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ARTICLE OPEN

Prevalence and patterns of higher-order drug interactions in

Escherichia coli

Elif Tekin1,2, Cynthia White1, Tina Manzhu Kang1, Nina Singh1, Mauricio Cruz-Loya2, Robert Damoiseaux3, Van M. Savage1,2,4 and

Pamela J. Yeh1,4

Interactions and emergent processes are essential for research on complex systems involving many components. Most studies

focus solely on pairwise interactions and ignore higher-order interactions among three or more components. To gain deeper

insights into higher-order interactions and complex environments, we study antibiotic combinations applied to pathogenic

Escherichia coli and obtain unprecedented amounts of detailed data (251 two-drug combinations, 1512 three-drug combinations,

5670 four-drug combinations, and 13608 five-drug combinations). Directly opposite to previous assumptions and reports, we find

higher-order interactions increase in frequency with the number of drugs in the bacteria’s environment. Specifically, as more drugs

are added, we observe an elevated frequency of net synergy (effect greater than expected based on independent individual effects)

and also increased instances of emergent antagonism (effect less than expected based on lower-order interaction effects). These

findings have implications for the potential efficacy of drug combinations and are crucial for better navigating problems associated

with the combinatorial complexity of multi-component systems.

npj Systems Biology and Applications (2018)4:31; doi:10.1038/s41540-018-0069-9

INTRODUCTION

Interactions are the key to unlocking emergent and unintuitive
properties across many fields: reactions in biochemistry, food webs
and flocking among birds in ecology, environmental stressors and
effects on species diversity in conservation biology, genetic
interactions in evolution and bioinformatics, bound states and
many-body interactions in physics, social interactions in economics
and political science, and drug interactions in pharmacology.1–6

Understanding whether components interact in a manner that
enhances (synergy) or weakens (antagonism) the individual effects
of the mixed components is important because the type of
interaction governs the dynamics of complex systems. For
example, in conservation biology, understanding multiple-
stressor effects informs the development of strategies to prevent
loss of biodiversity.6 In pharmacology, understanding drug
interactions enables the effective design of treatment strategies
to combat complex diseases such as cancer7 and HIV,8 which
increasingly rely on multidrug treatments. Despite the structural
and terminological differences between natural and social systems,
multi-component interactions constitute a unifying theme in
studying and predicting patterns in large complex systems.
The formation of complex structures and dynamics often results

from emergent properties that cannot be explained based on the
effects of individual components or even interactions between
pairwise parts or other lower-order interactions—fewer numbers
of components than the whole combination. It is crucial to
distinguish between two types of higher-order interactions,
namely net and emergent interactions. Net higher-order interac-
tions are most commonly measured and defined relative to the
null expectation that would arise from a non-interacting

combination of independent single components and their
effects.9 Thus, for a four-drug combination, a net higher-order
effect could arise from pairwise interactions, three-way interac-
tions, and/or four-way interactions. For this reason, we also define
and measure emergent higher-order effects that require all
components to be present for an interaction to exist. For instance,
when the addition of a small amount of a third drug alters the
interaction between two drugs—as opposed to the third drug
interacting with either of the individual drugs already present—
this is an emergent interaction. Moreover, some interactions only
exist when many components are present, even though there is
no interaction between any of the isolated pairs or triples,9 such as
a protein or molecule that requires all parts to be joined before it
can properly function and any activity or response can be
measured. Therefore, an approach that explicitly distinguishes
emergent interactions—interactions that are not due to the
presence of lower-order interactions—from the existence of any
(net) interaction is indispensable to fully represent complex
system dynamics.10,11

Despite the possibility of higher-order interactions, studies have
often focused on pairwise interactions,12–15 whereas presuming or
concluding that higher-order effects—owing to three or more
components—are either extremely rare or negligible.16–18 There
are both conceptual and practical reasons that have led to this
view. On the conceptual side, it has been commonly argued that
lower-order effects are likely to counteract each other in higher-
order combinations such that they essentially cancel out and
result in zero or negligible net effect.19,20 Alternatively, it has been
argued that higher-order interactions prevent large systems from
exhibiting stability, and thus concluded that these effects either
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do not exist or are insignificant.21 For these reasons, many studies
either implicitly assume higher-order interactions do not exist or
argue against the importance of measuring and considering
higher-order interactions.13,16,22,23

A practical reason why higher-order interactions have received
much less attention relative to two-way (pairwise) interactions is
owing to combinatorial complexity, i.e., difficulty in collecting data
for all subsets of combinations of components.15,16 Another
practical challenge to examining and classifying higher-order
interactions is that it entails calculating the contribution from all
lower levels—subsets of fewer components—to the emergent
behavior of the whole combination. These calculations are
surprisingly subtle and correspond to having well defined and
understood emergent interaction metrics with straightforward
generalization to higher-orders and quantification of uncertainties.
The lack of such methods in many fields has stood as a theoretical
limitation for studying interacting systems.10,14

