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Summary 44 

Individuals with severe, undiagnosed developmental disorders (DDs) are enriched for damaging 45 

de novo mutations (DNMs) in developmentally important genes. We exome sequenced 4,293 46 

families with individuals with DDs, and meta-analysed these data with another 3,287 individuals 47 

with similar disorders. We show that the most significant factors influencing the diagnostic yield 48 

of DNMs are the sex of the affected individual, the relatedness of their parents, whether close 49 

relatives are affected and parental ages. We identified 94 genes enriched for damaging DNMs, 50 

including 14 without previous compelling evidence. We have characterised the phenotypic 51 

diversity among these disorders. We estimate that 42% of our cohort carry pathogenic DNMs in 52 

coding sequences, and approximately half disrupt gene function, with the remainder resulting 53 

in altered-function. We estimate that developmental disorders caused by DNMs have an 54 

average birth prevalence of 1 in 213 to 1 in 448, depending on parental age. Given current 55 

global demographics, this equates to almost 400,000 children born per year. 56 

Main text 57 

Approximately 2-5% of children are born with major congenital malformations and/or manifest 58 

severe neurodevelopmental disorders during childhood1,2. While diverse mechanisms can cause 59 

such developmental disorders, including gestational infection and maternal alcohol 60 

consumption, damaging genetic variation in developmentally important genes has a major 61 

contribution. Several recent studies have identified a substantial causal role for DNMs not 62 

present in either parent3-16. Despite the identification of many developmental disorders caused 63 

by DNMs, it is generally accepted that many more such disorders await discovery15, and the 64 

overall contribution of DNMs to developmental disorders is not known. Moreover, some 65 

pathogenic DNMs completely ablate the function of the encoded protein, whereas others alter 66 

the function of the encoded protein17; the relative contributions of these two mechanistic 67 

classes is also not known. 68 

 69 

We recruited 4,293 individuals to the Deciphering Developmental Disorders (DDD) study15 via 70 

genetics services of the UK National Health Service and Republic of Ireland. Each of these 71 

individuals was referred with a severe undiagnosed developmental disorder and most were the 72 

only affected family member. Most (81%) individuals had been screened for large pathogenic 73 

deletions and duplications. We systematically phenotyped these individuals and sequenced the 74 

exomes of these individuals and their parents. Growth measurements, family history, and 75 

developmental milestones were collected, and detailed clinical phenotypes were captured 76 

using Human Phenotype Ontology (HPO) terms. Analyses of 1,133 of these trios were described 77 

previously15,18. We generated a high sensitivity set of 8,361 candidate DNMs in coding or 78 

splicing sequence (mean of 1.95 DNMs per proband), while removing systematic erroneous 79 

calls (Supplementary Table 1). This rate of candidate DNMs per proband is higher than other 80 

studies3-15, because we wish to maintain high sensitivity, and can address lower specificity via 81 

subsequent validation. 1,624 genes contained two or more DNMs in unrelated individuals. 82 

 83 

Twenty-three percent of individuals had likely pathogenic protein-truncating or missense DNMs 84 

within the clinically curated set of genes robustly associated with dominant developmental 85 



disorders18. We investigated factors associated with whether an individual had a likely 86 

pathogenic DNM in these curated genes (Figure 1a, b, Supplementary Table 1). We observed 87 

that males had a lower chance of carrying a likely pathogenic DNM (P = 1.6 x 10-4; OR 0.75, 0.65 88 

- 0.87 95% CI), as has also been observed in autism19. We also observed increased likelihood of 89 

having a pathogenic DNM with the extent of speech delay (P = 0.00115), but not other 90 

indicators of severity relative to the rest of the cohort. Individuals with other affected family 91 

members were less likely to have pathogenic DNMs (affected siblings: P = 7.3 x 10-18, affected 92 

parents: P = 5.7 x 10-9), and individuals who were from self-declared consanguineous unions 93 

were less likely to have a pathogenic DNM (P = 8.0 x 10-11). Furthermore, the total genomic 94 

extent of autozygosity (due to parental relatedness) was negatively correlated with the 95 

likelihood of having a pathogenic DNM (P = 1.7 x 10-7), for every log10 increase in autozygous 96 

length, the probability of having a pathogenic DNM dropped by 7.5%, likely due to increasing 97 

burden of recessive causation (Figure 1c). Nonetheless, 6% of individuals with autozygosity 98 

equivalent to a first cousin union or greater had a plausibly pathogenic DNM, underscoring the 99 

importance of considering de novo causation in all families.  100 

 101 

Paternal age has been shown to be the primary factor influencing the number of DNMs in a 102 

child20,21, and thus is expected to be a risk factor for pathogenic DNMs. Paternal age was only 103 

weakly associated with likelihood of having a pathogenic DNM (P = 0.016). However, focusing 104 

on the minority of DNMs that were truncating and missense variants in known DD-associated 105 

genes limits our power to detect such an effect. Analysing all 8,409 high confidence exonic and 106 

intronic autosomal DNMs confirmed a strong paternal age effect (P = 1.4 x 10-10, 1.53 107 

DNMs/year, 1.07-2.01 95% CI), as well as highlighting a weaker, independent, maternal age 108 

effect (P = 0.0019, 0.86 DNMs/year, 0.32-1.40 95% CI, Figure 1d,e), as has recently been 109 

described in whole genome analyses22. These genome-wide estimates were scaled from exome-110 

based estimates, of 0.0306 DNMs/year paternal effect and 0.0172 DNMs/year maternal effect. 111 

 112 

We identified genes significantly enriched for damaging DNMs by comparing the observed 113 

gene-wise DNM count to that expected under a null mutation model23, as described 114 

previously15. We combined this analysis with 4,224 published DNMs in 3,287 affected 115 

individuals from thirteen exome or genome sequencing studies (Supplementary Table 2)3-14 that 116 

exhibited a similar excess of DNMs in our curated set of DD-associated genes (Extended Data 117 

Figure 1). We found 93 genes with genome-wide significance (P < 5 × 10-7, Figure 2), 80 of which 118 

had prior evidence of DD-association (Supplementary Table 3). We have developed visual 119 

summaries of the phenotypes associated with each gene to facilitate clinical use. In addition, 120 

we created anonymised average face images from individuals with DNMs in genome-wide 121 

significant genes (Figure 2) from ordinary (2D) clinical photos using previously validated 122 

software24. These images highlight facial dysmorphologies specific to certain genes. After 123 

careful review by two experienced clinical geneticists, average face images for twelve genes 124 

were determined to be truly anonymised and of sufficient quality.To assess any increase in 125 

power to detect novel DD-associated genes, we excluded individuals with likely pathogenic 126 

variants in known DD-associated genes15, leaving 3,158 probands from our cohort, along with 127 

2,955 probands from the meta-analysis studies. In this subset, fourteen genes for which no 128 

statistically-compelling prior evidence for DD causation was available achieved genome-wide 129 



significance: CDK13, CHD4, CNOT3, CSNK2A1, GNAI1, KCNQ3, MSL3, PPM1D, PUF60, QRICH1, 130 

