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Abstract 10 

TP53 is a master tumor suppressor gene, mutated in approximately half of all human 11 

cancers. Given the many regulatory roles of the corresponding p53 protein, it is 12 

possible to infer loss of p53 activity -- which may occur from trans-acting alterations -- 13 

from gene expression patterns. We apply this approach to transcriptomes of ~8,000 14 

tumors and ~1,000 cell lines, estimating that 12% and 8% of tumors and cancer cell 15 

lines phenocopy TP53 loss: they are likely deficient in the activity of the p53 pathway, 16 

while not bearing obvious TP53 inactivating mutations. While some of these are 17 

explained by amplifications in the known phenocopying genes MDM2, MDM4 and 18 

PPM1D, others are not. An analysis of cancer genomic scores jointly with 19 

CRISPR/RNAi genetic screening data identified an additional TP53-loss phenocopying 20 

gene, USP28. Deletions in USP28 are associated with a TP53 functional impairment in 21 

2.9-7.6% of breast, bladder, lung, liver and stomach tumors, and are comparable to 22 

MDM4 amplifications in terms of effect size. Additionally, in the known CNA segments 23 

harboring MDM2, we identify an additional co-amplified gene (CNOT2) that may 24 

cooperatively boost the TP53 functional inactivation effect. An analysis using the 25 

phenocopy scores suggests that TP53 (in)activity commonly modulates associations 26 

between anticancer drug effects and relevant genetic markers, such as PIK3CA and 27 

PTEN mutations, and should thus be considered as a relevant interacting factor in 28 

personalized medicine studies. As a resource, we provide the drug-marker 29 

associations that differ depending on TP53 functional status. 30 

 31 

Introduction 32 

Mutations in the TP53 tumor suppressor gene are a very common feature across 33 

almost all types of human cancer.  These mutations abrogate or reduce TP53 activity 34 

via various mechanisms: dominant-negative acting missense mutations, loss-of-35 

function missense, nonsense, frameshift indel, splice site, or synonymous mutations, or 36 

copy number losses that frequently delete one TP53 allele while the other allele is 37 

inactivated by a mutation.  That such TP53 genetic alterations occur at high frequency 38 

in many cancer types implies that they have very strong selective advantages for the 39 

expanding cancer cell clones (1, 2); indeed this is borne out in experimental data on 40 

cell lines and animal models of cancer (3, 4).   41 

 42 
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The large selective advantage of TP53 losses are consistent with its roles in arresting 43 

the cell cycle or triggering apoptosis upon threats to genome integrity.  TP53-null cells 44 

better tolerate genomic instability, which can result from endogenous causes, most 45 

prominently oncogene-overexpressing and thus replication-stress inducing cancerous 46 

genetic backgrounds.  Consistently, TP53-mutant tumors have higher frequencies of 47 

segmental copy number alterations (CNA), whole-genome duplications, and overall 48 

mutation rates (5, 6).  Moreover, TP53-null cells better tolerate DNA damaging 49 

conditions that would normally trigger cell cycle checkpoints, such as those resulting 50 

from DNA-acting drugs or radiation (7, 8). Consistently, TP53-mutation bearing tumors 51 

tend to be more resistant to various cancer chemotherapies (4, 9-11) and radiotherapy 52 

(10–12), and more aggressive i.e. TP53 R273 and R248 mutants are associated with 53 

accelerated cancer progression in colorectal tumors (13). 54 

 55 

The frequency of TP53 mutations --highest of all cancer genes, standing at 37% in the 56 

TCGA cohort-- indicates that most cancers benefit from the loss of TP53. However, 57 

there are nonetheless many tumors which do not bear a mutation in TP53.  A part of 58 

those is explained by genetic events that phenocopy TP53 loss i.e. that have similar 59 

downstream phenotypic consequences as TP53 loss itself.  There are three 60 

established examples of TP53 loss phenocopying events occuring in tumors. Most 61 

prominently, this is the amplification of the MDM2 and MDM4 oncogenes and 62 

overexpression of the corresponding proteins. These negatively regulate TP53 protein 63 

levels by promoting its proteasomal degradation, and that otherwise inhibit TP53 64 

activity by binding to its transactivation domain(14–16). The third implicated gene is 65 

PPM1D, whose amplification overexpresses a serine/threonine phosphatase acting 66 

upon various targets including TP53, reducing its activity. (We note that PPM1D can 67 

also be affected by point mutations that result in gain-of-function(17–19)) 68 

 69 

Given the strong selective advantages of the TP53 activity loss in cancer evolution, we 70 

hypothesized that TP53 loss phenocopying in human cancers extends beyond these 71 

known examples of MDM2, MDM4 and PPM1D alterations.  If indeed other common 72 

mechanisms of TP53 phenocopying exist, this would be relevant to predicting tumor 73 

cell response to various drugs, and to predicting tumor aggressiveness, thus having 74 

implications to personalized medicine.  Because TP53 loss has clear consequences on 75 

the mRNA expression levels of various downstream targets (4, 21), the TP53-null-like 76 

phenotype can be inferred from large scale transcriptomic data (20-23).  Here, we 77 

apply a statistical framework to jointly analyse ~966 cancer cell line and ~8000 tumor 78 

genomes and transcriptomes, to identify additional TP53 phenocopying genetic events 79 

and impact on drug sensitivity. We find that TP53 loss phenocopies are remarkably 80 

common across tumors and cancer cell lines, and we identify USP28 deletions as one 81 

cause of TP53 loss phenocopying, and reveal many links between drugs and their 82 

targets that are modulated by TP53 activity. 83 

 84 

 85 

 86 
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Results 87 

Inferring the functional TP53 status of tumors from 88 

transcriptomes 89 

 90 

We developed a machine learning method to detect TP53 phenocopies in tumors and 91 

cell lines, integrating RNA-seq data with TP53 mutation data in a logistic regression, 92 

regularized with an Elastic Net penalty (very similar cross-validation accuracy was 93 

obtained with Ridge or Lasso penalties; see Methods). Regression models were 94 

trained using cross-validation on mRNA levels of ~8000 tumor samples from the TCGA 95 

project, across 20 different cancer types, controlling for cancer type. In addition to 96 

using this global analysis mRNA expression levels to infer the functional TP53 status 97 

state of each tumor, we also identified the expression patterns of which genes are 98 

associated with TP53 status. Tumors with TP53 putatively causal mutations were 99 

included as a positive set (TP53 status was categorized according to GDSC 100 

methodology; see Methods). Previously known phenocopying events (MDM2, MDM4 101 

and PPM1D amplifications), as well as samples with TP53 deletions were excluded 102 

from the training set (these known phenocopying events will be used to calibrate 103 

decision thresholds; see below). Our classifier learned a combination of relevant gene 104 

weights that differentiate samples with an aberrant TP53 activity. Tumor samples that 105 

are not TP53 mutated (by GDSC criteria), but are classified as mutated by the machine 106 

learning model are considered to be TP53 phenocopies.  107 

 108 

Our classifier showed a high performance with an area under the receiver operating 109 

characteristic (AUROC) curve of 96% in cross-validation on TCGA tumors (out-of-110 

sample accuracy), and 95% on the testing set (consisting of 10% of the samples held 111 

out from training set, Fig.1A). Thus, we were able to often correctly detect TP53 status 112 

in unseen tumor samples the classifier was not exposed to, with an area under 113 

precision-recall curve=0.9654. The TP53 loss phenocopy scores for each TCGA tumor 114 

sample and the cancer cell lines are provided in Supplementary Data 1. 115 

 116 

Out of the ~12000 genes available to the classifier, 217 genes were deemed relevant 117 

for TP53 status classification (non-zero coefficients; gene score provided in 118 

Supplementary Data 2). These represent a sparse (but not necessarily exhaustive) set 119 

of genes that are, considered together, highly informative for predicting TP53 status.  120 

 121 

Expectedly, many of the classifier's most relevant genes are known to be related to 122 

TP53 functionality. For instance, apoptosis-enhancing nuclease (AEN) was the gene 123 

with the highest absolute importance score. This exonuclease is a direct TP53 target 124 

whose expression is regulated by the phosphorylation of TP53 and its tumor 125 

suppressor role has been reported (25). Tumors with a high expression of AEN are 126 

expected to be p53 functional, and indeed highly expressed AEN was associated with 127 

TP53 WT status in our classifier’s coefficients. On the other extreme, COP1, a ubiquitin 128 

ligase that acts as an important p53 negative regulator, was the strongest coefficient 129 

associated with TP53 mutated status in the classifier (26). We further performed a GO 130 

enrichment analysis, revealing that top functional enriched sets were related to 131 

apoptotic signals, supporting the biological rationale underlying this set (Supp Fig. 1A).  132 
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Most enriched pathways were: Intrinsic apoptotic signalling pathway in response to 133 

DNA damage by p53 class mediator (8.1-fold enrichment, FDR=4.2%), Pyrimidine 134 

deoxyribonucleoside monophosphate biosynthetic process (47.4 fold enrichment, 135 

FDR=1.9%) and Response to UV-B (17.2 fold enrichment, FDR=3.7%) (ShinyGO, see 136 

Methods).  137 

 138 

Our classifier extends recent gene expression-based models for TP53 functionality (20-139 

23) by being able to generalize across both tumor and cancer cell lines (important for 140 

identifying drug sensitivity associations, see below), and moreover it can provide 141 

calibrated FDR estimates for TP53 status of each tumor or cell line. In particular, to 142 

assess the reliability of the individual predictions from the model, FDR for each tumor 143 

was computed via the analysis of cross-validation precision-recall curves (Fig.1B). The 144 

previously known phenocopies (MDM2, MDM4 and PPM1D amplifications) and TP53 145 

deep deletions, which were held out from the training set, were largely scored as TP53 146 

mutated. Tumors harbouring a known phenocopying amplification were assigned 147 

higher scores than the rest of TP53 wild-type tumors (means=0.56 and 0.27 148 

respectively, p=1e-65 by t-test). Cells harbouring a TP53 deep deletion also had higher 149 

scores (mean TP53 deleted=0.47, mean TP53 not deleted=0.27, p=1e-08). Our choice 150 

of threshold to detect TP53 phenocopied tumors was set based on these known 151 

phenocopies, conservatively, corresponding to score >0.6, Methods; Fig.1B).  152 

 153 

This resulted in an empirical FDR estimated at 15% (i.e. precision of 85%), based on 154 

the known TP53 mutations. Importantly this 15% is a conservative upper-bound 155 

estimate of FDR, since it is based on the assumption that there do not exist any 156 

unknown TP53 phenocopying events: it classifies all high-scoring TP53 wild-type 157 

tumors as false positives. Conversely, using the known phenocopying events we 158 

estimate a lower-bound recall (sensitivity) of this classifier at 63% (Fig. 1B). Again, this 159 

estimate is conservatively biased, since it is not a priori known whether every copy 160 

number gain in MDM2/MDM4/PPM1D causes a phenocopy; some low-level gains may 161 

not have effects and thus would appear as false-negatives.  162 

 163 

To additionally validate the classifier, we inspected the relationship between known 164 

phenocopy genes’ allele copy-number (see Methods), and the TP53 phenocopy score. 165 