Recent progress has made it possible to overcome these latter
two practical limitations and thus enables us to directly test the
above conceptual presumption by measuring how frequent
higher-order interactions are and what types of interactions are
present. In this regard, our recent studies of combinations of three
stressors9,24 showed that many more interactions arise with three-
way interactions compared with two-way interactions. Moreover,

these three-way interactions exhibit an important feature: higher
degrees of emergent antagonism, compared with pairwise
interactions. This greater amount of emergent antagonism—

reduced effect relative to the expected effect based on no-
interaction—suggests a need to further explore interactions
among three, four, and five drugs. Correspondingly, an insightful
study by Mayfield et al.13 found that incorporating higher-order
interactions as opposed to a constrained approach of two-way
interactions leads to better expectations of variations in natural
plant communities, and a very recent and intriguing review by
Levine et al.14 has provided a theoretical approach that shows
how higher-order interactions can promote species richness. In
addition, another compelling study demonstrated the existence of
higher-order gene interactions and revealed how they can explain
complex alterations in gene expression.25

These studies have shown the presence of higher-order effects
and the importance of exploring them. However, what is lacking is
a comprehensive framework and data set that can be used to
reveal the patterns of higher-order interactions. In particular, a
feasible empirical study design (which provides easy manipulation
of the environmental disturbances and the number of compo-
nents in the system) and a comprehensive theoretical approach
are necessary for gaining crucial insights into biological systems
(or more generally, complex systems) comprised of many

Fig. 1 Experimental and theoretical setup for the characterization of higher-order interactions. Schematic representation of a drug
combination plate, where the shaded well in the first row represents the control strain with no drug added and colored wells correspond to
single or N-way (up to five-way) combinations from a set of drugs denoted by Xi. The N-way combinations of drugs are represented by wells
divided into N identical slices with the colors signifying the drugs in the combination (see 1-drug row for each color). The concentration of
each drug is kept the same across single, two-, three-, four-, and five-drug combination experiments. Here, the experimental setup is simplified
for illustration, but in actuality, (1) we filled all wells with bacteria and drug combinations to obtain replicate measurements (see “Experimental
details”), and (2) we used multiple 96-well plates for each five-drug combination. From these experiments, fitness of bacteria (w) in the
presence of drug combination (D) is assessed by the relative growth rate with respect to the no-drug control (WT). In the figure, schematics for
the net N-way interaction include all possible lower-order connections, whereas an emergent interaction schematic connects all N drugs (such
as dyad and triad for two- and three-drug combinations, respectively)
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components. Indeed, the theoretical framework in this setting
should be conveniently generalizable to distinguish different
types of higher-order effects (i.e., net versus emergent) in the
presence of any number of components. Here, net interactions
refer to an overall interaction compared relative to non-interacting
single component effects, whereas emergent interactions corre-
spond to higher-order effects that only exist when all the
components are present.
Using large numbers of drug combinations, we ask: (1) Are there

more (or fewer) interactions when more stressors are added? (2)
Are there any trends in the frequency of interaction types that
amplify or attenuate the complexity of a system when the number
of components is increased? (3) Do these trends in interaction
types differ between net versus emergent interactions?
In contrast to previous work, we show that emergent higher-

order interactions are much more pervasive than commonly
assumed and that there are characteristic patterns of net versus
emergent higher-order interactions as the number of drugs
increases. Addressing these issues will be extremely useful if we
are to find a perspicuous path forward in searching for higher-
order interactions and dealing with combinatorial complexities.
In this paper, we ground these questions in a highly controlled

antibiotic study system that examines bacterial growth responses
to an environment that consists of different drug combinations.
We obtain data for how eight single drugs with three concentra-
tions each, 251 two-drug combinations, 1,512 three-drug combi-
nations, 5,670 four-drug combinations, and 13,608 five-drug
combinations affect pathogenic E. coli growth rates (Fig. 1). This
full-factorial design of drug combinations allows characterization
of net and emergent interactions for all five-way and lower-order
interactions (two-, three-, four-way), and thus represents a
staggering amount of data compared with previous studies,
allowing us to shed new light on how interactions change as more
and more drugs (components) are added.

Theoretical framework for the characterization of higher-order
interactions

To measure interactions, we must first carefully define what an
interaction is and what response measurements we use to assess
the interactions. Based on standard definitions within the field, we
can then extend and generalize this interactions framework to
higher orders for both net and emergent interactions.
For drug studies the key response measurement is growth rate

of a bacteria population in the presence of a drug relative to
growth of bacteria in a no-drug environment. This growth rate is
interpreted as the relative fitness in the presence of a drug
treatment X and is typically denoted by wX (Fig. 1), where no-
growth (wX= 0) represents complete lethality and maximum-
growth (wX= 1) represents the case that the drug treatment is not
effective at all. Because we are using relative fitness, the effect of
each individual drug can be interpreted as a percent reduction in
growth rate, so the null expectation for the combined effects of
two non-interacting drugs would be the product of two
percentages, corresponding to a multiplicative definition of no
interaction. Furthermore, the effect of drug treatment X on the
fitness can also be represented in terms of the selection
coefficient sX : wX ¼ e�sX . The case when no drug is added would
generate no effect on the bacterial fitness, i.e., sX= 0 and the
product of the effect of two single drugs, X1 and X2, would be
wX1wX2 ¼ e�ðsX1þsX2Þ , which means the null expectation of no
interaction is additive in terms of the selection coefficients.
Consistent with the drug literature, we will use the term additivity
to refer to no interaction throughout the rest of this paper.
Interaction classifications are then defined based on whether a
drug combination yields more than (antagonistic) or less than
(synergistic) the expected fitness measures when there are no
interactions.10,26