SET, SUV420H1, TCF20, and ZBTB18 (P < 5 x 10-7, Table 1, Extended Data Figure 4). The clinical 131 

features associated with these newly confirmed disorders are summarised in Extended Data 132 

Figure 2, Extended Data Figure 3 and Supplementary Information. QRICH1 would not achieve 133 

genome-wide significance without excluding individuals with likely pathogenic variants in DD-134 

associated genes. In addition to discovering novel DD-associated genes, we identified several 135 

new disorders linked to known DD-associated genes, but with different modes of inheritance or 136 

molecular mechanisms. We found USP9X and ZC4H2 had a genome-wide significant excess of 137 

DNMs in female probands, indicating these genes have X-linked dominant modes of inheritance 138 

in addition to previously reported X-linked recessive mode of inheritance in males25,26. In 139 

addition, we found truncating mutations in SMC1A were strongly associated with a novel 140 

seizure disorder (P = 6.5 x 10-19), while in-frame/missense mutations in SMC1A with dominant 141 

negative effects27 are a known cause of Cornelia de Lange Syndrome (CdLS). Individuals with 142 

truncating mutations in SMC1A lacked the characteristic facial dysmorphology of CdLS. 143 

 144 

We then explored two approaches for integrating phenotypic data into disease gene 145 

association: statistical assessment of Human Phenotype Ontology (HPO) term similarity 146 

between individuals sharing candidate DNMs in the same gene (as we described previously28) 147 

and phenotypic stratification based on specific clinical characteristics. Combining genetic 148 

evidence and HPO term similarity increased the significance of some known DD-associated 149 

genes.  However, significance decreased for a larger number of genes causing severe DD but 150 

associated with non discriminative HPO terms (Extended Data Figure 5a). Although we did not 151 

incorporate categorical phenotypic similarity in the gene discovery analyses described above, 152 

the systematic acquisition of phenotypic data on affected individuals within DDD enabled 153 

aggregate representations to be created for each gene achieving genome-wide significance. We 154 

present these in the form of icon-based summaries of growth and developmental milestones 155 

(PhenIcons), heatmaps of the recurrently coded HPO terms and, where photos for at least ten 156 

children with mutations in the same gene were available, an anonymised average facial 157 

representation (Supplementary Information).   158 

 159 

Twenty percent of individuals had HPO terms which indicated seizures and/or epilepsy.  We 160 

compared analysis within this phenotypically stratified group with gene-wise analyses of the 161 

entire cohort, to see if it increased power to detect known seizure-associated genes (Extended 162 

Data Figure 5b). Fifteen seizure-associated genes were genome-wide significant in both the 163 

seizure-only and the entire-cohort analyses. Nine seizure-associated genes were genome-wide 164 

significant in the entire cohort but not in the seizure subset. Of the 285 individuals with 165 

truncating or missense DNMs in known seizure-associated genes, 56% of individuals had no 166 

coded terms related to seizures/epilepsy. These findings suggest that the power of increased 167 

sample size far outweighs specific phenotypic expressivity due to the shared genetic etiology 168 

between individuals with and without epilepsy in our cohort. Despite this, nearly three times as 169 

many individuals with seizures had a DNM in a seizure-associated gene compared to individuals 170 

without seizures (Extended Data Figure 5c). At matched sample sizes, more genes exceeded 171 

genomewide significance in seizure samples than in unstratified samples (Extended Data Figure 172 

5d). This highlights the cost-benefit of recruiting a phenotypically more homogenous cohort. 173 



 174 

The large number of genome-wide significant genes identified in the analyses above allows us 175 

to compare empirically different experimental strategies for novel gene discovery in a 176 

genetically heterogeneous cohort. We compared the power of exome and genome sequencing 177 

to detect genome-wide significant genes, assuming that budget and not samples are limiting, 178 

under different scenarios of cost ratios and sensitivity ratios (Extended Data Figure 6a). At 179 

current cost ratios (exome costs 30-40% of a genome) and with a plausible sensitivity 180 

differential (genome detects 5% more exonic variants than exome29) exome sequencing detects 181 

more than twice as many genome-wide significant genes. These empirical estimates were 182 

consistent with power simulations for identifying dominant loss-of-function genes (Extended 183 

Data Figure 6b). In summary, while genome sequencing gives greatest sensitivity to detect 184 

pathogenic variation in a single individual (or outside of the coding region), exome sequencing 185 

is more powerful for novel disease gene discovery (and, analogously, likely delivers lower cost 186 

per diagnosis currently). 187 

 188 

Our previous simulations suggested that analysis of a cohort of 4,293 DDD families ought to be 189 

able to detect approximately half of all haploinsufficient DD-associated genes at genome-wide 190 

significance15. Empirically, we have identified 47% (50/107) of haploinsufficient genes 191 

previously robustly associated with neurodevelopmental disorders18. We hypothesised that 192 

genetic testing prior to recruitment into our study may have depleted the cohort of the most 193 

clinically recognisable disorders. Indeed, we observed that the genes associated with the most 194 

clinically recognisable disorders were associated with a significant, three-fold lower enrichment 195 

of truncating DNMs than other DD-associated genes (~40-fold enrichment vs ~120-fold 196 

enrichment, Figure 3a). Removing these most recognisable disorders from the analysis, we 197 

identified 55% (42/76) of the remaining haploinsufficient DD-associated genes. The known DD-198 

associated haploinsufficient genes that did not reach genome-wide significance were clearly 199 

enriched for those with lower mutability, which we would expect to lower power to detect in 200 

our analyses. We identified DD-associated genes (e.g. NRXN2) with high mutability, low clinical 201 

recognisability and yet no signal of enrichment for DNMs in our cohort, as assessed by ΔAIC 202 

(Extended Data Figure 7, Supplementary Table 4). Our analyses call into question whether these 203 

genes really are associated with haploinsufficient neurodevelopmental disorders and highlights 204 

the potential for well-powered gene discovery analyses to refute prior credence regarding 205 

disease gene associations or prior inferences regarding an underlying haploinsufficient 206 

mechanism.  207 

 208 

We estimated the likely prevalence of pathogenic missense and truncating DNMs within our 209 

cohort by increasing the stringency of called DNMs until the observed synonymous DNMs 210 

equated that expected under the null mutation model (Extended Data Figure 8a), then 211 

quantifying the excess of observed missense and truncating DNMs across all genes (Figure 3b). 212 

We observed an excess of 576 truncating and 1,220 missense mutations, suggesting 41.8% 213 

(1,796/4,293) of the cohort has a pathogenic DNM. This estimate of the number of excess 214 

missense and truncating DNMs in our cohort is robust to varying the stringency of DNM calling 215 

(Extended Data Figure 8b). The vast majority of synonymous DNMs are likely to be benign, as 216 

evidenced by them being distributed uniformly (Figure 3d) among genes irrespective of their 217 



tolerance of truncating variation in the general population (as quantified by the probability of 218 

being LoF-intolerant (pLI) metric30). By contrast, missense and truncating DNMs are significantly 219 

enriched in genes with the highest probabilities of being intolerant of truncating variation 220 

