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Enterococcus faecalis is an important opportunistic pathogen which is frequently
detected in mineral water and spring water for human consumption and causes human
urinary tract infections, endocarditis and neonatal sepsis. The aim of this study was
to determine the prevalence, virulence genes, antimicrobial resistance and genetic
diversity of E. faecalis from mineral water and spring water in China. Of 314 water
samples collected from January 2013 to January 2014, 48 samples (15.3%) were
contaminated E. faecalis. The highest contamination rate occurred in activated carbon
filtered water of spring water (34.5%), followed by source water of spring water (32.3%)
and source water of mineral water (6.4%). The virulence gene test of 58 E. faecalis
isolates showed that the detection rates of asa1, ace, cylA, gelE and hyl were 79.3,
39.7, 0, 100, 0%, respectively. All 58 E. faecalis isolates were not resistant to 12
kinds of antibiotics (penicillin, ampicillin, linezolid, quinupristin/dalfopristin, vancomycin,
gentamicin, streptomycin, ciprofloxacin, levofloxacin, norfloxacin, nitrofurantoin, and
tetracycline). Enterobacterial repetitive intergenic consensus-PCR classified 58 isolates
and three reference strains into nine clusters with a similarity of 75%. This study is the
first to investigate the prevalence of E. faecalis in mineral water and spring water in
China. The results of this study suggested that spring water could be potential vehicles
for transmission of E. faecalis.

Keywords: Enterococcus faecalis, mineral water, spring water, ERIC-PCR, virulence genes

INTRODUCTION

Enterococci mainly inhabits in human and animal faces, ham sausage, pasteurized milk and
drinking water (du Toit et al., 2000; Franz et al., 2003; Zou et al., 2011). Although some
Enterococcal species are considered relevant for their technological properties (such as ripening,
aroma development and inhibition of pathogens), they are not, unlike other lactic acid bacteria,
recognized as probiotics (Kuriyama et al., 2003; Emaneini et al., 2008; Jamet et al., 2012).
Indeed, enterococci are a major cause of nosocomial infections, such as urinary tract infections,
endocarditis and neonatal sepsis (Franz et al., 2011; Sanchez Valenzuela et al., 2012; Werner et al.,
2013). The main enterococcal isolates involved in nosocomial infections is Enterococcus faecalis
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(Giraffa, 2002; Kayser, 2003). E. faecalis is an important
opportunistic pathogen, which is frequently detected in mineral
water and spring water for human consumption (Nicas et al.,
1989; Martin-Platero et al., 2009; Buhnik-Rosenblau et al., 2013).
Several studies have indicated that E. faecalis is a suitable
indicator of the presence of pathogens in mineral water and
spring water (Švec and Sedláček, 1999; Davis et al., 2005; Meng,
2007). The Natural Mineral Water National Standard GB 8537
(the National Food safety Standards of China) has short-listed
E. faecalis as a microorganism indicator in mineral water and
spring water factory in China.

For surveillance or tracing sources of E. faecalis, molecular
typing methods such as pulsed field gel electrophoresis (PFGE)
(Weng et al., 2013), amplified fragment length polymorphism
(AFLP) (Bruinsma et al., 2002), random amplified polymorphic
DNA (RAPD) (Martin-Platero et al., 2009), multi-locus sequence
typing (MLST) (Homan et al., 2002; Werner et al., 2012)
and enterobacterial repetitive intergenic consensus (ERIC-PCR)
(Martin-Platero et al., 2009), can be used in E. faecalis isolates.
Among these molecular typing approaches, PFGE is the most
effective technology or typing of E. faecalis isolates due to its
high reproducibility and discriminatory ability. However, PFGE
is labor intensive and time-consuming (Weng et al., 2013).
In contrast, ERIC-PCR is a relatively simple and cost-effective
method, which has been successfully used for genotyping of
different bacterial pathogens and for tracking the bacterial source
of contaminated water products (Martin-Platero et al., 2009).

Enterococcus faecalis can produce dozens of virulence
substances including hemolysin and surface adhesion substances
(Aslam et al., 2012; Choi and Woo, 2013). The pathogenesis
of five virulence genes including asa1, ace, cylA, gelE and hyl
has been systematically studied. The asa1gene encodes surface
adhesion substances by which E. faecalis can be fixed on a
eukaryotic cell; the ace gene encodes surface adhesion proteins
by which E. faecalis are resistant to immune function of the host
cells; the cylA gene encodes hemolysin which can leads to the
death of host cells; the gelE gene encodes gelatinase, which can
hydrolyze gelatin leading to the proliferation of bacteria in the
host cell; the hyl gene encodes hyaluronidase which can hydrolyze
the tissue of host cell (Coque et al., 1995; Eaton and Gasson, 2001;
Cosentino et al., 2010; Yang et al., 2015).