There were significant positive correlations between three known phenocopying genes 166 

copy-number, and the TP53 phenocopy score in TP53 wild-type tumors (Fig.1C).  167 

 168 

The prevalence of phenocopying events was substantial: overall 12 % of all tumor 169 

samples were redefined into a TP53 mutated-like category (Fig.1D) by our criteria. 170 

Different cancer types display different phenocopy frequencies (Fig.1D), overall 171 

frequency ranging from 19% for breast cancer (BRCA cancer type) to 3% for B-cell 172 

lymphoma (DLBC cancer type, overall phenocopy frequencies are shown in Supp Fig. 173 

1B). For instance, most breast cancer TP53-phenocopied tumors derive from 174 

previously known events i.e. the MDM4/MDM2/PPM1D amplifications are the most 175 

common event, while a remaining 27% of the phenocopies (5% of all breast cancer 176 

samples) is not associated with a known phenocopying event (proportion shown for 177 

every cancer type Fig.1D). We do note that it is still possible that individual examples of 178 

tumor may be erroneously classified as TP53-deficient at this threshold. More 179 

generally, 51% of TP53-loss phenocopied tumor samples across all cancer types were 180 
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not linked with one of the three known genes nor a CNA deletion in TP53 itself, 181 

suggesting that additional TP53 phenocopying mechanisms are commonly occurring in 182 

tumors.   183 

 184 

Figure 1. Evaluation of the functional TP53-loss score classifier and prevalence 185 

of TP53 loss phenocopying events in cancer. 186 

A. Receiver operating characteristic (ROC) curve and area under the ROC (AUROC) curve for 187 

training and testing sets in TCGA tumor transcriptomes. 188 

B. Bottom: False discovery rate (FDR) for each tumor sample. X axis is the classification 189 

threshold for each tumor sample. The general threshold used for classification (0.6) is 190 

highlighted. Top: the histogram of frequency of CNV events (“density” refers to smoothed 191 

relative frequency) affecting TP53 and the known phenocopying genes MDM4, MDM2 and 192 

PPM1D at various phenocopy-score thresholds.  193 
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C. TP53 loss phenocopying score stratified by 3 known phenocopying CNA events and by 194 

TP53 deletions. Data points are tumor samples coloured by TP53 status; boxes show 195 

median, Q1 and Q3, while whiskers show range (outlying examples shown as separate 196 

dots). X axis represents the GISTIC thresholded CNV of each given gene. Tumor samples 197 

with deletions in the corresponding genes (for MDM2, MDM4 and PPM1D) and 198 

amplifications (TP53) are omitted for simplicity. P values represent results from the t-test 199 

comparison of the TP53 phenocopy score between each CNV category to neutral CNV (0) 200 

category in TP53 wild-type samples.  201 

D. TP53 functional status classification across TCGA cancers. Left: pan-cancer; “Phenocopy” 202 

refers to TP53-loss phenocopying tumors according to the classifier in panels A, B. Right: 203 

showing only theTP53 loss phenocopying tumor samples, stratified by cancer type and by 204 

cause of the phenocopy. Tumor samples harbouring a known event that affects TP53 205 

functionality are shown with colours, and the remaining TP53-loss phenocopy tumors are 206 

labelled as “Unknown cause 207 

 208 

 209 

USP28 deletion phenocopies a TP53 mutated state in tumors 210 

 211 

Prompted by the abundance of tumor samples that are functionally TP53 null but 212 

lacking an obvious TP53 loss or a known phenocopying event, we sought to identify 213 

other phenocopying genes across all cancer types. We designed a custom association-214 

testing methodology that combines six different statistical tests across four different 215 

genomic data types with this goal (see Methods).  216 

 217 

In brief, our methodology is based on the rationale that genes that cause a phenocopy 218 

via altered dosage at DNA and mRNA levels should exhibit a distinct copy number 219 

variant (“CNV” tests) and also gene expression (“GE” tests) pattern. Each of these two 220 

genomic data types is considered in two tests, one comparing TP53 phenocopying 221 

against TP53 wild-type tumors, and other comparing TP53 phenocopying against 222 

TP53-mutant tumors, for a total of four tests. As two additional tests, we considered 223 

external data from genetic screens across large panels of cancer cell lines (28,29). In 224 

particular we test for significant codependency scores, explaining how a knockout 225 

(“CRISPR”) or knock-down (“RNAi”) of a candidate phenocopying gene affects fitness 226 

across a panel of cell lines, when compared with the fitness profile of a TP53 227 

knockout/knock-down across the same panel(30, 31). An example supporting the use 228 

of this methodology that combines cancer genomic analysis and genetic screening 229 

data analysis, a CRISPR knockout of the known TP53 negative regulator MDM2 230 

decreases cell line fitness, in a manner anticorrelated to a TP53 knockout across cell 231 

lines. (Supp Fig. 3A)   232 

 233 

In summary, we tested differences of tumor genomics CNV and GE patterns (two tests 234 

each as above), additionally considering “CRISPR” and “RNAi” test scores from genetic 235 

screens, for each gene, performing tests stratified by cancer type. Our final score 236 

combines each of the 6 tests together providing a ranking of potential TP53 237 

phenocopying genes.  238 

 239 

As anticipated, top 3 prioritization scores correspond to MDM2, MDM4 and PPM1D 240 

genes (Fig. 2A). Following those known TP53 phenocopies, the gene USP28 was the 241 

4th ranked gene in terms of overall statistical significance (p=5.9e-07, combined across 242 
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all six tests), and in particular scored highly on CRISPR codependency (pan-cancer 243 

score for USP28=0.54, compared with -0.71 for MDM2 and -0.53 for MDM4). A break-244 

down of our custom prioritization scores by different cancer types is provided in 245 

Supplementary Figure 2. We note that, in contrast to MDM2 and MDM4, it is the 246 

deletions not amplifications of USP28 that were associated with TP53 phenocopies; 247 

this is reflected in the mirrored direction of the codependency score. USP28 encodes a 248 

deubiquitinase enzyme with substantial evidence from previous biochemistry and cell 249 

model studies that link it to p53 activity. In particular, USP28 was linked to DNA 250 

damage apoptotic response through the Chk2-p53-PUMA pathway (32). Recent 251 

evidence suggests that the TP53BP1-USP28 complex might positively regulate p53 252 

and influence arrest after centrosome loss and prolonged mitosis (33). It has been 253 

proposed that TP53BP1-USP28 complexes could counteract MDM2-dependent p53 254 

ubiquitination (34). Additional studies have linked USP28 loss with a defective 255 

apoptotic response (35). A 10% of the total of 437 tumors classified as TP53 loss 256 

phenocopied but with an undefined source (Supp Fig.1B) had a USP28 deletion.  257 

 258 

Overall, diverse experimental evidence from genetic screens strongly supports our 259 

identification of USP28 deletions as p53-loss phenocopying events, and our genomic 260 

analysis suggests a widespread distribution of causal USP28 deletions across human 261 

tumors. 262 

 263 

Additional hits from this association study might provide promising genes for follow-up. 264 

For instance, MSI2 was the 5th most highly prioritized gene, predicted to phenocopy 265 

TP53 loss by amplification. MSI2 encodes a transcriptional regulator that has been 266 

recently identified as an oncogene in hematologic and solid cancers (36–38). Similar 267 

results to CRISPR analyses were observed using RNAi screening codependency 268 

scores, further supporting the role of USP28 loss in the TP53 phenocopying, as well as 269 

MSI2 gains (Supp Fig. 3B). Other apoptosis-related genes such as DRAM2, CHEK2, or 270 

ATM (39–41) were also in the prioritized genes in our analysis albeit at more modest 271 

statistical significance.  Of note, the TPR gene also had a highly significant 272 

codependency score but was driven by a single cancer type (kidney) and thus with less 273 

clear relevance to diverse tumor types. 274 

 275 

 276 
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 277 

Figure 2: Transcriptomics scores predicting phenocopying events can pinpoint 278 

causal genes in CNA-affected chromosomal segments. 279 

A. Prioritization score of genes for TP53 loss phenocopying effects. Y axis shows gene 280 

significance (FDR) when combining six statistical tests (two cancer genomic/transcriptomic, 281 
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and two based on CRISPR and RNAi screens), and further pooling p-values across cancer 282 

types; see Methods for details. X axis represents the effect size from the CRISPR 283 

codependency score of each gene. Crosses represent gene neighbours (same cytoband) to 284 

a known phenocopying gene. Relevant hits in terms of FDR and codependency score are 285 

labelled. Shown thresholds for effect size and significance were determined based on 286 

scores of known phenocopy events (Methods). 287 

B. Top: CNV frequency in tumors, and their associations with TP53 phenocopy transcriptomic 288 

scores, of the segment of chromosome 1 containing MDM4. Each dot represents one gene, 289 

while colours represent groups of tumor samples by TP53 status. Bottom: A zoomed-in view 290 

of a commonly amplified region of the chromosome, showing the CRISPR (blue) and the 291 

RNAi (red) TP53-codependency scores for each gene. The determination of the TP53 co-292 

dependency score is shown for the top score of the region (left panels), showing the actual 293 

CRISPR and RNAi fitness effects for the MDM4 disruption (Y axis) across many cell lines 294 

(dots), compared to TP53 disruption fitness effects (X axis) across the same cell lines.   295 

C. Same as (B), but for USP28, a gene we identified to be associated with a TP53 loss 296 

phenocopying via a deletion.  Here, the y axis on the top plot shows frequency of gene 297 

deletions in tumors, divided by TP53 functional status, whereas panel B shows frequency of 298 

amplification.  Bottom plots are the same as in B. 299 

D. Comparison of the TP53 phenocopy score of USP28 CNV deletions (by negative GISTIC 300 

score), ATM deletions, ATM mutations and MDM4 amplifications. Each dot represents a 301 

tumor sample. Only TP53 wild-type samples were considered. P-values by Mann-Whitney 302 

test. 303 

E. Fitness effect of USP28 knock-out in TP53 wild-type and mutant isogenic cell lines. 304 

Comparison of the mean beta score (fitness effect upon CRISPR gene disruption, y-axis) of 305 

USP28, with the mean beta scores of genes located within its 1Mbp immediate 306 

surroundings as negative controls ("1 Mbp neighbours", see Methods). Genes TP53, 307 