(Figure 3d). The pLI-based distributions were similar to distributions which used functional 221 

constraint (Extended Data Figure 9)31. Only 51% (923/1,796) of these excess missense and 222 

truncating DNMs are located in DD-associated dominant genes, with the remainder likely to 223 

affect genes not yet associated with DDs. A much higher proportion of the excess truncating 224 

DNMs (71%) than missense DNMs (42%) affected known DD-associated genes. This suggests 225 

that whereas most haploinsufficient DD-associated genes have already been identified, many 226 

DD-associated genes characterised by pathogenic missense DNMs remain to be discovered. 227 

 228 

Understanding the mechanism of action of a monogenic disorder is an important prerequisite 229 

for designing therapeutic strategies32. We sought to estimate the relative proportion of altered-230 

function and loss-of-function mechanisms among the excess DNMs in our cohort, by assuming 231 

that the vast majority of truncating mutations operate by a loss-of-function mechanism and 232 

using two independent approaches to estimate the relative contribution of the two 233 

mechanisms among the excess missense DNMs (Methods). First, we used the observed ratio of 234 

truncating and missense DNMs within haploinsufficient DD-associated genes to estimate the 235 

proportion of the excess missense DNMs that likely act by loss-of-function (Figure 3c). This 236 

approach estimated that 59% (55 - 64% 95% CI) of excess missense and truncating DNMs 237 

operate by loss-of-function, and 41% by altered-function. Second, we took advantage of the 238 

different population genetic characteristics of known altered-function and loss-of-function DD-239 

associated genes. Specifically, we observed that these two classes of DD-associated genes are 240 

differentially depleted of truncating variation in individuals without overt developmental 241 

disorders (pLI metric30). We modelled the observed pLI distribution of excess missense DNMs as 242 

a mixture of the pLI distributions of known altered-function and loss-of-function DD-associated 243 

genes (Figure 3e, f), and estimated that 63% (50 - 76% 95% CI) of excess missense DNMs likely 244 

act by altered-function mechanisms. Incorporating the truncating DNMs operating by a loss-of-245 

function mechanism, this approach estimated that 57% (48 - 66% 95% CI) of excess missense 246 

and truncating DNMs operate by loss-of-function and 43% by altered-function. 247 

 248 

We estimated the birth prevalence of monoallelic developmental disorders by using the 249 

germline mutation model to calculate the expected cumulative germline mutation rate of 250 

truncating DNMs in haploinsufficient DD-associated genes and scaling this upwards based on 251 

the composition of excess DNMs in the DDD cohort described above (see Methods), correcting 252 

for disorders that are under-represented in our cohort as a result of prior genetic testing (e.g. 253 

clinically-recognisable disorders and large pathogenic CNVs identified by prior chromosomal 254 

microarray analysis). This gives a mean prevalence estimate of 0.34% (0.31-0.37 95% CI), or 1 in 255 

295 births. By factoring in the paternal and maternal age effects on the mutation rate (Figure 1) 256 

we modelled age-specific estimates of birth prevalence (Figure 4) that range from 1 in 448 257 

(both mother and father aged 20) to 1 in 213 (both mother and father aged 45). Assuming a 258 

yearly global birth rate of 18.6 live births/1000 individuals, and a mean age when giving birth of 259 

26.6 years, nearly 400,000 of the 140 million annual births will have a developmental disorder 260 

caused by a DNM. 261 



 262 

In summary, we have shown that de novo mutations account for approximately half of the 263 

genetic architecture of severe developmental disorders, and are split roughly equally between 264 

loss-of-function and altered-function. Whereas most haploinsufficient DD-associated genes 265 

have already been identified, currently many activating and dominant negative DD-associated 266 

genes have eluded discovery. This elusiveness likely results from these disorders being 267 

individually rarer, being caused by a relatively small number of missense mutations within each 268 

gene. It would be valuable to estimate the penetrance of de novo mutations in the genes we 269 

identified exceeding genome-wide significance, but we cannot formally assess penetrance with 270 

our data. Future evaluations could integrate depletion of damaging variation in large healthy 271 

populations with patterns of segregation in affected families. Discovery of the remaining 272 

dominant developmental disorders requires larger studies and novel, more powerful, analytical 273 

strategies for disease-gene association that leverage gene-specific patterns of population 274 

variation, specifically the observed depletion of damaging variation. The integration of accurate 275 

and complete quantitative and categorical phenotypic data into the analysis will improve the 276 

power to identify ultrarare DD with distinctive clinical presentations. We have estimated the 277 

mean birth prevalence of dominant monogenic developmental disorders to be around 1 in 295, 278 

which is greater than the combined impact of trisomies 13, 18 and 2133 and highlights the 279 

cumulative population morbidity and mortality imposed by these individually rare disorders. 280 

 281 
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Tables 459 

Table 1: Genes achieving genome-wide significant statistical evidence without previous compelling 460 

evidence for being developmental disorder genes. The numbers of unrelated individuals with 461 
independent de novo mutations (DNMs) are given for protein truncating variants (PTV) and missense 462 

variants. Counts of individuals in other cohorts are given in brackets if present. The P-value reported is 463 

the minimum P-value from the testing of the DDD dataset or the meta-analysis dataset. The subset 464 

providing the P-value is also listed. Mutations are considered clustered if the P-value from proximity 465 

clustering of DNMs is less than 0.01. 466 

Gene Missense PTV P-value Test Clustering 

CDK13 10 1 3.2 x 10-19 DDD Yes 

GNAI1 7 (1) 1 2.1 x 10-13 DDD No 

CSNK2A1 7 0 1.4 x 10-12 DDD Yes 

PPM1D 0 5 (1) 6.3 x 10-12 Meta No 

CNOT3 5 2 (1) 5.2 x 10-11 DDD Yes 

MSL3 0 4 2.2 x 10-10 DDD No 

KCNQ3 4 (3) 0 3.4 x 10-10 Meta Yes 

ZBTB18 1 (1) 4 1.4 x 10-9 DDD No 

PUF60 4 (1) 3 2.6 x 10-9 DDD No 

TCF20 1 5 2.7 x 10-9 DDD No 

SUV420H1 0 (2) 2 (3) 2.9 x 10-9 Meta No 

CHD4 8 (1) 1 7.6 x 10-9 DDD No 

SET 0 3 1.2 x 10-7 DDD No 

QRICH1 0 3 (1) 3.6 x 10-7 Meta No 

 467 

  468 



Extended data tables 469 

 470 

Extended Data Table 1: Phenotypes tested for association with having a pathogenic de novo mutation. 471 

