a
proof).

Theorem 1 (Parametric Transversality Theorem). Let B cRq and A c R" be
open sets.   Let F: B x A —> Rm  be Ck, and let Z  be a  Ck  manifold of
dimension d in Rm, where k > max(« + d - m, 0). If F is transversal to Z,
then for almost every ke B, the function F(k, •) : A —► ROT is transversal to Z .

Notice that if F: A —> Rm is transversal to Z c Rm and the codimension of
Z (that is, m minus the dimension of Z) is greater than the dimension of A ,
then F (A) cannot intersect Z . This observation is the basis for the following
general scheme for proving results like Propositions 3, 7, and 8. To show that
almost every / in a space such as Ck(Rn) has a given property, construct a

7The surface is proved to be Ck~2 in [15]. However, we suspect that this surface can actually
be shown to be Ck~l , in which case this proposition applies to C3 vector fields also.
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function F consisting of the derivatives of / up to a certain order, and let
Z be a manifold defined by a set of n + 1 conditions which F must satisfy
at some point in R" in order for / not to have the desired property. By an
appropriate generalization of Theorem 1, it will follow that for almost every /,
there is no point in R" at which F satisfies the undesirable conditions.

Let us formalize the above procedure.

Definition 8. Let A c R" be open, and let /: A -> Rm be C'. For k <
I, we define the k-jet of / at x, denoted jkf(x), to be the ordered pair
consisting of x and the degree k Taylor polynomial of / at x . Then jkf is
a C'-k function from A to a space Jk(R" , Rm) = R" x Pk(Rn , Rm), where
Pk(Rn ,Rm) is the space of polynomials of degree < k from R" to Rm . We
write

/*/(*) = (x, f(x), Df(x),... , Dkf(x)),
where the coordinates   (f(x), Df(x), ... ,Dkf(x))   represent the (unique)
polynomial in Pk(Rn, Rm) with the same derivatives up to order k as / at
x.

Remark. We will later write /*(R", Rw) = Jk~{(Rn, Rm) x Pk(Rn , Rm), where
Pk(Rn, Rm) can be thought of as the space of homogeneous degree k poly-
nomials from R" to Rm . More precisely, jkf(x) can be decomposed into
Uk~~lf(x), Dkf(x)), where Dkf(x) represents a degree k polynomial which
is homogeneous in a coordinate system based at jc .

The following is an example of the type of result we need; it is a prevalence
version of a result previously formulated in terms of genericity [8].

Theorem 1' (Jet Transversality Theorem). Let ^cR" be open and let Z be
a C manifold in Jk(Rn, Rm) with codimension c, where r > max(« - c, 0).
For k + max(« - c, 0) < / < oo, almost every C1 function f : A —> Rm has the
property that jkf is transversal to Z .
Proof. Let P = Pk(R" ,Rm), thinking of P for now as a subspace of the Cl
functions from A to Rm. We claim that P is a probe (see Definition 6)
for the above property. For p e P, let fp(x) = f(x) + p(x), and define the
function F: PxA-^ Jk(Rn , Rm) by F(p, x) = jkfp(x). Notice that F is a
submersion, because the first n coordinates of F are just x, and for a given x
the remaining coordinates of F act as a translation (by the Taylor polynomial
of / at x) on P. In particular, F is transversal to Z. Then by Theorem 1,
for almost every p e P, the function F(p, •) = jkfp is transversal to Z , and
therefore P is a probe as claimed.   □

A special case of Theorem 1' is the following prevalence version of the Thom
Transversality Theorem.

Corollary 1". Let A c R" be open and let Z be a C manifold in Rm with
codimension c, where r > max(« - c, 0). For max(« - c, 0) < k < oo, almost
every Ck function f: A —> Rm is transversal to Z .