MDM2, and MDM4 are also shown as a reference. x-axis bottom labels indicate the TP53 308 

status of the cell line.  USP28 Z-scores, comparing to the distribution of neighbouring 309 

genes, are plotted in red (see Methods) 310 

 311 

 312 

 313 

Phenocopy scores prioritize causal genes in CNA-affected 314 

chromosomal segments 315 

 316 

Amplifications of certain chromosomal segments or whole arms in case of MDM2, 317 

MDM4 and PPM1D commonly underlie TP53 phenocopies. Such CNA genetic events 318 

in cancers however often affect multiple adjacent genes, where an open question in 319 

cancer genomics is which of the gene or genes in the affected segment are causal 320 

(42). We hypothesized that the known TP53 phenocopying gene CNA segments might 321 

in some cases harbor more than one causal gene. Our combination-test approach can 322 

prioritize genes with enriched gene expression and CNA in our TP53 phenocopying 323 

group. Considered together with CRISPR and RNAi codependency, this method 324 

provided a plausible ranking of possible TP53 loss phenocopying genes. Applied 325 

globally, this identified USP28 as a novel phenocopying gene (see above). To more 326 

formally study if the USP28-adjacent genes could contribute to this, we considered that 327 

the same method could be applied on a local scale: examining profiles of CNVs and 328 

our genomic prioritization scores would be able to single out the causal gene(s) in the 329 

chromosomal segment of recurrent CNA.  330 
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 331 

As a control for this approach, we sought to confirm previously known phenocopies. 332 

Indeed, MDM4 amplification was found to be enriched in the TP53-phenocopying group 333 

of tumor samples, but not in the rest of tumor groups --the TP53 mutant and the non-334 

phenocopying TP53 wild-type (Fig. 2B).  The local profile of this enrichment for the 335 

chromosome 1q segment 32.1 peaks at the MDM4 gene and falls off towards its 336 

flanking genes (Fig. 2B). Our CRISPR and RNAi data analysis, consistently, indicate 337 

MDM4 as the gene with the strongest effect in the region (Fig. 2B). As expected, 338 

similar  CNA and CRISPR/RNAi profiles were observed at PPM1D (Supp Fig. 3C). 339 

Next, the MDM2 CNA enrichment score segment peak was narrower, suggesting a 340 

more focal gene amplification process (Supp Fig. 3C) 341 

 342 

Next, we examined the shape of the local USP28-adjacent CNA profiles. USP28 343 

deletions were found to be enriched in the TP53 phenocopying group when compared 344 

to the rest of tumor groups (2.3-fold in TP53 w.t, 2.8-fold in TP53 mutant).  USP28 345 

enrichment was comparable to MDM4 region enrichments of 2.5-3.7-fold (TP53 wt., 346 

TP53 mutant) (Fig. 2B, C).TP53 phenocopying tumor samples appear to have more 347 

deletions in the USP28 region than TP53 wild-type (non-phenocopying) and TP53 348 

mutant samples. The local profile of enrichments presents a plateau-like pattern rather 349 

than a sharp peak, and USP28 is within the top-ranked genes in the plateau however 350 

some neighbouring genes appear similarly so.  Therefore, we further used the CRISPR 351 

and RNAi codependency scores to prioritize the causal genes in the segment; this 352 

score clearly distinguishes USP28 from immediate neighbours (Fig. 2C), suggesting 353 

that USP28 is indeed the main causal gene in the chromosomal segment.  354 

 355 

Furthermore, this ‘local scan’ can be applied chromosome-wide, where we noted 356 

another small region on chromosome 11q.12.1-q1.13.1 modestly enriched with 357 

amplifications in TP53-phenocopying tumors (Supp Fig. 3D), thus raising our interest. 358 

However, neither genes in this region nor other chromosome 11 regions showed a 359 

positive CRISPR codependency score of even half of USP28 score (Fig. 2C). We note 360 

here that the USP28 codependency score exceeds, in absolute magnitude, the score 361 

of the known MDM4 phenocopy (Fig. 2B, C).  362 

 363 

In the broader neighborhood of USP28, the gene ATM seems to also be frequently 364 

deleted in the TP53-phenocopying tumor group, meaning ATM is also a candidate for 365 

the causal gene in this deletion segment at chr11 q22.3-q23.2. However, the statistical 366 

support from genomic enrichment scores (using our custom methodology for 367 

metanalysis across 6 statistical tests) for ATM were less strong than for USP28 (p=1e-368 

5 versus p=6e-7, respectively). Consistently, comparing the RNAi and CRISPR TP53-369 

codependency scores of ATM versus USP28 shows a stronger effect of the USP28 370 

knockout (USP28 RNAi codependency score p=4.9e-112 versus ATM p=3e-80, in a 371 

pan-cancer analysis; Supp Fig. 3E). To further rule out that ATM has the causal role in 372 

this deleted segment, we considered the cases of tumors where ATM is disrupted by a 373 

point mutation; unlike CNA in the ATM gene, these cases are not commonly linked with 374 

disruptions in USP28. The ATM mutated but USP28 wild-type tumors had considerably 375 

weaker TP53 phenocopy transcriptomic scores (median=0.36) than the USP28 deleted 376 

but ATM non-mutated tumors (median=0.84; p=0.0013 by Mann-Whitney test; Fig. 2D).  377 

The cases where both USP28 and ATM were disrupted, by deletion or mutation, had 378 
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very similar phenocopy scores (median=0.73) as the USP28 deleted but ATM non-379 

mutated cases.  This analysis of ATM mutations supports that USP28 deletion, rather 380 

than ATM disruption, is the causal change in the deleted segment at chr11 q22-q23.  381 

 382 

To validate the USP28 finding, we analyzed an independent CRISPR data set, 383 

consisting of 3 genome-wide screens performed on TP53 wild-type and TP53 -/- 384 

isogenic pairs of cell lines: one on the A549 cell line pair and two on the RPE1 cell line 385 

pairs (see details in Methods). In the TP53 wild-type background, the TP53 k.o. 386 

increases cell fitness (as expected for a high-effect tumor suppressor gene; Fig. 2E). 387 

Thus, if the USP28 loss were to phenocopy TP53 loss, the USP28 k.o. by CRISPR 388 

should also increase fitness. Indeed, it does so: compared to the 10 neighboring 389 

control genes residing within 1 Mb of USP28, the USP28 k.o. has a stronger fitness 390 

effect (beta score from MAGeCK tool, see Methods) for 10 out of 10 genes in 2 out of 3 391 

screens, and 8 out of 10 neighboring genes in the remaining screen (Fig. 2E). For 392 

ATM, this effect is less pronounced (Supp Fig. 3F). In 3 out of 3 cell screening 393 

experiments, USP28 fitness effect was stronger than ATM effect (1.4-fold, 2.4-fold and 394 

2.6-fold increased beta score). To further support this finding, we asked if the fitness 395 

gain resulting from USP28 loss is because of downstream effects on TP53 activity.  We 396 

thus considered the isogenic cells where TP53-/- was ablated, in which indeed the 397 

fitness gain from USP28 k.o. was attenuated or disappeared (Fig. 2E) compared to 398 

TP53 wild-type cells. In 2 out of 3 cell line screens, the fitness attenuation effect of 399 

TP53-/- background cells was stronger in USP28 than in the neighboring ATM gene, 400 

supporting the causal role of USP28 in that segment (Supplementary Data 3). Of note, 401 

in this analysis the effect sizes of USP28 k.o. were less than of full TP53 k.o., however 402 

they were still substantial: in 2 out of 3 screens considered, the fitness gain effect of 403 

USP28 disruption was comparable in size to the fitness loss effect of MDM4 disruption 404 

(Fig. 2E). 405 

 406 

Overall, these analyses highlight USP28 as the likely causal gene for TP53 loss 407 

phenocopying via deletion CNVs in the chr11 q22-q23 segment. 408 

 409 

Cancer type specificity of TP53 phenocopying events 410 

 411 

As stated above, not every cancer type seems to be affected by the same types of 412 

phenocopies. For instance, MDM2 amplification phenocopy occurs often in BRCA, 413 

CESC, BLCA, LUAD and STAD but it does not in HNSC, OV, MESO nor LIHC 414 

(Fig.1D). To further elucidate the tissue-specificity of USP28 phenocopying events, we 415 

considered the prioritization scores separately for different cancer types (Supp Fig. 2). 416 

We observed that BRCA, BLCA and LUAD were the cancer types which showed the 417 

strongest signal in our prioritization score for USP28 phenocopies, with a suggestive 418 

signal in STAD. 419 

 420 

To elucidate the cancer type spectrum of the USP28 phenocopies, we considered the 421 

USP28 amplifications as a negative control (deletions are expected to phenocopy). In 422 

particular, we determined in which tumor types USP28 deletions had a higher TP53 423 

phenocopy score than USP28 copy number amplified samples.  As expected, statistical 424 

significance when comparing the TP53 phenocopy score of USP28 copy number-425 
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neutral tumor samples versus those bearing deletions was higher than comparing 426 

neutral to amplifications. This supports that the impact of USP28 deletions on TP53 427 

loss phenocopy score was stronger than for the amplification CNVs. The strongest 428 

effect was found in BLCA, STAD, BRCA, LIHC and LUAD (Fig. 2E). In further support 429 

of this tissue spectrum, when CRISPR TP53 codependency scores were checked, 430 

highest USP28 scores were found in cancer cell lines originating from BLCA, STAD, 431 

BRCA, LIHC, LIHC and LUAD (Fig. 2E). The leading codependency score was found in 432 

BLCA (Effect size=0.73, p= 2.2e-08) and BLCA also had the most significant value 433 

when comparing deletions to neutral copy numbers TP53 phenocopy score (p=4.2e-06, 434 

Supp Fig. 3G). LUAD had the second most significant codependency p-value 435 

(p=3.78e-6), and is also highly ranked in comparison of phenocopy score between 436 

deletion versus neutral USP28 CNV tumors (Fig. 3F). We found a positive association 437 

between USP28 CRISPR codependency score and the effect of USP28 deletions in 438 

TP53 phenocopying score across cancer types (Supp Fig. 3G). Of note, that the 439 

“oncogene-tumor suppressor” dichotomy of USP28 was reported (43), which might 440 

imply that USP28 amplification could also result in a TP53 phenocopy in certain 441 

contexts. However, our analysis did not support this in the majority of cancer types: out 442 

of 14 cancer types, only 3 of them had a stronger TP53 phenocopy score in USP28-443 

amplified samples than in USP28-deleted samples (Fig. 2E); this was the case for none 444 

of the primary cancer types for USP28 phenocopying (BLCA, STAD, LIHC, BRCA and 445 