Here, we review net and emergent measures for the
quantification of N-way interaction effects (see Fig. 1 and S1
Fig). Throughout the paper, we denote single drugs by Xi, where i
> 0 and use a list of Xi to represent drug combinations (such as
X1X2 for combining two drugs X1 and X2). Moreover, for notational
tractability, N-way interaction measures are defined for X1X2… XN,
which stands for any N-drug combination.

Net N-way (NN) interactions

We follow the Bliss Independence model27 to characterize a net N-
way interaction (NN) for the total interaction in comparison with
that expected from all the independent and individual effects of
each drug. Based on Bliss Independence, drugs X1 and X2 are not
interacting when the addition of a second drug (X2) does not
influence the percent decrease in the pathogen fitness due to
another single drug (X1), i.e., wX1X2 ¼ wX1wX2 . Accordingly, the
interaction between X1 and X2 is measured by the deviation from
the non-interacting (termed additive) case as

N2 ¼ wX1X2 � wX1wX2 (1)

A correct rescaling method28 is needed to properly interpret the
magnitude of these measures. After rescaling, a sufficiently large
negative value of N2 suggests a synergistic interaction, as drugs
together produce a superior inhibition effect relative to the case
that drugs are not interacting, whereas a large positive value of N2

indicates an antagonistic interaction.
As a test of this model and baseline definition of no interaction,

Beppler et al.9 performed experiments in which a single drug was
treated as three different drugs to see if there was any interaction.
Confirming the expectation of our interaction model and
validating its correctness, no interaction of a drug with itself was
observed for the vast majority of experiments (i.e., doubling and
tripling the dosages of the same drug).
Extending Eq. (1) to systems with more than two drugs enables

measurements and calculations to determine the presence of any
kind of interaction relative to the single-drug effects. Thus, the
generalized form of the net interaction measure for an N-drug
combination is.10,29,30

NN ¼ wX1X2 ¼ XN � wX1wX2 ¼wXN (2)

Observe that the subscript X1X2… XN means the bacteria’s
environment contains drug X1 plus drug X2 plus all drugs up to XN.
Therefore, if only k of the N drugs remain in the environment, the
subscript becomes X1X2… Xk0…0, which is equivalent to X1X2… Xk
because adding 0 or no drug is equivalent to just having the k-
drug subset. Moreover, the relative fitness of the drugs at 0
concentration will be 1, so the net N-way interaction will reduce to
just a k-way interaction, as expected.

Emergent N-way (EN) interactions

To assess interactions that require all N drugs to be present, or
equivalently, interactions beyond what is expected from the
effects of all lower-order combinations, we use and extend our
emergent interaction framework presented in Beppler et al.9

When two drugs are combined, the definitions of net and
emergent interactions converge to become identical because
single drugs constitute the one and only lower-order component
of a two-drug environment, so there is nothing from which to
emerge except the single-order effects. Thus, the emergent two-
way (E2) interaction is identical to the net two-way interaction, N2

(Eq. (1)). However, when there are more than two drugs in the
environment, interactions among different lower-order subsets
(two-way versus three-way versus four-way or the combination of
two-ways, etc.) of drugs can change the dynamics of N-way
interactions, and those effects need to be accounted for
characterizing the emergent interactions.11 Here, the contribution
to the effect that comes solely from a lower-order combination
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Fig. 2 Overall behavior of interaction metric results and categorization of interactions. For each N-way interaction, a bar plots for interaction
classifications (synergy, no-interaction, antagonism) of net (white) and emergent (black) interactions with 95% confidence intervals resulting
from bootstrapping experiments via sampling with replacement over all measured drug combinations and b histograms of net (white) and
emergent (black) interaction metric results with a bin size of 0.1 are plotted. A diagram is shown that displays the direction in which the
strength of specific interaction class enlarges. Note here that the definitions of net two-way and emergent two-way interactions are identical.
Hence, plots corresponding to the distribution of interaction metrics and the proportion of interactions are indistinguishable for two-drug
combinations
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corresponds to the total interaction when only that specific lower-
order interaction is present. Based on this, we systematically
determine all the lower-order interactions in an N-way combina-
tion, calculate the total sum of all of these lower-order
interactions, and subtract this sum from the net interaction to
capture any emergent interaction (see details in the Materials and
Methods). When N= 3, this corresponds to the total (net) three-
drug interaction effect that is not due to the contributions from all
the two-drug combinations. As described in Materials and
Methods, E3 yields an expression that includes fitness measure-
ments in the presence of every possible drug combination in the
three-drug environment.