Propositions 3, 7, and 8 can be proved using Theorems 1 and 1', except
that we would then have to assume in Proposition 3 that / is Ck+l and in
Proposition 7 that the map is C2 . Instead we use the following results, which do



230 B. R. HUNT, TIM SAUER, AND J. A. YORKE

not require those additional assumptions and also allow us to avoid determining
the entire manifold structure of Z .

Definition 9. We say that a set S is a zero set in a manifold M of dimension
d if S C M and for every x e M there is a neighborhood U of x and a
difteomorphism ç? on U which takes M il U to an open set in Rd and for
which g>(S r\U) has Lebesgue measure zero in Rd .

Remark. Since sets of Lebesgue measure zero are preserved under diffeomor-
phism, the particular choice of f in Definition 9 does not matter; that is, a zero
set in M has Lebesgue measure zero with respect to all local C1 coordinate
systems on M.

We will need a Fubini-like result for zero sets of manifolds which allows us
to prove that a Borel set is a zero set in M by showing that it is a zero set on
the leaves of an appropriate foliation of M. See [22] for a general result of this
type; for our purposes we need only the following simple lemma, which follows
directly from the Fubini theorem.

Lemma 2. Let M be a manifold of dimension d, and let {Ma} be a partition
of M into manifolds of dimension d' < d with the following property : every
x e M has a neighborhood U and a diffeomorphism (p on U which maps
M nil to an open set in Rd and which maps those Ma which intersect U into
parallel hyperplanes of dimension d'. If Z is a Borel set in M and Z n Ma is
a zero set in Ma for every a, then Z is a zero set in M.

Remark. The hypotheses of Lemma 2 are satisfied if M can be written as
Mi x M2 with Mi, M2 manifolds, and the partition of M consists of all
manifolds of the form {x} x M2 with x € Mi ; this will usually be the case
when we apply Lemma 2.

We now present measure-theoretic analogues to Theorems 1 and 1'.

Lemma 3 (Measure Transversality Lemma). Let 5cR« and icR" be open
sets, with points in B denoted by k and points in A denoted by x. Let F: B x
A —► Rm x Rs be a continuous function with components G: B x A —> Rm and
H: B x A —> Rs. Assume that the derivatives DXG, DXG, and DXH exist and
are continuous at every point of B x A (but DXH need not exist). Let M be
a manifold in Rm with codimension n, and assume that for all x e A and
all y € Rs, the function F(-, x) is transversal to M x {y}. Let Z be a zero
set in M x Rs. Then for almost every k e B, there is no x e A for which
F(k,x)eZ.
Remark. The transversality hypothesis of Lemma 3 is automatically satisfied if
DxF has full rank at every point of B x A (that is, if F(-, x) is a submersion
for every x e A).

Lemma 3 will be proved at the end of this section. Notice that in the case
that F is C1 and Z is a manifold with codimension greater than n , Lemma
3 is a special case of Theorem 1. In much the same way as Theorem 1' followed
from Theorem 1, the next theorem follows from Lemma 3.

Theorem 3' (Measure Jet Transversality Theorem). Assume k > 1. Let A c
R" be open and let M be a manifold in Jk~l(R" , Rm) with codimension n .
Let n be the projection from Jk~l(R" , Rm) onto its first n coordinates, and
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assume that k\m is a submersion. Let Z be a zero set in M x Pk(Rn , Rm)
(see the remark following Definition 8). Then for k < I < oo, almost every Cl
function f : A —► Rm has the property that the image of A under jkf does not
intersect Z.
Remark. In our applications, M will be defined by a set of conditions that /
and its derivatives must satisfy at some point x . When these conditions do not
explicitly depend on x, the hypothesis that ti\m be a submersion is trivially
satisfied.
Proof. The proof is the same as for Theorem 1', except that we must verify that
F(p, x) = jk(f(x) +p(x)), where p e Pk(Rn , Rm), satisfies the transversality
condition of Lemma 3. Given y £ Pk(R" ,Rm), we have by hypothesis that
under projection onto the first n coordinates in Jk(R" ,Rm), the tangent space
to M x {y} at any point projects onto all of R" . The remaining coordinates
in Jk(R" , Rm) are just Pk(R" , Rm), and when composed with projection onto
the latter space, F(-, x) is just a translation (and hence a submersion) for every
x . Thus F(-, x) is transversal to M x {y} , and the hypotheses of Lemma 3
are satisfied.   □