 472 

Category Phenotype Type Value 95% CI P-value 

Post-natal 

abnormal cranial MRI Odds ratio 1.365 1.125 – 1.656 0.002 

feeding problems Odds ratio 1.176 1.01 – 1.369 0.039 

neonatal intensive care Odds ratio 0.896 0.762 – 1.054 0.190 

anticonvulsant drugs Odds ratio 0.582 0.246 – 1.377 0.270 

Pre-natal 

bleeding Odds ratio 0.892 0.714 – 1.114 0.346 

maternal illness Odds ratio 0.908 0.764 – 1.079 0.278 

maternal diabetes Odds ratio 0.787 0.504 – 1.229 0.341 

abnormal scan Odds ratio 0.839 0.692 – 1.017 0.078 

assisted reproduction Odds ratio 0.868 0.554 – 1.36 0.584 

increased nuchal 

translucency 
Odds ratio 1.432 0.903 – 2.271 0.126 

Family history 

consanguinity Odds ratio 0.234 0.138 – 0.397 8.0 x 10-11 

similar phenotype parents Odds ratio 0.295 0.184 – 0.474 5.7 x 10-9 

similar phenotype relatives Odds ratio 0.553 0.402 – 0.761 1.5 x 10-4 

similar phenotype siblings Odds ratio 0.311 0.23 – 0.421 7.3 x 10-18 

only patient affected Odds ratio 2.478 2.001 – 3.068 3.9 x 10-19 

X-linked inheritance Odds ratio 0.839 0.436 – 1.613 0.752 

Multiple births Beta 0.043 -0.058 – 0.144 0.403 

History of pregnancy loss Beta -0.039 -0.155 – 0.078 0.516 

Developmental 

milestones 

first words Beta 0.205 0.081 – 0.328 0.001 

walked independently Beta 0.125 0.016 – 0.235 0.025 

sat independently Beta 0.050 -0.069 – 0.17 0.408 

social smile Beta 0.072 -0.066 – 0.211 0.305 

Growth 

height Beta 0.008 -0.111 – 0.126 0.897 

birthweight Beta -0.018 -0.135 – 0.098 0.756 

OFC Beta -0.094 -0.215 – 0.026 0.125 

weight Beta -0.331 -1.278 – 0.615 0.493 

Age 

age at assessment Beta 0.116 0.015 – 0.217 0.025 

gestation Beta 0.079 -0.033 – 0.19 0.167 

father's age Beta 0.137 0.027 – 0.247 0.015 

mother's age  Beta 0.108 -0.003 – 0.219 0.056 

Other 

phenotypic terms (n) Beta 0.104 0.004 – 0.203 0.041 

autozygosity length Beta -0.185 -0.254 – -0.115 1.6 x 10-7 

sex (male) Odds ratio 0.750 0.646 – 0.87 1.6 x 10-4 



Supplementary Table Legends 473 

Note: These are included in the supplementary info, but are required here for the auto-474 

numbering. 475 

 476 

Supplementary Table 1: Table of de novo mutations (DNM) in the 4,293 DDD individuals. The table 477 

includes sex, chromosome, position, reference and alternate alleles, HGNC symbol, VEP consequence, 478 

posterior probability of DNM and validation status where available. Individual IDs are available on 479 

request. This list excludes the sites that failed validations, but includes sites that passed validation 480 
(confirmed), sites that were uncertain (uncertain), and sites that were not tested by secondary 481 

validation (NA). Genome positions are given as GRCh37 coordinates. 482 

Supplementary Table 2: Details of cohorts used in meta-analyses. This includes numbers of individuals 483 

by sex and publication details. 484 

Supplementary Table 3: Genes with genome-wide significant statistical evidence to be developmental 485 

disorder genes. The numbers of unrelated individuals with independent de novo mutations (DNMs) are 486 

given for protein truncating variants (PTV) and missense variants. If any additional individuals were in 487 
other cohorts, that number is given in brackets. The P-value reported is the minimum P-value from the 488 

testing of the DDD dataset or the meta-analysis dataset. The subset providing the P-value is also listed. 489 

Mutations are considered clustered if the P-value proximity clustering of DNMs is less than 0.01. 490 

Supplementary Table 4: Comparison of known haploinsufficient (HI) neurodevelopment genes to HI and 491 

non-HI enrichment models. Genes are ranked by difference in the Akaike’s Information Criterion 492 

computed for models where the genes match either expected non-HI PTV enrichment (model 1), or 493 

expected HI protein-truncating variant (PTV) enrichment (model 2). 494 

  495 



Figures 496 

 497 

 498 
Figure 1: Association of phenotypes with presence of likely pathogenic de novo mutations (DNMs). a, 499 

Odds ratios for binary phenotypes. Positive odds ratios are associated with increased risk of pathogenic 500 

DNMs when the phenotype is present. P-values are given for a Fisher’s Exact test. b, Beta coefficients 501 
from logistic regression of quantitative phenotypes versus presence of a pathogenic DNM. All 502 

phenotypes aside from length of autozygous regions were corrected for gender as a covariate. The 503 

developmental milestones (age to achieve first words, walk independently, sit independently and social 504 

smile) were log-scaled before regression. The growth parameters (height, birthweight and 505 

occipitofrontal circumference (OFC)) were evaluated as absolute distance from the median. c, 506 

Relationship between length of autozygous regions chance of having a pathogenic DNM. The regression 507 

line is plotted as the dark gray line. The 95% confidence interval for the regression is shaded gray. The 508 

autozygosity lengths expected under different degrees of consanguineous unions are shown as vertical 509 

dashed lines. n, number of individuals in each autozygosity group. d, Relationship between age of 510 

fathers at birth of child and number of high confidence DNMs. n, number of high confidence DNMs. e, 511 
Relationship between age of mothers at birth of child and number of high confidence DNMs. Error bars 512 

indicate 95% c.i. n, number of high confidence DNMs.  513 
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 515 
Figure 2: Genes exceeding genome-wide significance. Manhattan plot of combined P-values across all 516 

tested genes. The red dashed line indicates the threshold for genome-wide significance (P < 7 x 10-7). 517 

Genes exceeding this threshold have HGNC symbols labelled. De-identified realistic average 518 

(‘composite’) faces were generated using previously validated software24 from clinical photos from 519 

individuals with DNMs in the same gene, and are shown here for the six most-significantly associated 520 

genes. Confirmation of de-identification was performed by careful review by two experienced clinical 521 

geneticists. Each face was generated from clinical photos of more than ten children.  522 

  523 



 524 
Figure 3: Excess of de novo mutations (DNMs). a, Enrichment ratios of observed to expected loss-of-525 
function DNMs by clinical recognisability for dominant haploinsufficient neurodevelopmental genes as 526 

judged by two consultant clinical geneticists. Error bars indiciate 95% CI. b, Enrichment of DNMs by 527 

consequence normalised relative to the number of synonymous DNMs. c, Proportion of excess DNMs 528 

with loss-of-function or altered-function mechanisms. Proportions are derived from numbers of excess 529 