E3 ¼ wX1X2X3
� wX1

wX2X3
� wX2

wX1X3
� wX3

wX1X2
þ 2wX1

wX2wX3

(3)

The emergent four-way and five-way interaction formulas are
derived in the Materials and Methods with explanation given for
how to correctly count the combinatorics of all drug subsets while
avoiding any issues of double- or overcounting of contributions.
Notably, recent papers22,31 have proposed new formulae to

predict three-way interactions based on equations with weighted
mixtures of pairwise interactions. This valuable work is useful for
trying to mechanistically understand how three-way interactions
might arise, with the recipe for the weights of the mixture perhaps
corresponding to specific ways in which a third drug might affect
the interaction of another pair. However, there is no sense in
which this explains away the existence of emergent higher-order
drug interactions. Our goal in this paper is merely to measure the
existence of emergent interactions and characterize how pre-
valent they are and any patterns for their frequency. Therefore, the
data produced and patterns identified in the present paper are

Fig. 3 Comparison of net and emergent interactions by synergy and antagonism. a Venn diagrams comparing an overlap for different
interaction categorizations (synergy: left column, antagonism: right column) according to net and emergent interaction measures of three-,
four-, and five-drug combinations. For each N-drug Venn diagram, the percentages are calculated relative to the number of N-drug
combinations. b The proportion of net synergies and net antagonisms are plotted versus the total breakdown score. Breakdown scores
represent the dominant form of interaction types at the lower-order combinations calculated by the summation of −1 and 1 over each lower-
order synergy and lower-order antagonism, respectively (see S1 Table). The minimum and maximum values of breakdown score differ across
each plot as the total number of lower-order combinations of an N-drug combination depends on the value of N
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complementary to these other recent papers22,31 in trying to
identify the patterns and mechanisms that underlie emergent
interactions.

RESULTS

In this study, we explored the consequences of increased
complexity in multi-component systems by employing an experi-
mental design of higher-order drug combinations and by using
and extending our recently developed mathematical frame-
work9,24 to characterize higher-order interactions. We categorized
net interactions based on the deviation of the whole combination
effect from the expected effect of no-interaction among individual
drugs. To measure emergent interactions, we calculated the
deviation of net interaction from the expected effect from all
interactions that result from lower-order subsets/combinations of
drugs (Fig. 1, S1 Fig, “Theoretical Framework for the Characteriza-
tion of Higher-order Interactions” and “Materials and Methods”).
As with pairwise studies for drugs, epistasis, and other biological
systems, interactions are defined as synergistic or antagonistic
when the effect of two components is sufficiently (see Materials
and Methods for precise values) stronger or weaker than expected
effects of no-interaction (net) or all lower-order interactions
(emergent), respectively.
As shown in Fig. 2a, (No-interaction bar) and S2 Fig, interactions

become significantly more frequent as the number of drugs in E.
coli’s environment increases (sum of Synergy and Antagonism
bars in Fig. 2a). This startling finding suggests not only that higher-
order interactions are not negligible and should not be ignored,
but that they may be even more important than pairwise
interactions in determining the structure and dynamics of systems
because they are substantially more prevalent than two-
component interactions. Understanding this phenomenon is thus
fundamental to understanding interactions in biological and
complex systems in general. Evaluating whether any patterns
exist in the types of interactions as the number of drugs increases,
we found that the net interactions among drugs tend toward
more synergy, whereas emergent interactions exhibit a shift
toward more antagonism (Fig. 2).
Further dissecting the nature of these interactions and

comparing net with emergent interactions, we found that net
synergy seldom implies emergent synergy (Fig. 3a, Synergy
column). This makes sense because any interactions will create a
net effect, while emergence is only an interaction among all drugs
in the combination, so will almost certainly be a subset of net
interactions. Consequently, a net three-way synergy is usually due
to pairwise synergies between two drugs in which a third drug
may not be increasing efficacy but still increases toxicity to
patients.
In addition, we found that emergent antagonism is less likely to

imply net antagonism as the number of drugs increases (Fig. 3a,
Antagonism column). Explicitly, this fraction is given by 26%, 18%,
and 11% at the three-, four-, and five-drug level, respectively. As
another method for summarizing the data, we construct a
breakdown score that is calculated as the sum over all lower-
order interactions with a 1 added for each lower-order antagon-
ism and a −1 added for each lower-order synergy. With this
breakdown score, we can then assess how the summarized
category of lower-order interactions affects the net (overall)
interaction. For example, when there are three drugs in the
bacterial environment (as denoted by X1X2X3in the Theoretical
Framework above) and when all three pairwise parts (i.e., X1X2,
X1X3, and X2X3) are synergistic, the breakdown score equates to
−3, whereas when all are antagonistic, the breakdown score is
equal to 3. These two cases represent the minimum and
maximum values attained with N= 3, respectively. Intriguingly,
we showed that lower-order net synergistic effects tend to
overcome lower-order net antagonistic effects (Fig. 3b). This

demonstrates the fallacy of the prominent presumption that
higher-order interactions cancel out and are negligible. Establish-
ing this result was only possible due to our full-factorial
experiments and large-scale data set as well as our development
and comparison of emergent versus net interaction measures.
Overall, our comparison analysis of net and emergent interactions
indicates that emergent synergy mostly suggests net synergy,
whereas emergent antagonism does not imply net antagonism.