Theorem 3' says, roughly speaking, that given n "codimension one" condi-
tions on the (k - l)-jet of / (these conditions can depend on x, but none can
depend only on x) and an additional "measure zero" condition on the fc-jet of
/, almost every Ck function / on a given set in R" does not satisfy all n + 1
conditions at any point in its domain. We now use Lemma 3 and Theorem 3'
to prove Propositions 3, 7, and 8.

Proof of Proposition 3. We will show for each pair (z'i, i2) with 0 < ¿i < i2 <k
that almost every / in C*(R) has the property that /(/l)(x) and /(i2'(x) are
never both zero. Let M be the manifold in Jk~l(R, R) defined by /to) = 0.
Then M has codimension 1, and the set Z c Jk(R, R) defined by /to) =
/to) = 0 is a zero set in M x Pk(R, R). Therefore by Theorem 3', almost
every / in Ck(R) has the property that jkf(x) is not in Z for any x e R,
which is exactly what we wanted to prove.   D

Proof of Proposition 7. We first prove the proposition for fixed points using
Theorem 3'. Let M be the manifold in J°(Rn, R") defined by f(x) = x;
then x is a fixed point of / if and only if j°f(x) lies in M. Notice that M
has codimension n , and projection onto the first n coordinates is a submersion
on M. Let Z be the set of 1-jets in M x Pl(Rn, R") for which Df has an
eigenvalue with absolute value 1. Then if / has a nonhyperbolic fixed point,
jlf(x) must lie in Z for some x . We will be done once we show that Z is
a zero set in M x Pl(Rn ,Rn). By Lemma 2, we need only show that the set
S of nx n matrices with an eigenvalue on the unit circle has measure zero (in
the space of nx« matrices, which is isomorphic to Pl(R" , R")). Observe that
every ray from the origin meets S in at most n points, because multiplying
every entry of a matrix by a constant factor multiplies its eigenvalues by the
same factor. Hence Z is a zero set as claimed.

For orbits of period p > 1, the condition for nonhyperbolicity depends on
the 1-jet of / at p different points. Thus to apply here, Theorem 3' would
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have to be generalized to /Muples of jets. Rather than do this in general, we will
prove Proposition 7 directly from Lemma 3. Let us determine what conditions
are necessary for a set of polynomial functions gi, gi, ■■■ , gq : R" —> R" to
span a probe. For a given C1 function /: R" -> R" and keR" , let

i
/¿ = / + jA¡ft.

;=1

We must show that for almost every k, all periodic points of f with period p
are hyperbolic.

Let Xi, x2, ... , xp denote elements of R" , and let A c Rnp be the set of
all (xi, x2, ... , Xp) for which x,- ^ x¡ when i ^ j. Consider the function
F = (G,H), where G: R« x A -► R"' and H: R« x A -» R"2" are defined by

G(k; xi, x2,... , Xp) = (f(xi) — x2, fx(x2) —x$, ... ,f(xp)-xi),

H(k ;xi,x2, ... ,xp) = (Dfx(xi), Df(x2), ... , Df(xp)).
(Essentially F consists of the 1-jets of / at Xi, ... , xp , except that G projects
the 0-jets onto a subspace.)