As shown in Figure 1, mineral water and spring water are
generally produced using the same process, including three level
filter (quartz sand filter, activated carbon filter, and fine filter),
ozone sterilization, filling and capping, and light inspection
of finished product. For manufacturers, the quality of source
water, activated carbon filtered water and finished product are
important. Source water reflects raw quality of mineral and
spring water, and finished product is for human consumption.
Activated carbon filter with a lot of pores and large surface
area is a kind of common water treatment equipment, which
processes a strong physical adsorption capacity to absorb
organic pollutants and microbes. Recent studies have shown
that activated carbon filter has become a gathering place for
microbes and is the most serious in microbial contamination
in whole production process of mineral water and spring
water.

Systematic contamination survey of E. faecalis in mineral
water and spring water has not yet been conducted. The aim
of this study was for the first time to determine the prevalence,
virulence genes, antimicrobial resistance and genetic diversity of
E. faecalis from mineral water and spring water in China. The
information generated in this study will provide insights into the
prevalence and differentiation of E. faecalis isolates in mineral
water and spring water.

MATERIALS AND METHODS

Sample Collection
From January 2013 to January 2014, a total of 314 water
Samples were collected from 101 mineral water and spring
water factories in 10 provinces of China (Guangdong, Guangxi,
Fujian, Hainan, Hubei, Shanghai, Beijing, Yunnan, Guizhou
and Sichuan). Samples of source water (112), activated carbon
filtered water (101) and finished product (101) of spring water
and mineral water were collected from each water factories.
Samples of source water (112) include Surface water (14) and
Groundwater (98). All water samples were maintained at 4◦C
during transportation and testing was conducted within 1 h after
receiving the samples.

Isolation and Enumeration of E. faecalis
Briefly, 250 ml of water sample was filtered through a 0.45 µm
membrane (Millipore Co., Billerica, MA, United States) in a
stainless steel multi-line filter system (Huankai Co., Guangzhou,
China). The membrane was placed on KF agar medium
(Huankai Co., Guangzhou, China), a selective medium for
E. faecalis and then cultured at 36◦C for 2 days. Presumptive
colonies with red color were selected for catalase test and
cultured in brain heart infusion broth at 45◦C for 2 days and
Bile broth at 36◦C for 3 days, respectively. Colonies positive
for the three confirmation tests were considered presumed
E. faecalis.

Enterococcus faecalis Identification
All the presumed E. faecalis were identified by the API 20
STREP biochemical identification system (Biomerieux Co.,
Lyon, France) and specific PCR for the E. faecalis species.
According to seven code of API 20 Strep biochemical
identification system, coincidence rate of E. faecalis isolates
can be tested. Further identification of E. faecalis was
determined by PCR using sodA species-specific primers.
Genomic DNA was extracted from collected E. faecalis
isolates by using a Bacterial Genomic DNA Purification kit
(Dongsheng Biotech, Guangzhou, China) according to the
manufacturer’s instruction. E. faecalis were identified by
amplification of 210 bp fragments with primer pairs EFS1 (5′
CTGTAGAAGACCTAATTTCA)/EFS2 (5′ CAGCTGTTTTGA
AAGCAG) (Jamet et al., 2012).

ERIC-PCR Analysis
Total DNA from E. faecalis isolates was extracted as previously
described. Genomic DNA concentration was determined
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FIGURE 1 | Production flow chart of mineral water and spring water in China.

at 260 nm by using a Nano Drop ND 1000 UVe-Vis
spectrophotometer (Thermo Fisher Scientific, Waltham,
MA, United States). The ERIC primers used were referred from
the study of Versalovic et al. (1991). ERIC-PCR typing was
performed for the collected E. faecalis isolates by using the
protocol described by Li (2013) with some modifications. The
PCR mixture (25 µl) contained 1.5 unit Hot start polymerase
(Promega, Madison, WI, United States), 0.5 µmol/l each primer,
2.5 µmol/l MgCl2, 200 µmol/l each dNTP, and 1 µl of the
template genomic DNA (50 ng). Amplifications were performed
with a DNA thermocycler (Applied Biosystems, Foster City,
CA, United States) under the following temperature profiles: an
initial denaturation at 95◦C for 5 min; 35 cycles of 1 min at 94◦C,
1 min at 36◦C and 2 min at 72◦C; and a final extension at 72◦C
for 8 min (Martin-Platero et al., 2009; Li, 2013). The ERIC-PCR
products were separated by electrophoresis in a 1.5% agarose gel
with Goldview staining (0.005%, v/v) and then photographed
using a UV Imaging System (GE Healthcare, Milwaukee, WI,
United States). The images were captured in TIFF file format for
further analysis.