LUAD). 446 

 447 

Taken together, these results suggest that USP28 deletion is a novel TP53 phenocopy 448 

that commonly affects major cancer types such as breast cancer (6.2% of total breast 449 

tumors, not counting known phenocopying events and TP53 deletions) and also 450 

bladder, lung, liver and stomach cancer (7.6 %, 7.0%, 3.8% and 2.9% cases).  451 

 452 

 453 

Multiple neighboring genes in a CNA segment can contribute to 454 

a TP53 loss state 455 

 456 

Some of the top hits found in our combined testing approach were near to known TP53 457 

loss phenocopying genes such as MDM2. We thus hypothesized that there exist cases 458 

of ‘collaboration’ of neighboring genes, affected by a single copy-number alteration, 459 

which may bear upon the TP53 loss phenotype. This would represent a special case of 460 

epistasis between two genes, caused by a single alteration that affects both genes. Our 461 

data suggests that the CNOT2 gene, residing in the MDM2 segment in the 462 

chromosome 12q15, is likely an example of this relationship.  463 

 464 

In particular, in our data, MDM2 was frequently co-amplified with CNOT2, in 72% of the 465 

cases of MDM2 amplification (Supp Fig. 4A, check by cancer type at Supp Fig. 4B). 466 

Data from CRISPR and RNAi screening experiments can help resolve associations 467 

from genomic analysis, where effects of neighboring genes are in genetic linkage (here 468 

implying being jointly affected by CNA). No other gene in that neighborhood that was 469 

amplified together with MDM2 had as high CRISPR codependency scores as CNOT2 470 

(effect size=-0.24, p=4.1e-14, Fig. 3A, B); next best gene in the 20Mb neighborhood is 471 

CDK4 with effect size=-0.16, p=3e-7. However, CDK4 is co-amplified with MDM2 in 472 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 2, 2022. ; https://doi.org/10.1101/2022.11.01.514743doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.01.514743
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

 

only 20% of the cases (Fig. 3A).  CNOT2-only amplifications (i.e. without concurrent 473 

MDM2 CNA) do not significantly associate with TP53 phenocopy score (Pearson's 474 

TP53 phenocopy score vs CNOT2 CNV p=0.45, effect size=-0.83, Supp Fig. 4C). More 475 

interestingly, MDM2 CNV was not found to be associated with our TP53 phenocopy 476 

score when MDM2-only amplified without CNOT2 (Pearson´s TP53 phenocopy score 477 

vs MDM2 CNV p=0.57, effect size=0.09, Supp Fig. 4C). On the other hand, MDM2-478 

CNOT2 co-amplifications were significantly associated with a TP53 deficiency 479 

transcriptomic score in tumors (Pearson's correlation TP53 phenocopy score vs MDM2 480 

CNV p=2e-05, effect size=0.41, Supp Fig. 4C). 481 

 482 

This genomic evidence we provide here is supported by recent experimental studies, 483 

indicating a role for CNOT2 in p53-dependent apoptosis, and suggesting therapeutic 484 

potential of CNOT2 suppression (see Supplementary Text S1 for a summary and 485 

references).  As supporting evidence, we considered fitness effects of CNOT2 k.o. by 486 

CRISPR in various subsets of cell lines. The MDM2-gain but CNOT2-neutral genetic 487 

backgrounds had more modest fitness effects of CNOT2 k.o. (median=-0.37) than the 488 

CNOT2-gain but MDM2-neutral genetic backgrounds (median=-0.62; p=0.072 by 489 

Mann-Whitney test, Supplementary Fig. 4D.  Consistently, the CNOT2 k.o. by CRISPR 490 

had stronger fitness effects (median=-0.55) in the TP53 wild-type backgrounds than in 491 

TP53-mutant background cell lines (median=-0.45, p=0.0091 by Mann-Whitney test).  492 

In other words, fitness effects of CNOT2 disruption by CRISPR are conditional upon 493 

MDM2 alterations and TP53 alterations, implicating CNOT2 in a genetic interaction with 494 

the two other genes.   495 

 496 

We hypothesized that this role of CNOT2 in boosting the TP53-phenocopying effect of 497 

MDM2 amplification may be variable across tissues. Our data suggests that in some 498 

cancer types TP53 functional loss seems to rely on amplifications of both genes 499 

together, rather than solely MDM2, but not all (Supplementary Text 2). This suggests a 500 

model where the MDM2-CNOT2 coamplification enhances the TP53 loss effect via a 501 

genetic interaction, and of MDM2 alone but not CNOT2 alone able to generate a TP53 502 

functional loss phenotype. Gene expression profiles match this observation seen in 503 

CNA: having a MDM2 and CNOT2 co-overexpression (over the 97th percentile; n=40) 504 

implies a high mean TP53 phenocopy score (above the 84th percentile, mean 505 

phenocopy score MDM2_CNOT2=0.65, Fig. 3C, Supp Fig. 4F), however less so for a 506 

MDM2-only overexpression (76th percentile; mean MDM2 only=0.46, Fig 3 C, Supp 507 

Fig. 4F), and, expectedly, even less so for a CNOT2-only overexpression (73th 508 

percentile; mean phenocopy score CNOT2 only=0.41).  509 

 510 

This principle might extend beyond the MDM2-CNOT2 pair. For instance, the MSI2 511 

gene, another highly prioritized hit in our combined test (Supp Fig. 4 G, H, I), resides 512 

near the known phenocopying gene PPM1D and thus has the potential to  boost the 513 

effects of the linked amplification of the PPM1D gene to cause a TP53 deficient state. 514 

Considered jointly, these findings suggest the possibility of TP53-loss like phenotype 515 

being a result of multiple phenocopying events generated by a single segmental CNA.  516 
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Figure 3. MDM2-CNOT2 co-amplifications are associated with TP53-loss 517 

phenocopy score. 518 

A. Top: CNV of MDM2 gene neighborhoods (20Mb segment). Y axis represents the 519 

percentage of GISTIC CNV gain states +1 (blue) and +2 (red), compared to neutral CNV 520 

state (0). Bottom: CRISPR TP53-codependency scores (y axis) shown by gene on 521 

chromosome 12 (x axis). Genes labeled have a codependency score <-0.1, suggesting 522 

TP53 phenocopying effects. Color shows the frequency of CNV amplification of each gene, 523 

together with MDM2 amplifications. 524 

B. Co-dependency source data. CRISPR and RNAi fitness effect scores for phenocopying 525 

gene MDM2 and candidate gene CNOT2 (y axis), and fitness effect scores for TP53 in the 526 

genetic screens (x axis). Top plots represent RNAi screening data and bottom plots 527 

CRISPR screening data.  528 

C. Association between MDM2 and CNOT2 gene expression (GE, top) and CNV status 529 

(bottom). Each dot represents a tumor sample, coloured based on the TP53-loss 530 

phenocopy score provided by the classifier. Dashed lines represent the 97th quantile across 531 

genes, for each data type. 532 
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Detecting TP53 loss phenocopies in cancer cell line panels 533 

 534 

It is well known that TP53 mutations associate with overall poorer drug response in 535 

tumors (44–46), consistent with a lower ability of TP53 deficient cells to trigger cell 536 

cycle arrest and/or apoptosis response(47–51).  We hypothesized that, in addition to 537 

conferring a generalized drug resistance, the TP53 function loss may also modulate the 538 

association between certain drugs and their target genes. In other words, we asked 539 

whether in TP53 wild-type cancer cells, for instance, amplification in a particular 540 

oncogene predicts sensitivity to a particular drug, while in TP53 mutant cells the same 541 

amplification does not associate with sensitivity. Cancer cell line screening panels (52, 542 

53) are a convenient system to test this hypothesis, because many drugs were tested 543 

systematically across both TP53 wild-type and mutant cells of multiple cancer types. 544 

Considering TP53 function loss via phenocopy should afford additional statistical power 545 

and clarify the associations discovered; otherwise, some effectively TP53 null cells 546 

would be erroneously considered wild-types during association testing, making it more 547 

difficult to identify associations. 548 

 549 

First, we aimed to generalize our tumor TP53 phenotype classifier to cancer cell lines. 550 

Because cell lines exhibit strong global (i.e. affecting many genes) shifts in gene 551 

expression patterns, compared to their tumor tissue of origin, we applied an adjustment 552 

methodology as in our recent work (54), using the COMBAT tool (55). 553 

Upon adjusting gene expression data from cell lines in the CCLE and GDSC panels to 554 

make it comparable with TCGA tumor data (see Methods), we applied the TP53 555 

classifier and obtained ranked scores. Reassuringly, the classifier assigned a 556 

significantly higher TP53 phenotype score to TP53 mutated cell lines (mean 557 

TP53_wt=0.43, TP53 _mut=0.83, p=1.1e-49 t-test), therefore cell line data served as 558 

an independent validation set for the classifier. Of the 610 cell lines labeled as TP53 559 

mutant based on genomic sequence (see Methods), 87% were classified as TP53-loss 560 

phenotype (Fig. 4A), suggesting a reasonable ability of the classifier trained on TCGA 561 

tumors transcriptomes to generalize to cell line data.  562 

 563 

Similarly, as in tumors, a notable fraction of cell lines were apparent false positives, 564 

labelled as TP53 wild-type by the genomes, but classified as TP53 deficient using the 565 

phenocopy score. We stratified these apparent false positives into a high-confidence 566 

set (“high-confidence set”); the TP53 phenotype score of the TP53 deleted tumor 567 

samples was used as the threshold (see Methods). The high-confidence set was 568 

composed of 76 cell lines (FDR=18%, see Methods, Fig 4 B). Only 79% of the total 569 

number of cells labelled as TP53 wild-type genetically were also classified as TP53 570 

wild-type by the phenocopy score, suggesting that TP53-loss phenocopying events are 571 

common among cancer cell lines. In comparison, this percentage was 77% in cancer 572 

samples.  573 

 574 

 575 
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Some of the apparent false positive cell lines had a MDM2, MDM4 or PPM1D 576 

amplification or a USP28 deletion (43 out of 109, 39% of the high-confidence set). 577 

Samples harboring one of these CNA in known phenocopying genes were assigned 578 

higher scores than the rest of TP53 wild-type cell lines (mean score=0.58 and 0.37, 579 

respectively; t-test p=5.4e-5, Supp Fig.5A). Cells harboring a TP53 deep deletion (90th 580 

percentile of CNA scores) also had higher phenocopy scores than samples without 581 

deletion (mean score=0.78 and 0.33, respectively, t-test p=5.4e-8). 28% of the cell 582 

lines in the high-confidence harbor a TP53 deep deletion (22 out of 76, 90th percentile 583 

of TP53 deletion CNA). These data support that the apparent false positives are often 584 

bona fide TP53 phenocopying events in cancer cell lines. All TP53 phenocopy scores 585 

and cell line functional TP53 status information is provided in Supplementary Data 4. 586 

Figure 4: TP53 loss phenocopy as estimated by the transcriptome score impact 587 

drug sensitivity 588 

A. TP53 functional status classifier, derived from tumors, is applied to cancer cell lines. 589 

Receiver operating characteristic (ROC) curve and area under curve (AUC) are shown.  590 