For a given k, if Xi is a point of period p for f , then there is a correspond-
ing point (x¡, ... , Xp) e A at which G — 0. We then let M — {0} in applying
Lemma 3. If in addition xi is nonhyperbolic, then the matrix YlP=\ Dfx{x¡)
has an eigenvalue on the unit circle. That is, H(k ; Xi, ... , xp) lies in the set
S given by

S = < (Mi, ... , Mp) 6 R" " : Y\Mi has an eigenvalue on the unit circle > ,

where Mi, ... , Mp denote n x n matrices. As in our previous argument
for fixed points, 5e has measure zero because every ray from the origin in R"2''
intersects S in at most n points. Thus we let Z = {0} x S in applying Lemma
3.

We will be done if we can show that G and H satisfy the hypotheses of
Lemma 3. Now G and H satisfy the differentiability hypothesis of Lemma 3
because f is C1 as a function of x and C°° as a function of k. To verify the
transversality hypothesis, we will show that for all (k;xi, ... , xp) e Rq x A,
the derivative of F with respect to k has full rank. Since F is a linear function
of k, we simply want to show, for every (xi, ... , xp) e A , that F is onto as
a function of k. Recall that f — f+ Y^^-iSi > and observe that whether or not
F is onto is independent of /. We have thus reduced the problem to one of
polynomial interpolation; we need only show there exists a finite-dimensional
vector space P of polynomial functions from R" -> R" such that for any p
distinct points Xi, ... , xp e R" and any prescribed values for the 1-jet of a
function at the p points, there exists a function in P whose 1-jet takes on the
prescribed values at the prescribed points.

We claim that the polynomials of degree at most 2p - 1 have the above
interpolation property. We are referring to polynomial functions from R" —►
R", but the interpolation can be done separately for each coordinate in the
range, so for simplicity we consider polynomials from R" —> R. Given distinct



PREVALENCE 233

points Xi, ... , Xp e R" , consider the polynomials

p
pj(x)=n i*-*¿i2/=iipj

for j = 1, ... , p . Each P¡ has degree 2p - 2 and is zero at every x, except
for Xj, where it is nonzero. Thus a suitable linear combination of the P¡
can take on any prescribed values at Xi, ... , xp . Next let Pjk(x) be the fcth
coordinate of the function x !-► Pj(x)(x - x7) for k = I, ... , n . Each P^
has degree 2p - 1, and both P^ and its first partial derivatives are all zero
at every x,, except that the kth partial derivative of P^ is nonzero at x¡.
Then given a linear combination of the Pj which takes on prescribed values
at Xi, ... , Xp , adding a linear combination of the P^ will not change these
values, and a suitable linear combination of the P^ can be added to change the
first partial derivatives at X\,... , xp to any prescribed values. This completes
the proof.   □

Proof of Proposition 8. There are two main tasks involved in this proof. First,
we must formulate conditions on the 3-jet of / which must be satisfied if /
has an atypical (in the sense of violating one of the conditions in Proposition
8) Andronov-Höpf bifurcation. Second, we must show that the set Z of 3-jets
which satisfy these conditions satisfies the hypotheses of Theorem 3'.

The manifold M which will contain the 2-jet of every 3-jet in Z consists
of those 2-jets which satisfy the following two conditions:

(a) /=0.
(b) Dxf has zero trace and positive determinant.

(Of course, these conditions really depend only on the 1-jet.) Condition (b)
is equivalent to the condition that Dxf has nonzero, pure imaginary eigenval-
ues. Notice that condition (a) defines a codimension 2 manifold, and adding
condition (b) makes M have codimension 3.

Condition (i) of Proposition 8 follows immediately from the implicit func-
tion theorem, since the determinant of Dxf is nonzero at the bifurcation point
(ßo, Xo) ■ For condition (ii) of Proposition 8 to hold it suffices that the eigenval-
ues of Dxf at the fixed point (ß, x(ß)) have negative real parts for ß on one
side of ßo and positive reals parts for ß on the other side. Since the eigenvalues
of Dxf are complex conjugates in a neighborhood of (ßo, Xo), each one has
real part equal to half the trace of Dxf. Thus if condition (ii) of Proposition
8 fails, the following condition must hold:

(c) The trace of Dxf(ß, x(ß)) has /¿-derivative zero at ßo .
The derivative of this trace depends on the 2-jet of / at (ß0, xo) and on
x'(ßo), which in turn depends on the 1-jet of /.