DNMs by consequence, and numbers of excess truncating and missense DNMs in dominant 530 

haploinsufficient genes. d, Enrichment ratios of observed to expected DNMs by pLI constraint quantile 531 

for loss-of-function, missense and synonymous DNMs. Counts of DNMs in each lower and upper half of 532 

the quantiles are provided. e, Normalised excess of observed to expected DNMs by pLI constraint 533 

quantile. This includes missense DNMs within all genes, loss-of-function including missense DNMs in 534 

dominant haploinsufficient genes and missense DNMs in dominant nonhaploinsufficient genes (genes 535 
with dominant negative or activating mechanisms). f, Proportion of excess missense DNMs with a loss-536 

of-function mechanism. The red dashed line indicates the proportion in observed excess DNMs at the 537 

optimal goodness-of-fit. The histogram shows the frequencies of estimated proportions from 1000 538 

permutations, assuming the observed proportion is correct.  539 

  540 



 541 

Figure 4: Prevalence of live births with developmental disorders caused by dominant de novo mutations 542 

(DNMs). The prevalence within the general population is provided as percentage for combinations of 543 

parental ages, extrapolated from the maternal and paternal rates of DNMs. Distributions of parental 544 

ages within the DDD cohort and the UK population are shown at the matching parental axis. 545 

 546 
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Methods 548 

Family recruitment 549 

At 24 clinical genetics centers within the United Kingdom (UK) National Health Service and the 550 

Republic of Ireland, 4,293 patients with severe, undiagnosed developmental disorders and their 551 

parents (4,125 families) were recruited and systematically phenotyped. The study has UK 552 

Research Ethics Committee approval (10/H0305/83, granted by the Cambridge South Research 553 

Ethics Committee and GEN/284/12, granted by the Republic of Ireland Research Ethics 554 

Committee). Families gave informed consent for participation. 555 

 556 

Clinical data (growth measurements, family history, developmental milestones, etc.) were 557 

collected using a standard restricted-term questionnaire within DECIPHER34, and detailed 558 

developmental phenotypes for the individuals were entered using Human Phenotype Ontology 559 

(HPO) terms35. Saliva samples for the whole family and blood-extracted DNA samples for the 560 

probands were collected, processed and quality controlled as previously described15. 561 

 562 

Exome sequencing  563 

Genomic DNA (approximately 1 μg) was fragmented to an average size of 150 base-pairs (bp) 564 

and subjected to DNA library creation using established Illumina paired-end protocols. Adaptor-565 

ligated libraries were amplified and indexed via polymerase chain reaction (PCR). A portion of 566 

each library was used to create an equimolar pool comprising eight indexed libraries. Each pool 567 

was hybridized to SureSelect ribonucleic acid (RNA) baits (Agilent Human All-Exon V3 Plus with 568 

custom ELID C0338371 and Agilent Human All-Exon V5 Plus with custom ELID C0338371) and 569 

sequence targets were captured and amplified in accordance with the manufacturer's 570 

recommendations. Enriched libraries were subjected to 75-base paired-end sequencing 571 

(Illumina HiSeq) following the manufacturer's instructions. 572 

 573 

Alignment and calling single nucleotide variants, insertions and deletions 574 

Mapping of short-read sequences for each sequencing lanelet was carried out using the 575 

Burrows-Wheeler Aligner (BWA; version 0.59)36 backtrack algorithm with the GRCh37 1000 576 

Genomes Project phase 2 reference (also known as hs37d5). Sample-level BAM improvement 577 

was carried out using the Genome Analysis Toolkit (GATK; version 3.1.1)37 and SAMtools 578 

(version 0.1.19)38. This consisted of a realignment of reads around known and discovered indels 579 

followed by base quality score recalibration (BQSR), with both steps performed using GATK. 580 

Lastly, SAMtools calmd was applied and indexes were created. 581 

 582 

Known indels for realignment were taken from the Mills Devine and 1000 Genomes Project 583 

Gold set and the 1000 Genomes Project phase low-coverage set, both part of the GATK 584 

resource bundle (version 2.2). Known variants for BQSR were taken from dbSNP 137, also part 585 

of the GATK resource bundle. Finally, single nucleotide variants (SNVs) and indels were called 586 

using the GATK HaplotypeCaller (version 3.2.2); this was run in multisample calling mode using 587 

the complete data set. GATK Variant Quality Score Recalibration (VQSR) was then computed on 588 

the whole data set and applied to the individual-sample variant calling format (VCF) files. 589 



DeNovoGear (version 0.54)39 was used to detect SNV, insertion and deletion de novo mutations 590 

(DNMs) from child and parental exome data (BAM files). 591 

 592 

Variant annotation 593 

Variants in the VCF were annotated with minor allele frequency (MAF) data from a variety of 594 

different sources. The MAF annotations used included data from four different populations of 595 

the 1000 Genomes Project40 (AMR, ASN, AFR and EUR), the UK10K cohort, the NHLBI GO Exome 596 

Sequencing Project (ESP), the Non-Finnish European (NFE) subset of the Exome Aggregation 597 

Consortium (ExAC) and an internal allele frequency generated using unaffected parents from 598 

the cohort.  599 

 600 

Variants in the VCF were annotated with Ensembl Variant Effect Predictor (VEP)41 based on 601 

Ensembl gene build 76. The transcript with the most severe consequence was selected and all 602 

associated VEP annotations were based on the predicted effect of the variant on that particular 603 

transcript; where multiple transcripts shared the same most severe consequence, the canonical 604 

or longest was selected. We included an additional consequence for variants at the last base of 605 

an exon before an intron, where the final base is a guanine, since these variants appear to be as 606 

damaging as a splice donor variant28. 607 

 608 

We categorized variants into three classes by VEP consequence:  609 

1. protein-truncating variants (PTV): splice donor, splice acceptor, stop gained, frameshift, 610 

initiator codon, and conserved exon terminus variant. 611 

2. missense variants: missense, stop lost, inframe deletion, inframe insertion, coding 612 

sequence, and protein altering variant. 613 

3. silent variants: synonymous. 614 

 615 

De novo mutation filtering 616 

We filtered candidate DNM calls to reduce the false positive rate but maximize sensitivity, 617 

based on prior results from experimental validation by capillary sequencing of candidate 618 

DNMs15. Candidate DNMs were excluded if not called by GATK in the child, or called in either 619 

parent, or if they had a maximum MAF greater than 0.01. Candidate DNMs were excluded 620 

when the forward and reverse coverage differed between reference and alternative alleles, 621 

defined as P < 10-3 from a Fisher’s exact test of coverage from orientation by allele summed 622 

across the child and parents.  623 

 624 

Candidate DNMs were also excluded if they met two of the three following three criteria: 1) an 625 

excess of parental alternative alleles within the cohort at the DNMs position, defined as P < 10-3 626 

under a one-sided binomial test given an expected error rate of 0.002 and the cumulative 627 

parental depth; 2) an excess of alternative alleles within the cohort in DNMs in a gene, defined 628 

as P < 10-3 under a one-sided binomial test given an expected error rate of 0.002 and the 629 

cumulative depth, or 3) both parents had one or more reads supporting the alternative allele.  630 

 631 



If, after filtering, more than one variant was observed in a given gene for a particular trio, only 632 

the variant with the highest predicted functional impact was kept (protein truncating > 633 

missense > silent).  634 

 635 

De novo mutation validation 636 

For candidate DNMs of interest, primers were designed to amplify 150-250 bp products 637 

centered around the site of interest. Default primer3 design settings were used with the 638 

following adjustments: GC clamp = 1, human mispriming library used. Site-specific primers were 639 

tailed with Illumina adapter sequences. PCR products were generated with JumpStart AccuTaq 640 