Detection of Virulence Genes
Five virulence genes, asa1, ace, cylA, gelE and hyl were
individually detected in all the collected E. faecalis isolates
with the PCR technique (Eaton and Gasson, 2001; Zou
et al., 2011). All primers were synthesized by Sangon Biotech
company (Shanghai, China). The primers used to identify
virulence genes are shown in Table 1. E. faecalis isolates

TABLE 1 | PCR primers for virulence gene detection.

No. Primers Sequence (5’→3’) bp Function

1 asa1-F CACGCTATTACGAACTATGA 375 Surface adhesion

asa1-R TAAGAAAGAACATCACCACGA substances

2 ace-F GGAATGACCGAGAACGATGGC 616 Surface adhesion

ace-R GCTTGATGTTGGCCTGCTTCCG proteins

3 cylA-F ACTCGGGGATTGATAGGC 688 Hemolysin

cylA-R GCTGCTAAAGCTGCGCTT

4 gelE-F TATGACAATGCTTTTTGGGAT 213 Gelatinase

gelE-R AGATGCACCCGAAATAATATA

5 hyl-F ACAGAAGAGCTGCAGGAAATG 276 Hyaluronidase

hyl-R GACTGACGTCCAAGTTTCCAA

CMCC 32219 (Guangdong culture collection centre) was used
as positive control and distilled water was used as the negative
control.

Antibiotic Resistance
According to the Clinical and Laboratory Standards Institute
(CLSI) standards, all the collected E. faecalis isolates were
tested by the disk diffusion method (Clinical and Laboratory
Standards Institute [CLSI] (2006)). E. faecalis isolates CMCC
32219 (Guangdong culture collection centre) was used
as positive control. A panel of antibiotics at the specific
concentration per disk were tested: penicillin G (10 U),
ampicillin (10 µg), linezolid (30 µg), quinupristin/dalfopristin
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(15 µg), vancomycin (30 µg), gentamicin (120 µg), streptomycin
(10 µg), ciprofloxacin (5 µg) levofloxacin (5 µg), norfloxacin
(10 µg), nitrofurantoin (300 µg), tetracycline (30 µg) (Oxoid
Co., Hampshire, United Kingdom) (Jamet et al., 2012; Sanchez
Valenzuela et al., 2013). The isolates were classified as sensitive,
intermediate, and resistant using the breakpoints specified by the
CLSI.

Fingerprint Data Analysis
ERIC-PCR fingerprint patterns were analyzed using a Gel-
Pro analyser (version 6.0) according to the manufacturer’s
instructions. The observed bands in the gels were evaluated based
on the presence (code 1) or absence (code 0) of polymorphic
fragments for the ERIC products. The cluster analysis was
performed using NTSYSpc (version 2.10e), and similarities
between ERIC-PCR profiles were calculated based on the simple-
matching similarity matrix and unweighted pair group method
with arithmetic.

RESULTS

Contamination of E. faecalis in Mineral
Water and Spring Water
Of the 314 water samples tested, 48 (15.3%) were positive
for E. faecalis, including 24 (21.4%) of 112 source water,
22 (21.8%) of 101 activated carbon filtered water samples
and 2 (1.9%) of 101 finished product samples. From the
contaminated samples, 58 E. faecalis isolates were obtained
(Supplementary Table S1). As shown in Table 2, the rate of
E. faecalis contamination in all mineral water samples was
3.8%, and the contamination rates of source water, activated
carbon filtered water and finished product were 6.4, 4.7, and
0%, respectively. The rate of E. faecalis contamination in all
spring water samples was 23.8%, and the contamination rates
of source water, activated carbon filtered water and finished
product were 32.3, 34.5, and 7.5%, respectively. In all the 48
contaminated samples, the contamination levels in spring water
samples are significantly higher than those in mineral water
samples. The contamination level of source water and activated
carbon filtered water were 48.0 and 26.4 CFU/250 ml in spring
water samples.

All the 112 source water Samples include 14 surface source
water samples and 98 underground source water samples.
As shown in Table 3, 16 (16.3%) samples of underground
source water were positive in all 98 samples. Meanwhile, eight

TABLE 3 | Prevalence of E. faecalis in surface water and groundwater.

Samples Positive amounts Total amounts Contamination rates%

Surface water 8 14 57.1

Groundwater 16 98 16.3

TABLE 4 | Virulence genes of 58 E. faecalis isolates.