We wish to show that the set of 2-jets in M for which condition (c) holds
is a zero set in M. Since M depends only on the 1-jet of /, by Lemma 2
it suffices to fix the 1-jet and show that as the second derivatives in the 2-jet
vary, condition (c) fails almost everywhere. Notice that fixing the 1-jet also
fixes x'(ßo). Let the coordinates of /be (g, h) and the coordinates of x be
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(y, z). Then condition (c) can be written as

gpy + y'(ßo)gyy + z'(ßo)gyz + hßz + y'(ßo)hyz + z'(ß0)hzz = 0 ,

where the partial derivatives are evaluated at (ßo, xo). As the second deriva-
tives vary over all real numbers, the above equation holds only on a set of
measure zero (a codimension 1 subspace, in fact).

We have shown that condition (c) holds only on a zero set in M. By another
application of Lemma 2, the set of 3-jets which satisfy condition (c) is a zero
set in MxP3(R2,R2).

If conditions (a) and (b) hold while (c) fails, then there is a condition (d)
that the 3-jet of / must satisfy in order for condition (iii) of Proposition 8 to
fail. If coordinates (u, v) are chosen in such a way that

r>   ft \       i°     _iyDxf(ß0,X0)=    œ       0

(where co is the square root of the determinant of Dxf), and g and h are the
components of / in this coordinate system (this is different from the definition
of g and h above), then condition (d) can be written as

(tiyguuu i guw T nuuv + nvvv) -+- guvyguu + gw)

—nuv(nuu + nvv) — guu^-uu < gwftvv = u.

See [15] for a detailed derivation of this condition, or [6] for a more expository
discussion of this problem.

Notice that given condition (b), Dxf can be put into antisymmetric form by
a linear change of coordinates depending only on the 1-jet of / at (ßo, xo), and
further co is nonzero and depends only on the 1-jet of /. Writing condition (d)
in terms of the original coordinates would be tedious; instead we employ Lemma
2 again by fixing the 2-jet of / and letting its third derivatives vary. With
the 2-jet fixed, the above change of coordinates is fixed, and induces a change
of coordinates on the space P3(R2, R2). In terms of the new coordinates,
condition (d) determines a codimension 1 hyperplane in P3(R2, R2), and in
particular the set on which it is satisfied has measure zero. Therefore by Lemma
2, the set of all 3-jets which satisfy condition (d) is a zero set in M x P3(R2 ,R2).

To summarize, we have shown that in order for the conditions given in Propo-
sition 8 to fail for a given one-parameter family of vector fields /, there must
be a point (ßo, Xn) at which conditions (a), (b), and at least one of (c) and
(d) hold. We have shown that the manifold M c /2(R2, R2) defined by con-
ditions (a) and (b) satisfies the hypotheses of Theorem 3', and that the set
Z c M x P3(R2, R2) on which at least one of conditions (c) and (d) holds is a
zero set in this manifold. Therefore by Theorem 3', for almost every / in Ck
the conditions given in Proposition 8 hold.   □

Proof of Lemma 3. We assume without loss of generality that Z is a Borel
set; then so is F~X(Z). Let 7Ti: Rq x R" -> R« be projection onto the first q
coordinates. We wish to show that n¡(F~l(Z)) has measure zero. Let L =
G~l(M), and for x e A let Lx = L n (R« x {x}) be the "x-slice" of L. By the
transversality hypothesis, G(-, x) is transversal to M, and thus L c R9 x R"
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and Lx c Rq are manifolds with the same codimension, n , as Mel" (see
p. 28 of [7]).