B. The false discovery rate (FDR) for each cell line is shown as a dot. X axis represents the 591 

phenocopy score threshold at which each cell line would be classified as TP53 functionally 592 

deficient. Yellow horizontal bar represents the range for the high-confidence set t of TP53 593 
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phenocopying cell lines (FDR=0.18, threshold=0.93).  In the top part of the plot, cell lines 594 

harboring deletions of TP53, and amplifications of known phenocopying genes MDM4, 595 

MDM2 and PPM1D are marked. 596 

C. TP53 status - drug sensitivity associations. Each panel represents drugs targeting genes in 597 

a given pathway. Each dot represents an association of a drug with two possible TP53 598 

functional status labels: X axis with the TP53 phenocopy score and Y axis with the TP53 599 

mutational status (“CFE” labels by the GDSC, see Methods). P-values are from a pan-600 

cancer regression of a given drug log IC50 versus the TP53 status. The Y axis represents 601 

the same but using TP53 labels according to GDSC. Associations with FDR<0.25 are 602 

labeled. 603 

D. Distributions of log IC50 values for several example drugs where TP53 status is known to 604 

confer resistance. The X axis illustrates the different categories based on TP53 mutated 605 

status (“Mutated TP53”), wild type TP53 (“Wild type TP53”) and a high TP53 phenocopy 606 

score (“High confidence” ); the “Mutated merge” is a combination of the two. Statistical tests 607 

results comparing the groups (Mann-Whitney test, two-sided) are plotted on top. Median 608 

values are provided inside of each box.  609 

 610 

 611 

Effects of TP53 on general drug resistance are clarified by TP53 612 

phenocopy scores 613 

 614 

Next, we considered the GDSC drug response distributions for various drugs, in light of 615 

the TP53 functional status, as determined by the TP53 mutations, or alternatively by 616 

our TP53 phenocopy scores.  To identify drugs to which response is affected by TP53 617 

mutation status, we predicted drug response (log IC50) values of 449 GDSC drugs 618 

individually, using TP53 status as an independent variable (see Methods).  619 

For most of the tested drugs (105 out of 188 drugs that were significantly associated at 620 

<25% FDR, pan-cancer), the associations with TP53 had a lower FDR when testing 621 

using TP53 phenocopy score, over the TP53 CFE labels (mutations which alter gene 622 

function) (Fig. 4C, effect size at Supp Fig. 5B). For the drugs that affected pathways 623 

related to TP53 functionality, this effect of improved significance by using the 624 

phenoscore was prominent (hits FDR TP53 phenocopy score < TP53 CFE labels: DNA 625 

replication, 12/12 drugs, genome integrity, 8/10, p53 pathway, 3/5, Apoptosis 626 

regulation, 4/6, Cell cycle, 4/7, Supp Fig. 5C).  As a negative control, randomized TP53 627 

labels were not significantly associated with any drug. As a positive control, the drugs 628 

known to be affected by TP53 status such as nutlin-3a (Effect size= 1.48 vs 1.01, p= 629 

6.7e-68 vs 1.2e-44) or bleomycin (Effect size=0.25 vs 0.16, p= 0.009 vs 0.07), exhibit a 630 

stronger association with the TP53 phenotypic score than with TP53 CFE mutation 631 

(Fig. 4C).  632 

We examined the IC50 drug sensitivity values of all drugs together, considering the 633 

different groups of cell lines defined by our TP53 functional status classifier (Supp Fig. 634 

5D). Here, the mean IC50 values of our high-confidence cell lines is more similar to the 635 

TP53 mutated cell-lines than to the TP53 wild-type cell lines. In drugs known to be 636 

affected by TP53 status, such as bleomycin, (Fig. 4D), IC50 values were not notably 637 

different between TP53 mutant and the TP53 phenocopying high-confidence cell lines.  638 

All drug associations effect size and p-value are plotted in Supplementary Figure 6 A, 639 

B. Cancer type-specific associations are shown at Supplementary Figure 6 C. 640 

 641 
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Taken together, the above analyses support the utility of the phenocopy score in 642 

identifying TP53-associated drug sensitivity, and also support that our tumor-derived 643 

classifier is able to generalize to cancer cell line transcriptomes to detect functional 644 

TP53 loss phenotype.  645 

 646 

Associations between drug sensitivity and genetic markers is 647 

modified by functional TP53 status 648 

 649 

A central goal in personalized cancer medicine is to discover actionable mutations, 650 

which are used as genetic markers to decide which therapy to apply. Based on the role 651 

of TP53 mutations in dysregulating various processes relevant to tumorigenesis, we 652 

hypothesized that various druggable cancer vulnerabilities may be conditional on TP53 653 

functional status.  To investigate, a regression was fit to predict activity (log IC50) for 654 

each drug, from cancer type and each cancer gene mutated status (via the CFE 655 

classification, see Methods) and additionally introducing TP53 status (either via TP53 656 

mutation (CFE), or via phenocopy status) as an interaction term. Comparing TP53 657 

phenocopy FDRs against TP53 mutation FDR suggested that use of phenocopy score 658 

allowed to more confidently identify the drug-gene associations where TP53 status 659 

modulates the effect size; see the comparison of FDR values (Fig. 5A), broken down 660 

by pathway that targets the drug. Out of the identified three-way associations (gene x 661 

drug x TP53 status), 34% were found only by using the TP53 phenocopy score, but not 662 

by the TP53 mutation status (Fig. 5A), while for comparison only 15% are uniquely 663 

identified by TP53 mutation status. We provide a tally of all gene-drug associations that 664 

were conditional upon TP53 in Supp Fig. 7A and a by-gene comparison of associations 665 

identified with TP53 phenocopy score labels, versus those identified by TP53 666 

mutational status, in Supp Fig. 7B.  667 

 668 

Next, we aimed to select the more robust associations. To this end, we applied the 669 

“two-way” testing approach to identify replicated drug-marker links (56). In this test, it is 670 

enforced that the drug-gene association replicates across two or more drugs that share 671 

the same target gene or pathway. These were tested separately for specific cancer 672 

types, comparing TP53-deficient versus wild-type cells. Here, this “two-way” test (56) 673 

was further modified to be able to detect interactions with a third factor, the TP53 674 

functional status. As an additional criterion ensuring confidence of associations, only 675 

the hits that appear in more than one cancer type were taken into consideration (as a 676 

trade-off, this will cause highly tissue-specific associations to be missed). Stratifying by 677 

TP53 functional status, we identified a number of drug-gene CFE associations that 678 

were not significant when ignoring the TP53 status (60 % of total, <25% FDR, Supp 679 

Fig. 7 C). This corresponds to a total of 2303 associations of a drug to specific gene 680 

mutational status by cancer type (total number of tests ignoring TP53=486417 versus 681 

n=402945 controlling for TP53 status, Supp Fig. 7D). 133 associations were found in 682 

both approaches, but revealed a lower FDR when considering TP53 stratification 683 

(mean FDR=15% versus =19% if not stratifying=5e-08); all associations from the “two-684 

way” replication test are listed in Supplementary Data 5.  685 

 686 

 687 
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 688 

 689 

 690 

Sensitizing effects of driver mutations on HDAC and ATR 691 

inhibitors are modulated by TP53  692 

 693 

Several studies suggested a role of the drug AR-42 (a HDAC1 inhibitor) in prolonging 694 

p53 life and triggering apoptosis (57, 58). We hypothesized that, if p53 activity is 695 

impaired, this effect of HDAC inhibitors should be reduced. Interestingly, our testing 696 

reveals that mutations in the PIK3CA oncogene are associated with sensitivity to 697 

HDAC1 inhibition in a manner conditional upon TP53 mutation. In other words, when 698 

TP53 is functional, the resistance to HDAC1 inhibitor AR-42 due to PIK3CA mutation is 699 

higher than when TP53 is mutant or otherwise inactivated as indicated by phenocopy 700 

score (TP53 wild-type A PIK3CA_mut regression coefficient test p=0.005, Cohen’s 701 

d=1.3, TP53 mutant PIK3CA regression coefficient test p=0.08, Cohen d=-0.38, Fig. 702 

5B). We would not retrieve this association ignoring TP53 status (test on regression 703 

coefficient only using PIK3CA mutation status p=0.67, Cohen d=-0.08). In particular, in 704 

LUAD the difference in AR-42 sensitivity (median of normalized log IC50 across cell 705 

lines) between PIK3CA mutant and wild-type is hardly evident: 0.26 versus 0.24 706 

respectively, while in TP53-functional LUAD this difference is -0.43 (PIK3CA wild-type) 707 

versus 0.35 (PIK3CA wild-mutant). This response is observed across three different 708 

HDAC inhibitors and in three different cancer types.  AR-42 and belinostat were found 709 

significantly associated with PIK3CA mutation in HNSC+LUSC (here considered jointly 710 

because of known molecular similarities of the cancer types), BRCA, and LUAD cancer 711 

types (Fig 5 B). Similarly, the AR-42 association with PIK3CA mutation was supported 712 

in the HDAC1-targeting drug CAY10603 (Supp Fig. 7E). Furthermore, when we 713 

analyzed an independent drug screening dataset, the PRISM screen (53), we were 714 

able to recover the same associations (Supp Fig. 7E). This example illustrates how 715 

being aware of TP53 functional inactivation status, allows to detect drug-gene 716 

associations that may be specific to the TP53 wild-type or to the TP53 deficient 717 

backgrounds. 718 

 719 

We also noted that the HDAC1i-PIK3CA mutation association (conditional upon TP53 720 

functional status) was only recovered when controlling for TP53 phenocopy score, but 721 

not when using simply the TP53 mutation status (per CFE method, see Methods) as an 722 

interaction term (Belinostat IC50-PIK3CA mutation Mann-Whitney test, in the TP53 723 

mutation wild-type background p=0.13, while in the TP53 w.t. phenocopy labels 724 

background p=0.01, Fig. 5B). This example illustrates how the use of TP53 phenocopy 725 

scores provides additional power to identify drug-gene associations, as already 726 

indicated by the comparison of FDR scores for many associations above (Fig. 5A). 727 

 728 

Recent reports have pointed out the potential therapeutic benefit of ATR inhibitors such 729 

as VE-821 or VE-822 in PTEN-defective breast, glioma and melanoma cells (59, 60). 730 

ATR is a crucial kinase regulating DNA repair and safeguarding genome integrity. ATR 731 

inhibition in PTEN-deficient cells was associated with accumulation of DSBs, cell cycle 732 

arrest and induction of apoptosis (59, 60), thus based on these phenotypes we 733 

hypothesized that the functional status may modulate this effect. Inspecting our data 734 
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supports that the ATR inhibitors VE-821, VE-822, and AZD6738 were associated with a 735 

lower fitness in PTEN-mutant cells of the SKCM, OV, BRCA and DLBC cancers (Fig. 736 