LA DNA polymerase (Sigma Aldrich), using 40 ng genomic DNA as template. Amplicons were 641 

tagged with Illumina PCR primers along with unique barcodes enabling multiplexing of 96 642 

samples. Barcodes were incorporated using Kapa HiFi mastermix (Kapa Biosystems). Samples 643 

were pooled and sequenced down one lane of the Illumina MiSeq, using 250 bp paired end 644 

reads. An in-house analysis pipeline extracted the read count per site and classified inheritance 645 

status per variant using a maximum likelihood approach (see Supplementary Note).  646 

 647 

Individuals with likely pathogenic variants 648 

We previously screened 1,133 individuals for variants that contribute to their disorder15,18. All 649 

candidate variants in the 1,133 individuals were reviewed by consultant clinical geneticists for 650 

relevance to the individuals’ phenotypes. Most diagnosable pathogenic variants occurred de 651 

novo in dominant genes, but a small proportion also occurred in recessive genes or under other 652 

inheritance modes. DNMs within dominant DD-associated genes were very likely to be 653 

classified as the pathogenic variant for the individuals’ disorder. Due to the time required to 654 

review individuals and their candidate variants, we did not conduct a similar review in the 655 

remainder of the 4,293 individuals. Instead we defined likely pathogenic variants as candidate 656 

DNMs found in autosomal and X-linked dominant DD-associated genes, or candidate DNMs 657 

found in hemizygous DD-associated genes in males. 1,136 individuals in the 4,293 cohort had 658 

variants either previously classified as pathogenic15,18, or had a likely pathogenic DNM. 659 

 660 

Gene-wise assessment of DNM significance 661 

Gene-specific germline mutation rates for different functional classes were computed15,23 for 662 

the longest transcript in the union of transcripts overlapping the observed DNMs in that gene. 663 

We evaluated the gene-specific enrichment of PTV and missense DNMs by computing its 664 

statistical significance under a null hypothesis of the expected number of DNMs given the gene-665 

specific mutation rate and the number of considered chromosomes23. 666 

 667 

We also assessed clustering of missense DNMs within genes15, as expected for DNMs operating 668 

by activating or dominant negative mechanisms. We did this by calculating simulated 669 

dispersions of the observed number of DNMs within the gene. The probability of simulating a 670 

DNM at a specific codon was weighted by the trinucleotide sequence-context15,23. This allowed 671 

us to estimate the probability of the observed degree of clustering given the null model of 672 

random mutations. 673 

 674 



Fisher’s method was used to combine the significance testing of missense + PTV DNM 675 

enrichment and missense DNM clustering. We defined a gene as significantly enriched for 676 

DNMs if the PTV enrichment P-value or the combined missense P-value less than 7 × 10-7, which 677 

represents a Bonferroni corrected P-value of 0.05 adjusted for 4 × 18500 tests (2 × consequence 678 

classes tested × protein coding genes). 679 

 680 

Composite face generation 681 

Families were given the option to have photographs of the affected individual(s) uploaded 682 

within DECIPHER34. Using images of individuals with DNMs in the same gene we generated de-683 

identified realistic average faces (composite faces). Faces were detected using a discriminately 684 

trained deformable part model detector42. The annotation algorithm identified a set of 36 685 

landmarks per detected face43 and was trained on a manually annotated dataset of 3100 686 

images24. The average face mesh was created by the Delaunay triangulation of the average 687 

constellation of facial landmarks for all patients with a shared genetic disorder.  688 

 689 

The averaging algorithm is sensitive to left-right facial asymmetries across multiple patients. For 690 

this purpose, we use a template constellation of landmarks based on the average constellations 691 

of 2000 healthy individuals24. For each patient, we align the constellation of landmarks to the 692 

template with respect to the points along the middle of the face and compute the Euclidean 693 

distances between each landmark and its corresponding pair on the template. The faces are 694 

mirrored such that the half of the face with the greater difference is always on the same side.  695 

 696 

The dataset used for this work may contain multiple photos for one patient. To avoid biasing 697 

the average face mesh towards these individuals, we computed an average face for each 698 

patient and use these personal averages to compute the final average face. Finally, to avoid any 699 

image in the composite dominating from variance in illumination between images, we 700 

normalised the intensities of pixel values within the face to an average value across all faces in 701 

each average. The composite faces were assessed visually to confirm successful ablation of any 702 

individually identifiable features. Visual assessment of the composite photograph by two 703 

experienced clinical geneticists, alongside the individual patient photos, was performed for all 704 

93 genome-wide significant DD-associated genes for which clinical photos were available for 705 

more than one patient, to remove potentially identifiable composite faces as well as quality 706 

control on the automated composite face generation process. Eighty-one composite faces were 707 

excluded leaving the twelve de-identified composite faces that are shown in Figure 2 and 708 

Extended Data Figure 3. Each of the twelve composite faces that passed de-identification and 709 

quality control was generated from photos of ten or more patients. 710 

 711 

Assessing power of incorporating phenotypic information 712 

We previously described a method to assess phenotypic similarity by HPO terms among groups 713 

of individuals sharing genetic defects in the same gene28. We examined whether incorporating 714 

this statistical test improved our ability to identify dominant genes at genome-wide 715 

significance. Per gene, we tested the phenotypic similarity of individuals with DNMs in the 716 

gene. We combined the phenotypic similarity P-value with the genotypic P-value per gene (the 717 



minimum P-value from the DDD-only and meta-analysis) using Fisher’s method. We examined 718 

the distribution of differences in P-value between tests without the phenotypic similarity P-719 

value and tests that incorporated the phenotypic similarity P-value. 720 

 721 

Many (854, 20%) of the DDD cohort experience seizures. We investigated whether testing 722 

within the subset of individuals with seizures improved our ability to find associations for 723 

seizure specific genes. A list of 102 seizure-associated genes was curated from three sources, a 724 

gene panel for Ohtahara syndrome, a currently used clinical gene panel for epilepsy and a panel 725 

derived from DD-associated genes18. The P-values from the seizure subset were compared to P-726 

values from the complete cohort. 727 

 728 

Assessing power of exome vs genome sequencing 729 

We compared the expected power of exome sequencing versus genome sequencing to identify 730 

disease genes. Within the DDD cohort, 55 dominant DD-associated genes achieve genome-wide 731 

significance when testing for enrichment of DNMs within genes. We did not incorporate 732 

missense DNM clustering due to the large computational requirements for assessing clustering 733 

in many replicates. 734 

 735 

We assumed a cost of 1,000 USD per individual for genome sequencing. We allowed the cost of 736 

exome sequencing to vary relative to genome sequencing, from 10-100%. We calculated the 737 

number of trios that could be sequenced under these scenarios. Estimates of the improved 738 

power of genome sequencing to detect DNMs in the coding sequence are around 1.05-fold29 739 

and we increased the number of trios by 1.0–1.2-fold to allow this. 740 

 741 

We sampled as many individuals from our cohort as the number of trios and counted which of 742 