Since L has dimension q, away from its critical points 7Ti \l is locally a
diffeomorphism. We will show that F~l(Z) is a zero set in L ; then since zero
sets map to zero sets under diffeomorphisms, ni(F~l(Z)) consists of a zero
set plus possibly some critical values of 7ri|¿. By the Sard theorem [26], the
critical values of ni\L have measure zero, and hence n\(F~l(Z)) has measure
zero as desired.

To show that F~l(Z) is a zero set in L, we first show for all x e A that
F~*(Z) n Lx is a zero set in Lx . Since F(-, x) is transversal to M x {y}
for all y e Rs, and the tangent space T¿Lx is the inverse image of TG(x,X)M
under D^G, and both tangent spaces have the same codimension, it follows that
DxF maps TxLx onto TG^¡X)M x Rs for all (k, x) e B x A . In other words,
F(', x) is a submersion from Lx to M x Rs for all x e A. Since Z is a zero
set in M x Rs, its preimage F~i(Z)nLx is a zero set in Lx as claimed.

It remains only to show that the partition {Lx} of L satisfies the hypotheses
of Lemma 2. Let n2: R9 x Rn —» R" be projection onto the last n coordinates.
For each (k, x) e L, the kernel of n2 in TtxyX)L is just TxLx . Since the former
space has dimension q and the latter space has dimension q - n, it follows
that n2 has rank n on T(xyX)L. Thus u2\l is a submersion, which implies
(see p. 20 of [7]) that near every point in L there is a local C1 coordinate
system on L whose last n coordinates are the same as those of x . The slices
Lx of L are parallel hyperplanes in such a coordinate system, and therefore
the hypotheses of Lemma 2 are satisfied.   D

5. Extensions of prevalence

In this article we have proposed sufficient conditions for a property to be said
to be true "almost everywhere", in a measure-theoretic sense, on complete metric
linear spaces. In other contexts more general definitions may be appropriate.
For instance, the concepts of shyness and prevalence can be extended from
vector spaces to larger classes of topological groups [17].

We have concentrated thusfar on extending the notions of "measure zero" and
"almost every" to infinite-dimensional spaces. We now briefly consider some
ways to characterize sets which are neither shy nor prevalent in an infinite-
dimensional vector space V.

Definition 10. Let P be the set of compactly supported probability measures
on the Borel sets of V. The lower density p~(S) of a Borel set S c V is
defined to be

p~(S) = sup inf ß(S + v).
MePvev

The upper density p+ (S) is given by

p+(S) - inf sup ß(S + v).
fi€PV£V

If p~(S) = p+(S), then we call this number the relative prevalence of S.
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One can show that for all ß, v e P,

inf ß(S + v) < inf ß* v(S + v) < supß * v(S + v) < sapv(S + v),
v€V V&V vçy vç.y

and thus 0 < p~(S) < p+(S) < 1 for all Borel sets S. It follows that a shy
set has relative prevalence zero and a prevalent set has relative prevalence one.
However, sets with relative prevalence zero need not be shy; all bounded sets
have relative prevalence zero, for example.

In R" , having positive lower density is a much stronger condition on a set
than having positive Lebesgue measure. The following weaker conditions give
a closer analogue to positive measure.

Definition 11. A measure ß is said to observe a Borel set S c V if ß is finite
and ß(S + v) > 0 for all v e V. A Borel set S C V is called observable if
there is a measure which observes S, and is called substantial if it is observed
by a compactly supported measure. More generally, a subset of V is observable
(resp. substantial) if it contains an observable (resp. substantial) Borel set.

Every set with positive lower density is then substantial, and every substantial
set is observable. As in Fact 3, if ß observes a Borel set S then so does ß * v
for any finite measure v . It follows that an observable set is not shy. In R" ,
it follows as in Fact 6 that a set is observable if and only if it contains a set of
positive Lebesgue measure. In a separable space every open set is observable;
given a countable dense sequence {x„}, the measure consisting of a mass of
magnitude 2~n at each x„ observes each open set.
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