DISCUSSION

We have explored the consequences of increasing the number of
components in the context of net and emergent higher-order
interactions through a systematic analysis of bacterial responses in
the presence of drug combinations. For both net and emergent
higher-order interactions we found the number of interactions
substantially increased as the number of drugs increased.
Although this may not be surprising for net interactions, it is
extremely surprising for emergent interactions because these
have been largely ignored in the literature. Yet our new analysis
reveals emergent interactions are highly prevalent in our drug
systems. Although we have only shown this result for drug
combinations, it contradicts the prevailing views and previous
limited results in the field.
We also observed an increasing trend toward synergy in net

interaction effects and toward antagonism in emergent interac-
tion effects. These trends use tremendous amounts of data to
extend and elaborate on recent patterns found in the comparison
of two- with three-drug combinations.24 These general trends
suggest that increasing the number of drugs continually adds new
layers of complexity and leads to the natural question of whether
this layering of complexity also applies to interactions among
multiple components across a myriad of other systems. Indeed, if
this finding continues to hold as the number of drugs increases
and also applies to other systems and fields, this bypass approach
could revolutionize studies of both net and emergent higher-
order interactions by making the intractability of the combina-
torics suddenly become tractable via systematic patterns that
enable predictability.
From a clinical standpoint, synergies offer higher treatment

efficacies with low toxicity. Hence, they are valued and used
clinically, whereas antagonistic combinations have been tradition-
ally avoided.11 Our study reveals that for most higher-order drug
combinations, net synergy does not imply emergent synergy. The
abundance of such cases suggests the criteria for determining
clinically advantageous (or disadvantageous) drug combinations
should now consider both net and emergent effects as it is also
critical to identify whether addition of drugs yields a real
(emergent) benefit that justifies the inclusion of each additional
drug in the combination.
Studies on pairwise-drug combinations have shown that

antagonistic interactions can lead to a selective advantage of
the wild-type pathogen population and reduce the rate of
adaptation to drugs.32,33 Extending these ideas to more rugged
fitness landscapes that correspond to higher-order interactions
among drugs and determining the consequences for drug-
resistance has not yet been pursued. To our knowledge, this is
one of the only and by far the largest set of empirical data
obtained to examine the role of net and emergent higher-order
interactions. Our observations suggest that the fitness landscapes
for multidrug combinations should be extremely rugged due to
the pervasiveness of higher-order interactions.
Although our study focuses on a drug-bacteria system, the

conceptualization of interaction types (net versus emergent, and
synergy versus antagonism) and the systematic analysis of higher-
order interactions can be extrapolated into other fields. A
relatively straightforward application of our framework includes
multiple-stressor effects as drugs in our study are essentially
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stressors to the bacterial population. Moreover, the interaction
model used in multiple predator effect studies is equivalent to the
net interaction measure,34 suggesting a strong correspondence of
our mathematical framework for characterizing emergent inter-
actions.9 In microeconomics, relationships between individuals
(creating demand) and market firms (supplying demand) affect
the allocation of resources.2 In the context of social groups, the
idea of emergence can be well represented by one individual’s
role in controlling a conflict between others in the group. Indeed,
studies in primates35 and in people36 have predicted that
cohesion dynamics of groups differ significantly between dyads
and triads—groups of two and three people, respectively—with
triads being more stable in conserving the association of a group.
Here, we also note several caveats in our framework in its

application to clinical practice as well as to other interaction-
network settings. From a clinical standpoint, drug combination
experiments in this study are carried out in vitro, in highly
controllable systems. Hence, in vivo studies of higher-order drug
combinations are needed for guiding studies with clinical
applications. In addition, as opposed to the drug–bacteria system,
natural systems are comprised of many interacting species and
functional groups that span trophic levels and that are impacted
by diverse but sometimes correlated environmental drivers such
as temperature, precipitation, stoichiometry, fires, etc. Conse-
quently, new theory needs to be developed that incorporates
additional information to study higher-order interactions and their
outcomes in natural systems that involve many more
complexities.
In conclusion, we introduce an approach to studying higher-

order interactions in biological systems. We provide an enormous
amount of data that we analyze with a recently developed

theoretical framework to characterize net and emergent interac-
tions among all possible combinations of two, three, four, and five
drugs out of a set of eight antibiotics. Notably, we find many
interactions that only emerge when multiple drugs are present,
and even more surprisingly, we find that the frequency of
interactions increases as the number of components in the system
increases, contradicting the assumptions and limited findings of
many previous studies. Beyond this, we find that emergent
interactions tend toward antagonism, whereas net interactions
tend toward synergy. These findings suggest that higher-order
interactions may be of fundamental importance in understanding
and predicting the structure and dynamics of complex biological
systems with many interacting parts, such as drugs, genes, food
webs, environmental stressors, and more.
Intriguingly, the general questions explored here for drug

interactions are highly relevant for other fields, and we anticipate
that the research program presented here will be useful for
revealing higher-order emergent properties and patterns in
ecological, medical, evolutionary, and social systems. It is possible
that the prevalence and patterns of higher-order interactions
described here will be generic to many other biological and
complex systems. Alternatively, these findings may be specific to
the type of system being studied. The answer can only be
elucidated through future work in other systems. For our
drug–bacteria system, we have combined a large-scale experi-
mental system with a new conceptual framework to establish the
strong prevalence and importance of higher-order interactions
and to identify patterns of these interactions that should help to
circumvent combinatorial complexity as well as to inform effective
design of multidrug treatments.