Virulence gene No. of positive sample (%)

asa1 46 (79.3)

ace 23 (39.7)

cylA 0 (0)

gelE 58 (58)

hyl 0 (0)

(57.1%) samples of surface source water were positive in all 14
samples.

Detection of Virulence Genes in
E. faecalis Isolates
In this study, the presence of asa1, ace, cylA, gelE and hyl genes
was detected in 58 E. faecalis isolates. As shown in Table 4, all
the 58 E. faecalis isolates (100%) harbored the gelE gene, among
which 46 (79.3%) and 23 (39.7%) also had the asa1 and ace genes,
respectively. However, no cylA or hyl gene was detected from all
the isolates.

Antibiotic Resistance
According the diameter of zone of inhibition, all the 58
E. faecalis isolates were classified as sensitive, intermediate,
and resistant using the breakpoints specified by the CLSI.
The result of antibiotic resistance showed that all 58 isolates
were sensitive to 12 kinds of antibiotic (penicillin, ampicillin,
linezolid, quinupristin/dalfopristin, vancomycin, gentamicin,
streptomycin, ciprofloxacin levofloxacin, norfloxacin,
nitrofurantoin, and tetracycline) which were selected according
to the standard of CLSI. No resistant E. faecalis isolate was found.

Biochemical Identification
With E. faecalis ATCC 29212 (a), CMCC 32219 (b) and CMCC
32223 (c) (Guangdong culture collection centre) as positive
controls, according to seven code of API 20 Strep biochemical
identification system, biotypes of E. faecalis isolates can be tested.
As shown in Table 5, biotypes of 44 E. faecalis isolates and two

TABLE 2 | Prevalence of E. faecalis from mineral water and spring water in China.

Source water Activated carbon filtered water Finish product Total

Samples CR (%) CL (CFU/250 ml) CR (%) CL (CFU/250 ml) CR (%) CL (CFU/250 ml) CR (%) CL (CFU/250 ml)

M water 6.4 2.3 4.7 3.5 0 0 3.8 2.8

S water 32.3 48.0 34.5 26.4 3.4 7.5 23.8 36.0

Average 21.4 42.2 21.8 24.3 1.9 7.5 15.3 32.5

M and S water represent mineral and spring water, respectively; CR and CL represent contamination rate and level in positive samples, respectively.
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TABLE 5 | Biochemical profiles of 58 E. faecalis isolates.

Biotypes No. of isolates 7 code

A a, b, 2∼5, 8∼11, 14∼36, 38∼41, 44, 46, 49∼52, 54, 56, 58 5143711

B 1, 6∼7, 37, 45, 47∼48, 53, 55, 57 7143711

C c, 12∼13, 42∼43 5153711

a, b and c represent E. faecalis ATCC 29212, CMCC 32219 and CMCC 3222,
respectively.

control isolates are 5143711. Biotypes of four E. faecalis isolates
and one control isolate are 5153711, and biotypes of ten E. faecalis
isolates are 7143711.

ERIC-PCR
The ERIC-PCR patterns of three control isolates (a, b, c) and
58 collected E. faecalis isolates are shown in Supplementary
Figure S1. The ERIC of DNA profiles consisting of 5 to 15 bands
ranged from 230 bp to approximately 4,000 bp. As shown in
Figure 2, three control isolates (a, b, c) and 58 collected E. faecalis
isolates were grouped into nine clusters at similarity coefficient
of 75%. Control isolates ATCC 29212 (a), CMCC 32219 (b) and
21 collected E. faecalis were distributed among the cluster I,
a prevalent cluster. Control isolate CMCC 32223 (c) and two
collected E. faecalis isolates were distributed among cluster VIII.
Cluster IV has only one isolate (NO.38) and Cluster VII has only
one isolate (NO. 37).

DISCUSSION

In accordance with the Natural Mineral Water National Standard
GB 8537, E. faecalis must be absent from 250 ml of water samples.
In this study, 48 (15.3%) E. faecalis-positive samples from a total
of 314 water samples were found. This result was consistent with
previous investigations conducted in China (17.0%) (Li, 2013)
and Greece (17.4%) (Grammenou et al., 2006). E. faecalis has
not been systematically studied from mineral water and spring
water, and our results were obtained from a large number of
samples in China. Therefore, these nationwide data are more
beneficial for risk assessment. The E. faecalis contamination rates
in spring water samples were significantly higher than those
in mineral water samples. The high prevalence of E. faecalis
in the spring water indicated poor hygiene practices during
manufacture process. The finished product of spring water
presented a contamination rate of 3.4%, which can adversely
affect the health of costumers. Therefore, the Chinese food safety
management should implement further supervision for spring
water products as well as implementation of Good Hygiene
Practices (GHP). In addition, contamination rate of source water
in surface was significantly higher than those in groundwater.
Based on the contamination rate of E. faecalis, groundwater is
better than surface water as source water.