5C, Supp Fig. 7F). This effect was however revealed only when TP53 status was taken 737 

into consideration, since p53 defective cells had an increased survival that obscured 738 

this association (Fig. 5C, Supp Fig. 7F). Significance of the TP53 interaction term was 739 

not reached in this particular example, probably as the number of cell lines with a 740 

PTEN mutation (but TP53 wild-type) was low. Nevertheless, association of ATRi IC50 741 

values was found to be more significant in a TP53 wild type context than in a TP53 742 

deficient context.  This means there was a more robust difference in cell fitness 743 

comparing PTEN-mutated to PTEN wild-type cells in a TP53-proficient background 744 

(TP53 wild-type IC50-PTEN Cohen’s d=-0.41 vs TP53 deficient AZD6738 IC50-PTEN 745 

Cohen's d=-0.05). 746 

 747 

Overall, above we highlighted two examples where TP53 functional status modulates 748 

the association between HDAC1 inhibitors and PIK3CA mutations, and ATR inhibitors 749 

and PTEN mutations.  There were however many other significant three-way 750 

associations involving TP53 status, cancer driver gene mutations (CNA) and drugs 751 

(listed in Supplementary Data 5), for example the association between PIK3R1 752 

mutations and sensitivity to MET inhibitors (Supplementary Fig. 7 G).  753 

 754 

To estimate the importance in considering TP53 in discovering drug associations, we 755 

considered overlap in associations recovered when TP53 status was accounted for 756 

versus associations obtained when TP53 status was ignored. Only 14% of significant 757 

associations of a given molecular target to driver gene alteration status were shared 758 

between two approaches (Supp Fig. 7 F), indicating that considering TP53 status 759 

strongly alters the drug-gene links recovered from statistical testing of drug screens. 760 

The TP53 status-aware testing recovered a higher number of associations (n=12150 761 

versus 7853, both at <25% FDR). We also noted this effect depended on the particular 762 

gene: Drug responses in genes such as KRAS or TP53BP1 are well explained by gene 763 

mutational status alone, not benefitting from TP53 stratification (Supp Fig. 7 G). 764 

Nevertheless, for most of the gene, their drug associations are often more confidently 765 

retrieved when TP53 status was accounted for (e.g. BRAF, HRAS, ATM, APC; n=18 766 

genes total). Overall, the above data suggests that TP53 should be considered when 767 

matching drugs to cancer patients based on the driver mutations in their tumor, and 768 

that this TP53 functional status should ideally be estimated via the phenocopying score 769 

rather than TP53 gene mutations. 770 

 771 
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Figure 5. Associations between drug response and genetic markers are 772 

commonly affected by TP53 functional status 773 

A. Associations of mutations in various genes with antitumour drug sensitivity, controlling for 774 

TP53 status. Each panel represents a pathway targeted by drugs, and each dot represents 775 

a gene - drug - cancer type combination. Associations are conditioned on TP53 status by 776 

including an interaction term in the regression, where the Y axis shows associations using 777 

TP53 mutational status using GDSC labels (TP53 CFEs), while the X axis represents the 778 

same using TP53 phenocopy score-based labels. Yellow-shaded area contains 779 
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associations with FDR<0.25 for TP53 phenocopy labels, and blue-shaded area shows the 780 

same for TP53 CFEs. Total counts of associations in shaded areas are shown in the Venn 781 

diagram.  782 

B. Association of PIK3CA mutation status with HDAC1 targeting drugs (AR-42 and 783 

CAY10603), after controlling for TP53 status. Large plots show the association without 784 

stratification by TP53 labels. “CFE” denotes mutated (1) or wild-type (0) PIK3CA state. An 785 

association p-value is shown on top of each box by Mann-Whitney u-test. Each dot is a 786 

tumor sample belonging to one of the cancer types listed above the panel. Dots are colored 787 

according to TP53 phenocopy score labels. Small panels represent the same association 788 

but upon stratification by TP53 status. Top row, stratification using TP53 phenocopy score 789 

labels; bottom row, using TP53 CFEs (“cancer functional events”, functional mutation 790 

status, see Methods). The X axis represents tumor samples stratified by both the PIK3CA 791 

and TP53 status. PIK3CA CFEs groups refer to PIK3CA stratification (1=mut, 0=w.t) 792 

ignoring TP53 status. Labels are as follows: “CFE:(1/0)X53pred:(1/0)” refers to stratification 793 

of PIK3CA (CFE i.e. driver mutation status) using TP53 phenocopy labels (53pred). “Last 794 

CFE:(1/0)X53cfe:(1/0)” refers to stratification of PIK3CA (CFE) using TP53 mutation labels 795 

(53cfe). “CFE:(1/0)X53pred:(1/0)” refers to stratification of PIK3CA (CFE) using TP53 796 

phenocopy labels (53pred). Lastly, “CFE:(1/0)X53cfe:(1/0)” refers to stratification of PIK3CA 797 

(CFE) using TP53 mutation labels (53cfe) 798 

C. Association of PTEN mutation status with ATR targeting drugs (AZD6738 and VE821), after 799 

controlling for TP53 status.  Organization of the plots matches Fig. 5B, C. 800 

 801 

 802 

 803 

Discussion 804 

 805 

Disabling the master tumor suppressor gene TP53 provides cancer cells with important 806 

advantages such as avoiding cell cycle arrest or apoptosis upon replication stress or 807 

DNA damage. Because TP53 acts as a transcription factor controlling expression of 808 

hundreds of genes, a functional read-out of TP53 activity can be obtained using gene 809 

expression data, both at the level of mRNA or ncRNA, or at the protein level (20-23). 810 

These scores were reported to have potential clinical relevance in predicting cancer 811 

aggressiveness/patient survival and therapy response(22, 23, 61, 62). 812 

In this study, we developed a global transcriptome score of TP53 deficiencies, and 813 

applied it to ~8,000 tumors and ~1,000 cancer cell lines, to answer three questions.  814 

 815 

Firstly, we asked how common are the TP53-mutation phenocopying events across 816 

various human cancers. We estimated a 12% frequency of TP53 loss phenocopies, 817 

compared to a 58% prevalence of TP53 mutant tumors. In some cancer types such as 818 

BRCA and BLCA, the TP53 phenocopies may constitute a high fraction of 19% and 819 

16% tumor samples, respectively, suggesting that the TP53 status of tumors should 820 

preferentially be measured via functional readout (here, transcriptome-wide signature) 821 

rather than considering only mutations.  Supporting this notion, a recent study using a 822 

four-gene expression signature of TP53 activity demonstrated that this significantly 823 

predicts patient survival across 11 cancer types, and that in the majority of those it 824 

performs better than considering TP53 mutations (22). 825 

 826 

Secondly, given the high prevalence of TP53 phenocopies we observed, we asked if 827 

there exist additional genetic events that are associated with these phenocopies. We 828 
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developed a method considering CNA profiles and gene expression in tumors, 829 

integrating external data from CRISPR and RNAi screens, which identified the USP28 830 

gene deletion as a common TP53-loss phenocopying event. This is relevant for at least 831 

five cancer types: BLCA, STAD, BRCA, LIHC and LUAD, and affects 2.9%-7.6% tumor 832 

samples therein. The same statistical methodology also highlighted additional genes 833 

neighbouring the known phenocopies MDM2 and PPM1D -- CNOT2 and MSI2 834 

respectively -- which are often co-amplified with the ‘primary’ gene in the CNA gain 835 

segment and may boost the resulting TP53-loss phenotype. This analysis provides an 836 

example of how molecular phenotypes (here, a transcriptional signature and fitness 837 

effects from a CRISPR screen) can be used to identify multiple causal genes in a CNA 838 

segment.  Analogous genomics methodologies could be applied in future work to 839 

interrogate various recurrent CNA events observed in tumors, for which the causal 840 

gene(s) are often not known with confidence. 841 

 842 

Thirdly, we asked if a better measurement of the TP53 functional inactivation status 843 

may be impactful in terms of predicting response to antitumor drugs based on genetic 844 

markers.  Given that TP53 deficiencies have myriad downstream consequences on the 845 

cell, including e.g.  suppression of cell cycle checkpoints, or inactivation of various DNA 846 

repair pathways (4) it is conceivable that the TP53 background may affect the ability of 847 

various drugs to kill cancer cells, including drugs targeted towards a particular driver 848 

mutation. We searched for three-way interactions involving TP53 status, each drug, 849 

and each mutated cancer driver gene, finding for instance that the TP53 status 850 

modulates the selective activity of HDAC1-inhibitors on PIK3CA-mutant cells. The 851 

associations were filtered to retain those supported in multiple compounds targeting the 852 

same protein or pathway; enforcing agreement across multiple measurements may 853 

allay concerns of reproducibility in cell line screening databases (63–65). Recent work 854 

by us and others (56, 66) has used statistical methods to integrate over various 855 

screening datasets, considering drug and CRISPR genetic screens jointly, to improve 856 

reliability of drug-target association discovery.  Our robustly supported set of drug-857 

target gene links (Supplementary Data 5) that may be modulated by TP53 status 858 

provides a resource for follow-up work to validate the role of TP53 functional status in 859 

modulating particular gene-drug associations.  860 

 861 

The statistical method we employed to identify TP53 loss phenocopying events draws 862 

on the expression levels of 217 genes. Given that the model’s predictive accuracy is 863 

high (demonstrated using cross-validation and application to an independent data set 864 

of cancer cell line transcriptomes), the errors it makes are of interest. While the 865 

apparent false-positives are often TP53 loss phenocopies, as addressed extensively in 866 

this study, it would also be interesting to look into the apparent false negatives in 867 

future. These TP53-mutant tumors classified as wild-type-like by our transcriptome 868 

score were not considered here, because of their relatively modest number, making 869 

statistical analyses difficult. Going forward, analyses of genomes from larger cohorts of 870 

cancer patients may provide enough such examples to reveal mechanisms of re-871 

establishing TP53 activity in certain cancers.  Conceivably, this may happen by 872 

normalizing expression of the TP53-downstream genes which have been dysregulated 873 

by the TP53 mutation; understanding these events may inspire new avenues for 874 

therapy of TP53 mutant tumors. 875 

 876 
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The general approach presented here could be applied beyond TP53 also to other 877 

sorts of phenocopying events which may occur in tumors. For instance, RAS pathway 878 

activation transcriptomic scores were proposed (20), and similarly homologous 879 

recombination repair scores based on mutational signatures (86,87)  Conceivably, 880 

other important cancer pathways may be similarly addressed as well, analyzing their 881 

distribution across tumors to identify possible phenocopying events, as well as their 882 

implications to drug response prediction, as we have done here for TP53 phenocopies. 883 