Table 1. Summary of antibiotics

Antibiotic Abbreviation Mechanism of action Inhibitory concentration (IC) Concentration (µM)

Ampicillin AMP Cell wall IC10 2.89

IC5 2.52

IC1 1.87

Cefoxitin sodium salt FOX Cell wall IC10 1.78

IC5 1.37

IC1 0.78

Trimethoprim TMP Folic acid biosynthesis IC10 0.22

IC5 0.15

IC1 0.07

Ciprofloxacin hydrochloride CPR DNA gyrase IC10 0.03

IC5 0.02

IC1 0.01

Streptomycin STR Aminoglycoside, protein synthesis, 30S IC10 19.04

IC5 16.6

IC1 12.25

Doxycycline hyclate DOX Protein synthesis, 50S IC10 0.35

IC5 0.27

IC1 0.15

Erythromycin ERY Protein synthesis, 50S IC10 16.62

IC5 8.29

IC1 1.78

Fusidic acid sodium salt FUS Protein synthesis, 30S IC10 94.42

IC5 71.01

IC1 37.85

The antibiotics used are listed with their mechanism of action and concentrations corresponding to 10, 5, and 1% inhibitory concentration levels (IC10, IC5,

and IC1, respectively)

Prevalence and patterns of higher-order drug interactions in

E Tekin et al.

7

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2018) 31



MATERIALS AND METHODS

Experimental details

Bacterial storage and preparation. Pathogenic E. Coli strain CFT073 (ATCC®

700928™) isolated from human clinical specimens was used for all
experiments. Bacterial aliquots were made using a single colony collected
using streak purification. The aliquots were stored in 25% glycerol at − 80 °
C. A culture was prepared each day using a thawed aliquot diluted 10−2 in
Luria Broth (10 g/l tryptone, 5 g/l yeast extract, and 10 g/l NaCl). The culture
was grown at 37 °C for about 4 h.

Antibiotics. We used eight antibiotics in this study that were chosen
specifically to cover a broad range of antibiotic mechanisms of action.37

Additionally, drugs needed to be soluble in dimethyl sulfoxide (DMSO) and
therefore were chosen based on solubility properties. These antibiotics
were Ampicillin (Sigma A9518), Cefoxitin Sodium Salt (Sigma C4786),
Ciprofloxacin Hydrochloride (MP Biomedicals 199020), Doxycycline hyclate
(Sigma D9891), Erythromycin (Sigma Aldrich E6376), Fusidic Acid Sodium
Salt (Sigma F0881), Streptomycin (Sigma Aldrich S6501), and Trimethoprim
(Sigma T7883). A list of drugs, abbreviations, mechanisms of action, and
concentrations used in this assay is in Table 1.

Antibiotic concentration determination and preparation. A dose curve was
generated to determine antibiotic drug concentrations for this assay. Dose
curves were generated using 20 drug concentrations with a dilution factor
of two and a starting concentration of 0.1 mM. For Fusidic Acid, the highest
concentration was 1mM, as the lower concentrations were found to be
ineffective in generating lethality needed to determine the IC50 (50%
inhibition concentration). Graphpad Prism 7 was used to graph the dose
curve and determine the IC50. In addition, Graphpad (http://www.
graphpad.com/quickcalcs/Ecanything1/) was used to estimate the IC10,
IC5, and IC1. Minimally effective concentrations were chosen in order to
maintain bacterial growth even in multidrug combinations. Each antibiotic
was weighed and solubilized in 100% DMSO (Sigma), except for
Streptomycin, which was solubilized in 50% DMSO, to a final concentration
of × 400 the determined IC10, IC5, and IC1 concentrations. Antibiotics were
then pipetted into a source plate (Thermo Scientific) as either a single
antibiotic with additional DMSO or in combination with another antibiotic.
The final concentration in the source plate was × 200 the target
concentration.

Experimental setup. In total, we tested all two-, three-, four-, and five-drug
combinations from a set of eight antibiotics (Table 1), meaning that 28, 56,
70, and 56 distinct drug combinations were tested at given concentrations,
respectively. For each experiment, 25 µL of Luria Broth was added to each
well of a 384-well plate (Greiner BioOne) using a Multidrop 384 (Thermo
Scientific). An additional 25 µL of media was added to the media-only
control. Using a Biomek FX (Beckman Coulter) with a 250 nL pin tool (V&P
Scientific), we pinned 250 nL from every well of each of the three premade
source plates (one plate with one antibiotic and DMSO and two plates with
two antibiotics in combination) into the experimental plate. A 25 µL of a
10-4 dilution of the overday culture was then added to each well (except
for the negative control). Plates were incubated at 37°C and read using an
OD590 measurement every 4 h for 16 h. Each two-, three-, four- and five-
drug experiment was tested at least three times (S1 Data).