In this study, E. faecalis contamination rate of activated carbon
filtered in spring water reached 26.4%, which was the highest
among all water samples tested. Activated carbon filter system is

FIGURE 2 | ERIC-PCR DNA fingerprint analysis of E. faecalis isolates from mineral water and spring water in China. a, b and c represent E. faecalis ATCC 29212,
CMCC 32219 and CMCC 32223, respectively; ND, not detect; SUS, susceptibility; 1, 2 and 3 represent source water, activated carbon filtered water and finish
product, respectively.
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commonly used for mineral water treatment to ensure equipment
life, improve water quality and prevent pollution. Activated
carbon filter which has a lot of pores and large surface area
processes a strong physical adsorption capacity to absorb organic
pollutants and microbes (Feng et al., 2013). Recent studies have
shown that activated carbon filter has become a gathering place
for microbes and is the most serious in microbial contamination
in whole production process of mineral water and spring water
(Camper et al., 1986). Hence, manufacturers of mineral water
and spring water must establish measures for monitoring the
activated carbon filtration system, as well as ensure timely
cleaning and regular replacement of activated carbon (da Silva
Fernandes et al., 2015; Fernandes et al., 2015).

Highly virulent E. faecalis isolates may cause diseases even
at relatively low concentrations. In this study, up to 100% of
E. faecalis isolates were gelE-positive and 79.3% were asa1-
positive, which is consistent with previous studies and provides
further evidence that these virulence genes are widely distributed
among E. faecalis (Moraes et al., 2012; Anderson et al., 2015).
The presence of these genes indicates pathogenic potential
and probability to cause diseases. However, the expression of
virulence genes is mainly related to quorum sensing. Further
studies must be performed to examine whether the E. faecalis
isolates in this study are pathogenic (Huebner et al., 1999;
Delpech et al., 2012). All the 58 collected E. faecalis isolates
were cylA-negative and hyl-negative, which is not consistent with
previous studies (Creti et al., 2004; Medeiros et al., 2014). All
the 58 collected E. faecalis isolates were sensitive to 12 kinds of
antibiotic, which is different from previous investigation about
drink water (Macedo et al., 2011), food (Gaglio et al., 2016)
and clinical samples (Dahlén et al., 2012; Gilmore et al., 2013).
The difference of the results may be due to different sources of
the samples. The antibiotic resistance of E. faecalis come from
different sources have huge difference (Abriouel et al., 2008).
In this study, most of collected E. faecalis isolates derived from
groundwater. So far, there is almost no research on antibiotic
resistance of E. faecalis isolated from the groundwater.

ERIC-PCR is one of the most widely adopted PCR typing
methods and is chosen for analyses of genetic diversity (Chen
et al., 2014; Xie et al., 2015; Zhang et al., 2015). This method
provides discriminatory value and is a rapid method for E. faecalis
typing. In this study, the ERIC-PCR results provided a better
overview of E. faecalis diversity. Most of collected E. faecalis
isolates in the same area belong to the same cluster, which agrees
with the results of previous studies (Martin-Platero et al., 2009).
Three isolates (18, 19 and 20) obtained from spring water in
Heyuan city showed 100% similarity. Two isolates (44 and 46)
from spring water in Beijing city also showed identical ERIC
patterns. Additionally, 10 isolates (a, b, 3, 4, 5, 8, 9, 10, 11 and
58) from different sources yielded an identical pattern, suggesting
that they were highly homogenous and had a close genetic

relationship. A correlation between the genomic profiles and the
virulence genes was observed in these strains. Most of the isolates
that carried asa1, ace and gelE were grouped in cluster B. In
this cluster, a good correlation among ERIC patterns, virulence
profiles, and the sample source was found in some isolates. In this
study, no antibiotic resistance isolate was found, so no correlation
was observed between the ERIC-PCR profiles and the antibiotic
resistance profiles of the isolates.

In summary, our study for the first time revealed the high
prevalence of E. faecalis from mineral water and spring water
in China, which should have a potentially pathogenic effect on
the health of consumers. The results of this study suggested
that spring water product could be potential vehicles for
transmission of E. faecalis. Meanwhile mineral water and spring
water manufacturing factories must pay high attention to the
contamination of activate carbon filters. These data may provide
useful information for the development of public health policies
and effective strategies to ensure the safety of our drinking water
products.
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