the 55 DD-associated genes still achieved genome-wide significance for DNM enrichment. We 743 

ran 1000 simulations of each condition and obtained the mean number of genome-wide 744 

significant genes for each condition. 745 

 746 

Associations with presence of likely pathogenic de novo mutations 747 

We tested whether phenotypes were associated with the likelihood of having a likely 748 

pathogenic DNM. We analysed all collected phenotypes which could be coded in either a binary 749 

or quantitative format. Categorical phenotypes (e.g. sex coded as male or female) were tested 750 

by Fisher’s exact test while quantitative phenotypes (e.g. duration of gestation coded in weeks) 751 

were tested with logistic regression, using sex as a covariate. 752 

 753 

We investigated whether having autozygous regions affected the likelihood of having a 754 

diagnostic DNM. Autozygous regions were determined from genotypes in every individual, to 755 

obtain the total length per individual. We fitted a logistic regression for the total length of 756 

autozygous regions on whether individuals had a likely pathogenic DNM. To illustrate the 757 

relationship between length of autozygosity and the occurrence of a likely pathogenic DNM, we 758 

grouped the individuals by length and plotted the proportion of individuals in each group with a 759 

DNM against the median length of the group. 760 



 761 

The effects of parental age on the number of DNMs were assessed using 8,409 high confidence 762 

(posterior probability of DNM > 0.5) unphased coding and noncoding DNMs in 4,293 763 

individuals. A Poisson multiple regression was fit on the number of DNMs in each individual 764 

with both maternal and paternal age at the child’s birth as covariates. The model was fit with 765 

the identity link and allowed for overdispersion. This model used exome-based DNMs, and the 766 

analysis was scaled to the whole genome by multiplying the coefficients by a factor of 50, based 767 

on ~2% of the genome being well covered in our data (exons + introns). 768 

 769 

Excess of de novo mutations by consequence 770 

We identified the threshold for posterior probability of DNM at which the number of observed 771 

candidate synonymous DNMs equalled the number of expected synonymous DNMs. Candidate 772 

DNMs with scores below this threshold were excluded. We also examined the likely sensitivity 773 

and specificity of this threshold based on validation results for DNMs within a previous 774 

publication15 in which comprehensive experimental validation was performed on 1,133 trios 775 

that comprise a subset of the families analysed here.  776 

 777 

The numbers of expected DNMs per gene were calculated per consequence from expected 778 

mutation rates per gene and the 2,407 male and 1,886 females in the cohort. We calculated the 779 

excess of DNMs for missense and PTVs as the ratio of numbers of observed DNMs versus 780 

expected DNMs, as well as the difference of observed DNMs minus expected DNMs. 781 

 782 

Ascertainment bias within dominant neurodevelopmental genes 783 

We identified 150 autosomal dominant haploinsufficient genes that affect neurodevelopment 784 

within our curated developmental disorder gene set. Genes affecting neurodevelopment were 785 

identified where the affected organs included the brain, or where HPO phenotypes linked to 786 

defects in the gene included either an abnormality of brain morphology (HP:0012443) or 787 

cognitive impairment (HP:0100543) term.  788 

 789 

The 150 genes were classified for ease of clinical recognition of the syndrome from gene 790 

defects by two consultant clinical geneticists. Genes were rated from 1 (least recognisable) to 5 791 

(most recognisable). Categories 1 and 2 contained 5 and 22 genes respectively, and so were 792 

combined in later analyses. The remaining categories had more than 33 genes per category. 793 

The ratio of observed loss-of-function DNMs to expected loss-of-function DNMs was calculated 794 

for each recognisability category, along with 95% confidence intervals from a Poisson 795 

distribution given observed counts.  796 

 797 

We estimated the likelihood of obtaining the observed number of PTV DNMs under two 798 

models. Our first model assumed no haploinsufficiency, and mutation counts were expected to 799 

follow baseline mutation rates. Our second model assumed fully penetrant haploinsufficiency, 800 

and scaled the baseline PTV mutation expectations by the observed PTV enrichment in our 801 

known haploinsufficient neurodevelopmental genes, stratified by clinical recognisability into 802 

low (containing genes with our “low”, “mild” and “moderate” labels) and high categories. We 803 



calculated the likelihoods of both models per gene as the Poisson probability of obtaining the 804 

observed number of PTVs, given the expected mutation rates. We computed the Akaike’s 805 

Information Criterion for each model and ranked them by the difference between model 1 and 806 

model 2 (ΔAIC). 807 

 808 

Proportion of de novo mutations with loss-of-function mechanism 809 

The observed excess of missense/inframe indel DNMs is composed of a mixture of DNMs with 810 

loss-of-function mechanisms and DNMs with altered-function mechanisms. We found that the 811 

excess of PTV DNMs within dominant haploinsufficient DD-associated genes had a greater skew 812 

towards genes with high intolerance for loss-of-function variants than the excess of missense 813 

DNMs in dominant non-haploinsufficient genes. We binned genes by the probability of being 814 

loss-of-function intolerant30 constraint decile and calculated the observed excess of missense 815 

DNMs in each bin. We modelled this binned distribution as a two-component mixture with the 816 

components representing DNMs with a loss-of-function or function-altering mechanism. We 817 

identified the optimal mixing proportion for the loss-of-function and altered-function DNMs 818 

from the lowest goodness-of-fit (from a spline fitted to the sum-of-squares of the differences 819 

per decile) to missense/inframe indels in all genes across a range of mixtures. 820 

 821 

The excess of DNMs with a loss-of-function mechanism was calculated as the excess of DNMs 822 

with a VEP loss-of-function consequence, plus the proportion of the excess of missense DNMs 823 

at the optimal mixing proportion. 824 

 825 

We independently estimated the proportions of loss-of-function and altered-function. We 826 

counted PTV and missense/inframe indel DNMs within dominant haploinsufficient genes to 827 

estimate the proportion of excess DNMs with a loss-of-function mechanism, but which were 828 

classified as missense/inframe indel. We estimated the proportion of excess DNMs with a loss-829 

of-function mechanism as the PTV excess plus the PTV excess multiplied by the proportion of 830 

loss-of-function classified as missense. 831 

 832 

Prevalence of developmental disorders from dominant de novo mutations 833 

We estimated the birth prevalence of monoallelic developmental disorders by using the 834 

germline mutation model. We calculated the expected cumulative germline mutation rate of 835 

truncating DNMs in 238 haploinsufficient DD-associated genes. We scaled this upwards based 836 

on the composition of excess DNMs in the DDD cohort using the ratio of excess DNMs (n=1816) 837 

to DNMs within dominant haploinsufficient DD-associated genes (n=412). Around 10% of DDs 838 

are caused by de novo CNVs44,45, which are underrepresented in our cohort as a result of prior 839 

genetic testing. If included, the excess DNM in our cohort would increase by 21%, therefore we 840 

scaled the prevalence estimate upwards by this factor.  841 

 842 

Mothers aged 29.9 and fathers aged 29.5 have children with 77 DNMs per genome on 843 

average21. We calculated the mean number of DNMs expected under different combinations of 844 

parental ages, given our estimates of the extra DNMs per year from older mothers and fathers. 845 