Growth measurements. For each plate, the Z’-factor38 was calculated to
determine the quality of the assay. If a Z’ value was below 0.5, the plate
was not used for final analysis. For a few plates, there was one well that
was more than two standard deviations from the average of the negative
control. For these plates, that well was removed from the final Z’-factor
calculation. The exponential rate of growth was determined for each
experimental well and compared with the average exponential rate of
growth for the no drug control to give a growth percentage. Growth
percentages were used to determine interaction types based on a
framework developed in,9,24 as summarized below.

Mathematical framework

Here, we derive the formula for emergent three-way interactions and also

generalize the emergent interaction measure to higher orders and any N-

way combination. As described briefly in “Theoretical Framework for the

Characterization of Higher-order Interactions”, we accomplish this by

starting from the definition of Bliss Independence (i.e., NN) and by

subtracting all lower-order contribution effects from NN. For any N, we can

denote these lower-order contributions by NN½ �D1?D2?¼?Dn
, where ⊥

represents no-interaction, and Di represents one or more drugs that is a
subset of interacting components (i.e., combinations of drugs). These
subsets are composed of n disjoint sets of drugs with the union of all such
sets equaling the total set of all drugs (i.e., D1U D2 U … U Dn= X1X2… XN)
because all subsets must combine to produce the original N-drug
combination. For this reason, no drug is allowed to occur in more than
one subset of drugs. In other words, for any lower-order contribution term,
each drug can be part of only one subset. For example, N3½ �X1X2?X3

, where
D1= X1X2 and D2= X3, represents the pairwise combination effect of X1X2
on the three-way interaction, and it measures the expected three-way
effect when the remaining drug X3 does not interact with the pair. This
effect is calculated as

N3½ �X1X2?X3
¼ wX1X2wX3 �wX1wX2wX3 ¼ wX3 N2½ �X1X2

For measuring emergent interactions, all different factorizations of drugs
are subtracted in a combinatorial fashion. When N= 3, all the pairwise
combination effects are subtracted from the net three-way interaction

E3 ¼ N3 � N3½ �X1X2?X3
� N3½ �X1X3?X2

� N3½ �X2X3?X1

Analogously calculating the effects due to X1X3 and X2X3 (i.e., N3½ �X1X3?X2

and N3½ �X2X3?X1
), the definition of E3 yields Eq. (3) in the “Theoretical

Framework for the Characterization of Higher-order Interactions”.
The most challenging issue in deriving higher-order equations for more

than three drugs is to carefully correct for the possible double counting of
interactions when subtracting lower-order effects that may be subsumed
in multiple higher-order terms. For instance, the lower-order interaction
terms of N4½ �X1?X2X3X4

and N4½ �X2?X1X3X4
both subsume the effect of

N4½ �X3X4?X1?X2
as all three are identical when X1, X2, and the combined

drug pair X3X4 are all non-interacting with respect to each other. Such
cases should be dealt with systematically to make sure that each lower-
order effect is subtracted off exactly once (see S1 Text). Moreover, when N
> 3, it is also necessary to exclude the effect that results from interactions
of different subsets of drug combinations. For example, the two-way
interactions of X1X2 and X3X4 on the four-way combination of X1X2X3X4, as
denoted by N4½ �X1X2?X3X4

and calculated as wX1X2wX3X4 �wX1wX2wX3wX4 ,
must be accounted for when considering all lower-order effects.
Following the same logic as in the calculation of pairwise interactions,

the lower-order contribution of drugs, i.e., NN½ �D1?D2?¼?Dn
, is given by the

expected N-way effect when only interactions within the non-single-drug
subsets (i.e., Di containing more than one drug) are present. Thus, lower-
order effects from the mixture of lower-order combinations and single
drugs complementing the total combination will be calculated similarly by
replacing the N-way drug response, wX1X2 ¼ XN ; with the product of drug
combination responses that are assumed to be only interacting pieces
within the N-drug combination as

NN½ �D1?D2?¼?Dn
¼ wD1

wD2
¼wDn

� wD1
wD2

¼wDN

For example, the k-drug effect of X1X2…Xk on the N-way combination for
any value of N and k with k < N is given by the expected N-way effect when
only k drugs interact, i.e.
NN½ �X1X2 ¼ Xk?Xkþ1?¼?XN

¼ wX1X2 ¼ XkwXkþ1
¼wXN � wX1wX2 ¼wXN . Indeed,

this is equivalent to the net interaction arising from the k-drug
combination multiplied by the single-drug fitnesses of the remaining N
−k drugs: wXkþ1

¼wXN Nk½ �X1X2 ¼ Xk
.