 884 

 885 

 886 

 887 

Materials and methods 888 

Data collection and preparation 889 

Gene expression and Copy Number Alteration (CNA) data 890 

We downloaded gene expression data (transcripts per million, TPM) from GDC Data 891 

Portal (74) for human tumor samples (TCGA) and from GDSC (52) and CCLE (75) for 892 

cell line samples (CL). We filtered out genes with missing values in more than 100 893 

samples and selected the overlapping genes between cell lines and tumors. Cancer 894 

types with less than 10 samples were filtered out. Low expressed genes were removed 895 

(TPM < 1 in 90% of the samples) and applied a square-root transformation to TPM. 896 

Cancer types. Tumors with less than 10 samples were filtered out. In total, we have 897 

12,419 features for 966 CL samples and 9149 TCGA samples. We collected CNA from 898 

GDC Data Portal (74) for TCGA samples and from DepMap (64) for CL samples. 899 

 900 

Data alignment between tumors and cell lines 901 

In order to later generalize the model to cell lines we proceed to align TCGA and CL 902 

data. For this, we applied ComBat, a batch adjustment method, to account for intrinsic 903 

differences between tumor signal and cell lines signal (55). For the alignment of TCGA 904 

and CL data, we first applied quantile normalization (normalize.quantiles function, 905 

preprocessCore R 1.48.0 package) using tumor data as reference and then applied 906 

ComBat (ComBat function, R package sva 3.32.1). Each group (TCGA, GDSC or 907 

CLLC) was treated as a different batch.  908 

 909 

TP53 status label (according to GDSC) 910 

TCGA Pan-Cancer Atlas somatic mutation data were extracted from the MC3 Public 911 

MAF (v0.2.8) data set (76). We followed the Iorio et al. methodology (24) to determine 912 

bona fide TP53 mutations (0:wild type, 1: mutated). We identify recurrent variants that 913 

are likely to contribute to carcinogenesis. We considered mutated variants: non-914 

synonymous missense mutations, indels (in frame insertions and deletions and out of 915 

frame insertions and deletions), nonsense mutations and specific splice-site mutations 916 

(such as “p.X125_splice”). Samples without any of these mutations annotated were 917 

considered TP53 wild type. Just in 5% of the cases (179 out of 3416) our labels 918 

differed from the ones provided by Iorio et al. In total, we obtained TP53 labels for 7788 919 

TCGA tumors. 920 
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 921 

TP53 score classifiers in human tumors 922 

We used the aligned human tumor data to train a supervised elastic (20-23) net 923 

penalized logistic regression (using cv.glmnet function with alpha = 0.5, R package 924 

glmnet 4.0-2) classifier with cyclical coordinate descendent optimization (77). The 925 

choice of Elastic net penalization aims to deal with two concerns: the large number of 926 

variables can lead to high complexity (overfitting) and the feature multicollinearity.  927 

Elastic net regressions are seen as a good trade-off that benefit from the 928 

dimensionality reduction provided by Lasso penalization while keeping as many 929 

informative variables as possible (Ridge penalization). Of note, these three 930 

regularization methods yielded similar cross-validation accuracy: Elastic net (i.e. 931 

alpha=0.5) AUC 0.960, Lasso (i.e. alpha=1) AUC 0.965, and Ridge (i.e. alpha=0) AUC 932 

0.952, suggesting that the default alpha=0.5 in Elastic net method is a reasonable 933 

choice. The model is trained using RNAseq data (X matrix) to infer TP53 status (Y 934 

matrix). As a reference (Y) during training we used TP53 mutation status labels.  935 

For the training set, we excluded the tumor samples that have an amplification (not 936 

neutral, >0, according to GISTIC CNA thresholded calls downloaded using 937 

FirebrowseR package, Analyses.CopyNumber.Genes.Thresholded function) in 938 

previously known TP53 phenocopying genes (MDM2, MDM4, PPM1D) or a deep 939 

deletion of TP53, to prevent the model from relying too much on dosage effects of 940 

these genes, instead of the downstream response.  941 

In addition, to control for cancer type specific signals we included cancer type as a 942 

dummy variable. To control for class imbalance, we included weights in the classifier. 943 

The model learns a vector of gene-specific weights that better classifies TP53 status. 944 

The score from the models determines the probability of a given tumor of being TP53 945 

deficient. Optimization of the penalized regression formula and further details of the 946 

classifier can be consulted at (77) 947 

 948 

Assessment of the classifier and calculation of FDR score 949 

Using 90% of the training set and 5 balanced folds (balanced based on TP53 950 

mutational state) we performed cross-validation. We measured the performance of the 951 

training set (folds used for training) and the testing set (10% held out). Areas under the 952 

Receiving Operating Curve (AUROC) and the Precision Recall curve (AUPRC) were 953 

calculated for both training (cross-validation) and testing sets. 954 

 955 

FDR was calculated by sample using each sample probability score from the classifier 956 

as threshold for determining positive and negative samples FDR=false positive / (false 957 

positive + true positive). Samples harboring an amplification (GISTIC thresholded 958 

amplifications, FirebrowseR package, Analyses.CopyNumber.Genes.Thresholded 959 

function) of known phenocopying genes (MDM2,MDM4,PPM1D) or TP53 deletions 960 

(GISTIC thresholded deep deletions, FirebrowseR package, 961 

Analyses.CopyNumber.Genes.Thresholded function)) were considered as true 962 

positives when calculating FDR.  963 

 964 

In Figure 1B, density of known phenocopies was calculated using MDM4, MDM2, 965 

PPM1D (amplifications) and TP53 (deletions) CNA over/under the 95/0.05 th quantile. 966 
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All TP53 Phenocopy scores (probabilities of being TP53 dysfunctional) are provided at 967 

Data S2. 968 

 969 

The classifier coefficients were analyzed using the GO enrichment tool ShinyGO (78). 970 

The 12419 genes from the gene expression matrix with a coefficient equal to zero were 971 

used as background. Full classifiers relevant coefficients are provided at Data S1. 972 

The coefficients of the TP53 model should be interpreted with care, for several 973 

reasons: some of these genes may change in expression levels via indirect association 974 

meaning they may not be directly regulated by TP53; the gene set may omit genes that 975 

are bona fide TP53 targets if the information contained in them is redundant with other 976 

genes; and finally these genes may individually be only weakly  associated with TP53 977 

status, since the method optimizes the expression markers’ collective power. 978 

Visualization was performed using Revigo (27). 979 

 980 

TP53 status detection in cell lines 981 

Using the downloadedRNAseq from GDSC cell lines data we applied our trained tumor 982 

classifier to cell lines. As stated above, RNAseq data was square rooted, normalized 983 

and ComBat batch corrected. Cell line prediction performance was measured using as 984 

reference TP53 COSMIC labels (79) combined with Iorio et al methodology (24) as we 985 

did in tumors. FDR was calculated again using samples harboring an amplification of 986 

known phenocopying genes (MDM2,MDM4,PPM1D) or TP53 deletions as true 987 

positives.  988 

 989 

Using the classifier scores we separate the cell lines high-confidence set (FDR<=18%) 990 

using as threshold reference GISTIC tresholded TP53 deep deletions (-2) 991 

(threshold=0.93) (FirebrowseR package, Analyses.CopyNumber.Genes.Thresholded 992 

function). Therefore, we determine 3 sets derived from our Phenocopy score: high-993 

confidence set (predicted TP53 phenocopies, classified as mutant but originally labeled 994 

as wild type), TP53 mutant (classified and labeled as mutant) and TP53 wild type 995 

(classified and labeled as wild type). All cell line predictions are provided at Data S3. 996 

 997 

Due to a lack of positive controls, samples that were classified as wild type being 998 

originally labeled as TP53 mutant were not considered further. However, in the future, 999 

analyses with a higher number of cancer genomes may reveal mechanisms of re-1000 

establishing TP53 activity in some TP53 mutant cancers (e.g. by normalizing 1001 

expression of the TP53-downstream genes which have been dysregulated by the TP53 1002 

mutation). 1003 

 1004 

Gene co-dependency with TP53 knockout/knockdown 1005 

Following data of the 2021 Q4 release downloaded from the DepMap project website: 1006 

CRISPR data from PROJECT Score  (28) (“Achilles_gene_effect.csv”), combined RNAi 1007 

from DEMETER2 project (29) (“D2_combined_gene_dep_scores.csv”), and the cell line 1008 

metadata (“sample_info.csv”). In this data, negative scores imply cell growth inhibition 1009 

and/or death following gene knockout.  1010 

CRISPR data is normalized so non-essential genes scores are close to 0. We used 1011 

Pearson's correlation to correlate the gene effect of CRISPR TP53 knockout in every 1012 
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cell line to other genes' effect. We tested 990 cell lines for our 12419 genes. This score 1013 

was calculated both by pan-cancer and by cancer type. 1014 

Equally to CRISPR codependency data we correlated gene knockdown effect with 1015 

TP53 knockdown effect using Pearson's correlation test. We tested 700 cell lines for 1016 

our 12419 genes. This score was calculated both for pan-cancer and by cancer type. 1017 

 1018 

Calculation of the prioritization score 1019 

We sought to rank possible TP53 loss phenocopying genes testing different data: copy 1020 

number variant data, gene expression data (RNAseq), RNAi codependency score and 1021 

CRISPR codependency score. We used the downloaded tumor data (previously 1022 

described) and our TP53 Phenocopy score to test for differences across our 3 main 1023 

TP53 groups: TP53 wild type (labeled and classified as wild type), TP53 mutated 1024 

(labeled and classified as mutated) and predicted TP53 phenocopied(labeled as wild 1025 

type but classified as mutated). We guessed that phenocopying genes should have a 1026 

differential expression in the phenocopies group when comparing to wild type and 1027 

mutated TP53 groups individually. We tested 12419 genes (by cancer type) in the 1028 

following manner (via Student's t-test): 1029 

 1030 

� CNV_gene(i)_TP53_wt versus CNV_gene(i)_TP53_phenocopies (CNV0 test), 1031 

� CNV_gene(i)_TP53_mut versus CNV_gene(i)_TP53_phenocopies (CNV1 test) 1032 

� GE_gene(i)_TP53_wt versus GE_gene(i)_TP53_phenocopies (GE0 test) 1033 

� GE_gene(i)_TP53_mut versus GE_gene(i)_TP53_phenocopies (GE1 test) 1034 

� RNAi_score_gene(i) versus RNAi_score_TP53 (RNAi codependency score, 1035 

methodology described above) 1036 

� CRISPR_score_gene(i) versus CRISPR_score_TP53 (CRISPR codependency 1037 

score, methodology described above).  1038 

 1039 

3010 genes out of 12419 did not have gene expression data so GE1 and GE0 tests 1040 

were omitted from the combination for those genes. We combined the p-values values 1041 

from the tests by cancer type using Fisher's method for combining p-values. For each 1042 

category (CNV and GE) we only use in the combination the worst p-value (max) 1043 

between CNV0 and CNV1 and GE1 and GE0 as a way of controlling. Genes in which 1044 

the test direction is not coherent in CNV, GE and codependency score were dropped. 1045 