We scaled the prevalence to different combinations of parental ages using the ratio of expected 846 



mutations at a given age combination to the number expected at the mean cohort parental 847 

ages.  848 

 849 

To estimate the annual number of live births with developmental disorders caused by DNMs, 850 

we obtained country population sizes, birth rates, age at first birth46, and calculated global birth 851 

rate (18.58 live births/1000 individuals) and age at first birth (22.62 years), weighted by 852 

population size. We calculated the mean age when giving birth (26.57 years) given a total 853 

fertility rate of 2.45 children per mother47, and a mean interpregnancy interval of 29 months48. 854 

We calculated the number of live births given our estimate of DD prevalence caused by DNMs 855 

at this age (0.00288), the global population size (7.4 billion individuals) and the global birth rate.  856 

 857 

Code availability 858 

Source code for filtering candidate DNMs, testing DNM enrichment, DNM clustering and 859 

phenotypic similarity can be found here: https://github.com/jeremymcrae/denovoFilter, 860 

https://github.com/jeremymcrae/mupit, https://github.com/jeremymcrae/denovonear, 861 

https://github.com/jeremymcrae/hpo_similarity 862 

  863 

https://github.com/jeremymcrae/denovoFilter
https://github.com/jeremymcrae/mupit
https://github.com/jeremymcrae/denovonear
https://github.com/jeremymcrae/hpo_similarity


Extended data figure captions 864 

 865 

 866 

Extended Data Figure 1: Proportion of individuals with a de novo mutation (DNM) likely to be 867 

pathogenic. These only included individuals with protein altering or protein truncating DNMs in 868 

dominant or X-linked dominant developmental disorder (DD) associated genes, or males with DNMs in 869 
hemizygous DD-associated genes. The proportions given are for those individuals with any DNMs rather 870 

than the total number of individuals in each subset. Cohorts included in the DNM meta-analyses are 871 

shaded blue. 872 

  873 



 874 

Extended Data Figure 2: Phenotypic summary of genes without previous compelling evidence. 875 

Phenotypes are grouped by type. The first group indicates counts of individuals with DNMs per gene by 876 

sex (m: male, f: female), and by functional consequence (nsv: nonsynonymous variant, PTV: protein-877 

truncating variant). The second group indicates mean values for growth parameters: birthweight (bw), 878 

height (ht), weight (wt), occipitofrontal circumference (OFC). Values are given as standard deviations 879 
from the healthy population mean derived from ALSPAC data. The third group indicates the mean age 880 

for achieving developmental milestones: age of first social smile, age of first sitting unassisted, age of 881 

first walking unassisted and age of first speaking. Values are given in months. The final group 882 

summarises Human Phenotype Ontology (HPO)-coded phenotypes per gene, as counts of HPO-terms 883 

within different clinical categories. 884 

  885 



 886 

Extended Data Figure 3: Phenotypic summary of individuals with de novo mutations in genes achieving 887 

genomewide significance. Phenotypes are grouped by type. The first group indicates counts of 888 

individuals with DNMs per gene by sex (m: male, f: female), and by functional consequence (nsv: 889 

nonsynonymous variant, PTV: protein-truncating variant). The second group indicates mean values for 890 

growth parameters: birthweight (bw), height (ht), weight (wt), occipitofrontal circumference (OFC). 891 
Values are given as standard deviations from the healthy population mean derived from ALSPAC data. 892 

The third group indicates the mean age for achieving developmental milestones: age of first social smile, 893 

age of first sitting unassisted, age of first walking unassisted and age of first speaking. Values are given in 894 

months. The final group summarises Human Phenotype Ontology (HPO)-coded phenotypes per gene, as 895 

counts of HPO-terms within different clinical categories.  896 



 897 

Extended Data Figure 4: Dispersion of de novo mutations and domains for each novel gene. a, CDK13, b, 898 

CHD4, c, CNOT3, d, CSNK2A1, e, GNAI1, f, KCNQ3, g, MSL3, h, PPM1D, I, PUF60, j, QRICH1, k, SET, l, 899 

SUV420H1, m, TCF20 and n, ZBTB18. 900 

 901 



 902 

Extended Data Figure 5: Effect of clustering by phenotype on the ability to identify genomewide 903 

significant genes. a, Comparison of P-values derived from genotypic information alone versus P-values 904 

that incorporate genotypic information and phenotypic similarity. b, Comparison of P-values from tests 905 

in the complete DDD cohort versus tests in the subset with seizures. Genes that were previously linked 906 

to seizures are shaded blue. c, Proportion of cohort with a de novo mutation (DNM) in a seizure-907 
associated gene, stratified by whether seizure-affected status. Bars indicate 95% CI. d, Comparison of 908 

power to identify genomewide significant genes in probands with seizures, versus the unstratified 909 

cohort, at matched sample sizes. 910 

  911 



 912 

Extended Data Figure 6: Power of genome versus exome sequencing to discover dominant genes 913 

associated with developmental disorders. a, the number of genes exceeding genome-wide significance 914 

was estimated at three different fixed budgets (1 million (M) USD, 2M and 3M) and a range of relative 915 

sensitivities for genomes versus exomes to detect de novo mutations. The number of genes identifiable 916 

by exome sequencing are shaded blue, whereas the number of genes identifiable by genome 917 
sequencing are shaded green. The regions where exome sequencing costs 30-40% of genome 918 

sequencing are shaded with a grey background, which corresponds to the price differential in 2016. b, 919 

simulated estimates of power to detect loss-of-function genes in the genome at different cohort sizes, 920 

given fixed budgets. 921 

  922 



 923 

Extended Data Figure 7: Gene-wise significance of neurodevelopmental genes versus the expected 924 

number of mutations per gene. Points are shaded by clinical recognisability classification. Genes have 925 

been separated into two plots, one plot with genes for cryptic disorders with low, mild or moderate 926 

clinical recognisability, and one plot with genes for distinctive disorders with high clinical recognisability. 927 

 928 

  929 



 930 

Extended Data Figure 8: Stringency of de novo mutation (DNM) filtering. a, Sensitivity and specificity of 931 

DNM validations within sets filtered on varying thresholds of DNM quality (posterior probability of 932 

DNM). The analysed DNMs were restricted to sites identified within the earlier 1133 trios15, where all 933 

candidate DNMs underwent validation experiments. The labelled value is the quality threshold at which 934 

the number of candidate synonymous DNMs equals the number of expected synonymous mutations 935 
under a null germline mutation rate. b, Excess of missense and loss-of-function DNMs at varying DNM 936 

quality thresholds. The DNM excess is adjusted for the sensitivity and specificity at each threshold. 937 

  938 



 939 

Extended Data Figure 9: Enrichment of de novo mutations by consequence type, across RVIS functional 940 

constraint quantiles. A comparison of enrichment for RVIS values generated from ESP6500 data versus 941 

ExAC data is provided. 942 

 943 