Subtracting all possible lower-order interaction contributions (via
factorizations of D1⊥ D2⊥…⊥ Dn) from the net N-way interaction defines
newly emergent interactions among all N drugs. Accordingly, we now
define E4 and E5 purely in terms of fitness measurements based on the
conceptual framework just described and using the above formulas and
notation for the lower-order component effects. Guaranteeing that
overcounting is eliminated when distinguishing every possible lower-
order effect from the net interaction (see S1 Text), the emergent four-way
interaction is given by

E4 ¼ wX1X2X3X4 � wX1wX2X3X4 � wX2wX1X3X4 � wX3wX1X2X4 � wX4wX1X2X3

�wX1X2wX3X4 � wX1X3wX2X4 � wX1X4wX2X3 þ 2wX1wX2wX3X4

þ2wX1wX3wX2X4 þ 2wX1wX4wX2X3 þ 2wX2wX3wX1X4 þ 2wX2wX4wX1X3

þ2wX3wX4wX1X2 � 6wX1wX2wX3wX4
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The emergent five-way measure in terms of relative fitnesses is given as

E5 ¼ wX1X2X3X4X5 � wX1wX2X3X4X5 � wX2wX1X3X4X5 � wX3wX1X2X4X5 � wX4wX1X2X3X5�

wX5wX1X2X3X4 � wX1X2wX3X4X5 � wX1X3wX2X4X5 � wX1X4wX2X3X5 � wX1X5wX2X3X4�

wX2X3wX1X4X5 � wX2X4wX1X3X5 � wX2X5wX1X3X4 � wX3X4wX1X2X5 � wX3X5wX1X2X4 � wX4X5�

wX4X5wX1X2X3 þ 2wX1wX2wX3X4X5 þ 2wX1wX3wX2X4X5 þ 2wX1wX4wX2X3X5þ

2wX1wX5wX2X3X4 þ 2wX2wX3wX1X4X5 þ 2wX2wX4wX1X3X5 þ 2wX2wX5wX1X3X4þ

2wX3wX4wX1X2X5 þ 2wX3wX5wX1X2X4 þ 2wX4wX5wX1X2X3 þ 2wX1X2wX3X4wX5þ

2wX1X2wX3X5wX4 þ 2wX1X2wX4X5wX3 þ 2wX1X3wX2X4wX5 þ 2wX1X3wX2X5wX4þ

2wX1X3wX4X5wX2 þ 2wX1X4wX2X3wX5 þ 2wX1X4wX2X5wX3 þ 2wX1X4wX3X5wX2þ

2wX1X5wX2X3wX4 þ 2wX1X5wX2X4wX3 þ 2wX1X5wX3X4wX2 þ 2wX2X3wX4X5wX1þ

2wX2X4wX3X5wX1 þ 2wX2X5wX3X4wX1 � 6wX1X2wX3wX4wX5 � 6wX1X3wX2wX4wX5�

6wX1X4wX2wX3wX5 � 6wX1X5wX2wX3wX4 � 6wX2X3wX1wX4wX5 � 6wX2X4wX1wX3wX5�

6wX2X5wX1wX3wX4 � 6wX3X4wX1wX2wX5 � 6wX3X5wX1wX2wX4 � 6wX4X5wX1wX2wX3þ

24wX1wX2wX3wX4wX5

Notably, analyzing deviations from appropriate baselines of these

interaction measures allows us to assign information and meaning to the

magnitude of the interaction and thus form a correspondence with the

type and strength of interaction. This is accomplished via rescaling

methods we developed for these interaction measures as defined in
ref.24,28,29 (see S2 Text) and that we use to analyze the experimental data of

drug combinations.

Details of data analysis and cutoff values for the categorization of
interactions. Median growth measurements for each experiment across
replicates were used to determine net and emergent interaction types
according to the rescaled interaction metric definitions. Owing to the full-
factorial design of our experiments, bacterial growth in the presence of
each k-drug combination is measured within each drug combination
experiment that contains that specific k-way drug combination (the
pairwise combination X1X2 is repeated within the experiments of X1X2X3,
X1X2X4, and so on). For such cases (i.e., for two-, three-, and four-drug
combinations) the median interaction metric calculation across these
experiments was used to determine the interaction type of each drug
combination. Given the interaction metric calculation, we categorize
synergy, additivity, and antagonism regions according to cutoff values
established by previous work.24,28,39 The interaction among drugs is
identified as synergistic when the interaction metric is <−0.5, antagonistic
if it is larger than 0.5, and additive if it ranges between −0.5 and 0.5. Note
that the total range of the rescaled metric is from −1 to 1 when the
combination of drugs reduces the growth relative to at least one of the
lower-order combination growth rates (i.e., fitness), hence leading to rare
instances of values above 1.
Finally, we excluded several specific cases in our analysis. First, for two-

drug combinations X1X2, the effect of the second drug on the bacterial
growth is indistinguishable when both the maximum of single and
pairwise growth measurements (i.e., max wX1 ;wX2ð Þ and wX2 ) are > 90%
growth.40 Next, using the same reasoning, in the extreme case that k drugs
by themselves kill off the bacteria populations (lethality: measurements
below 4.7% as determined by Tekin et al.24) and the addition of another
drug into the environment also leads to lethality, then it is meaningless to
look for emergent k+ 1 drug interactions. We identify these cases as
inconclusive and excluded them in our data analysis of the frequency of
interaction types.

Data availability

The data sets for this article have been uploaded as part of the

Supplementary Information.

Code availability

Data analysis is performed in MATLAB version R2015a. The scripts are

available upon request.
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