A gene with a negative codependency score, as negative regulators such as MDM2, is 1046 

expected to cause a phenocopy of TP53 by amplification and overexpression 1047 

(therefore a higher expression in the phenocopies group that TP53 wt or mut). P-values 1048 

were FDR adjusted using Benjamini-Hochberg method (p.adjust function of the stats 1049 

package). We further merged each cancer type combined score into one single FDR 1050 

value using Fisher's approach. That way we obtained the final Prioritization score for 1051 

each gene in a cancer-combined way. We set as reference the known phenocopies 1052 

(MDM2, MDM4, PPM1D) FDR and CRISPR codependency score. To establish a 1053 

stringent threshold for new possible phenocopying genes, we determine that the gene's 1054 

prioritization score (combined by cancer type) should have an FDR as significant as the 1055 

best ranked phenocopying gene (by cancer type). Same was applied for CRISPR 1056 

codependency score. The known phenocopying genes with the best score by cancer 1057 

type was MDM4 in LUAD, with an FDR of 4e-05 and a CRISPR codependency score of 1058 

-0.26.  1059 
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 1060 

TP53 wild-type and TP53 -/- isogenic cell line screens 1061 

Mean beta scores were calculated using MAGeCK-MLE (80) for TP53-isogenic pair cell 1062 

lines A549 (81) and two RPE1 cell lines (82, 83). Beta scores represent the effect that 1063 

gene knock-out has on cell fitness. 1064 

We calculated the Z-scores (distance from the mean expressed as number of standard 1065 

deviations) of either USP28 or ATM within the distribution of their respective neighbor 1066 

genes, for each dataset and TP53 status "1Mbp neighbor genes" are genes present in 1067 

Brunello (84) and Gecko v2 (85) libraries and located within a 1Mbp window 1068 

surrounding either USP28 or ATM, obtained from genecards.weizmann.ac.il 1069 

 1070 

Drug response associations with TP53 status 1071 

We collected GDSC (24) drug data for a total of 1000 cell lines. We used IC50 as a 1072 

measure of activity of a compound against a specific cell line. If drug data was 1073 

available in both GDSC1 and GDSC2 versions, GDSC1 data was selected. 1074 

We also collected each drug putative target and target pathway information from the 1075 

GDSC website (https://www.cancerrxgene.org/). We filtered out NA values and 1076 

transformed IC50 to log scale. We downloaded GDSC mutational Cancer Functional 1077 

Events (CFEs) (24) in order to: make comparisons between TP53 Phenocopy score 1078 

and GDSC TP53 CFEs and to test other gen status drug responses controlling for 1079 

TP53 status. Mutational CFEs consist of a GDSC curated set of cancer genes (CGs) 1080 

for which the mutation pattern in whole-exome sequencing (WES) data is consistent 1081 

with positive selection.  1082 

We first used drug response (IC50) values of 449 GDSC drugs to fit a pan-cancer 1083 

regressions against TP53 status using cancer type as control variable. We fit three 1084 

different regressions per drug response: against TP53 CFEs, against predicted TP53 1085 

Phenocopy thresholded scores and against TP53 random labels.  1086 

log(IC50) ~ TP53.status + cancer.type 1087 

For the TP53 status we used the groups obtained from our Phenocopy score being the 1088 

TP53 high-confidence set (classified as mutant, labeled as wild-type) and TP53 mutant 1089 

set (classified as mutant, labeled as mutant) the TP53 deficient set (TP53.status = 1) 1090 

and TP53 wild type (classified as wild-type, labeled as wild-type) as wild type set 1091 

(TP53.status = 0). Due to uncertainty, we filtered out samples with a TP53 mutation 1092 

classified as wild-type. Cancer types with less than 3 cases for any category were 1093 

filtered out. We used the esc R package to calculate effect size (cohens_d function). P-1094 

values of associations were FDR corrected using the Benjamini-Hochberg (“fdr”) 1095 

correction of the p.adjust function (stats package).  1096 

 1097 

We separate the drugs into groups according to the pathway the gene they target 1098 

belong to. By pathway, we calculated the slope resulting from the comparison of the 1099 

FDR Phenocopy score regression versus the FDR TP53 CFEs. For visualization we 1100 

plotted raw IC50 values of different drugs and all drugs together across the different 1101 

cell line defined sets. For further analysis, we merged the cancer types that were 1102 

similar: HNSC with LUSC (jointly known as HNSC_LUSC), GBM with LGG 1103 

(LGG_GBM) and OV with UCEC (OV_UCEC).  1104 
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 1105 

 1106 

Drug response associations of gene status controlling for TP53 status 1107 

We collected drug screening data from the PRISM project (53) and GDSC project (52). 1108 

NA values were filtered out and IC50 values were transformed to logarithmic scale. We 1109 

downloaded mutation features (GDSC mutational CFEs, see above) from (24).  1110 

 1111 

First, we fit a regression for each drug and gene CFE including TP53 loss Phenocopy 1112 

score and the interaction term as it follows: 1113 

log(IC50) ~ genCFEs+TP53Phenocopy.status+genCFEs∗TP53Phenocopy.status 1114 

For comparison, we performed the same analysis using TP53 random and TP53 CFEs 1115 

instead of TP53 Phenocopy.status.  1116 

We tested every gene mutational CFEs out of the 300 genes provided by GDSC. We 1117 

filtered out cases with lss than 3 samples in any category (mutated:1 or wildtype:0) for 1118 

TP53 status and gen CFEs. Regressions were fitted by cancer type using glm package 1119 

(glment 4.0-2 R package). We selected genCFEs p.value and FDR correct using the 1120 

Benjamini-Hochberg (“fdr”) correction of the p.adjust function (stats R package). The 1121 

coefficient of the genCFEs variable informs us about the fold change of the different 1122 

variable states (mutant:1-wildtype:0) when TP53Phenocopy.status is set to its 1123 

reference levels (wildtype:0). We compared these scores when using TP53 Phenocopy 1124 

to TP53 CFEs by plotting FDR values and calculating slope (Figure 5 A, 1125 

Supplementary Figure 7 A).  1126 

 1127 

 1128 

Two-way association tests 1129 

To further analyze TP53 interaction in a more stringent way we implemented a version 1130 

of the “two-way association test” approach developed by Levatic et al (56). In this 1131 

methodology we enforced that, for a given drug, an association between a gen feature 1132 

(GDSC gen mutational CFEs) and GDSC drug response is reproduced in other drugs 1133 

with the same molecular target (controlled by TP53 status as an interaction).  1134 

 1135 

For this, we curated 996 sets of two drugs with the same target (ie: Dabrafenib and 1136 

AZ628, target=BRAF).  For the two drugs separately, we fitted a regression comparing 1137 

the GDSC drug response against gen status (GDSC mutational CFEs) controlling for 1138 

TP53 status (as stated above) by cancer type. We tested the different labels in the 1139 

regression: TP53 CFEs, TP53 Random labels and TP53 Phenocopy labels. We 1140 

considered associations by cancer type. We calculated the two-way association score 1141 

by averaging the estimates (effect size) obtained between drug 1 and drug 2. To 1142 

calculate the p-value for each drug-drug combination, we shuffled the TP53 labels and 1143 

compared the obtained random estimates with the actual estimate as described in our 1144 

previous work (56).  1145 

 1146 

For an association to be selected, we require that it is observed in more than one 1147 

cancer type (merged cancer types excluded), FDR<25% across all cancer types where 1148 

the hit is observed and that the direction (value from gen CFEs variable estimate) is 1149 
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maintained across drugs. When selecting relevant hits we also required that each hit 1150 

TP53 interaction term variable in regression is significant (FDR<25%). This informs us 1151 

of deviation from the behavior of the regression variables gen_status=1 and 1152 

gen_status=0 when TP53 is controlled as interaction. We filtered out cases with less 1153 

than 3 samples in any category (mutated:1 or wildtype:0) for TP53 status and gen 1154 

CFEs in a cancer type manner. Supported hits by this methodology are reported at 1155 

Figure 6 B C, Supplementary Figure 7 C, D and E and in Supplementary Data 5. 1156 

In addition, as a validation for some hits we performed a “two-way” using PRISM data. 1157 

In this case we enforced that, for a given drug, an association between a gen feature 1158 

(GDSC gen mutational CFEs) and GDSC drug response is reproduced in the same 1159 

drug using the PRISM dataset. The rest of the methodology was applied in the same 1160 

manner (see GDSC “two-way test” above). 1161 

 1162 

As control, we followed the same procedure of the two-way testing method but fitting 1163 

regressions of IC50 ~ gen CFEs (without interaction term). FDR corrected p-values of 1164 

gen CFEs coefficient in regressions with and without interaction term were compared. 1165 

We made different types of comparisons: by gene associations (Supplementary Figure 1166 

7 B), molecular target-gen CFEs associations (different 2-sets of drugs can target the 1167 

same molecular feature) and all associations (Supplementary Figure 7 A) 1168 

 1169 

 1170 
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Supplementary material 1482 

 1483 

Supplementary Text 1.   1484 

CCR4-NOT is a transcription complex (CNOT), composed of 11 subunits, that plays an 1485 

important role in multiple functions in terms of regulating translation, mRNA stability, 1486 

and RNA polymerase I and II transcriptions (67,68). CNOT2, one of the CCR4-NOT 1487 

subunits, plays a critical role in deadenylase activity and the structural integrity of the 1488 

complex (69) among other functions. An increasing number of studies have suggested 1489 

CNOT2s role in tumor progression, such as in metastasis, proliferation and 1490 

angiogenesis (70, 71). CNOT2 depletion and CCR4-NOT disruption have been linked 1491 

to an apoptotic response via MID1IP1 and increased p53 activity (70, 72) . CNOT2 has 1492 

been reported to be among the top 5 amplified genes in chromosome 12, together with 1493 

MDM2 (73). Appealingly its overexpression has been demonstrated in several cancer 1494 

types such as pancreas, prostate, liver, urinary, ovarian and breast (71). Experiments 1495 

inducing CNOT2 overexpression led to increased p21 and p53 expression, decreased 1496 

apoptosis and decreased TNF-related apoptosis-inducing ligand (TRAIL) sensitivity 1497 

(72, 73).  1498 

 1499 

Supplementary Text 2. 1500 

 1501 

In BLCA, co-amplifications are associated with a higher TP53 phenocopy score, and 1502 

are more frequent than MDM2-only amplifications (21 out of 32 are co-amplifications, 1503 

Supp Fig. 4E). In BRCA, we found almost exclusively MDM2-CNOT2 co-amplifications 1504 

and no MDM2 only amplifications. In STAD co-amplifications of MDM2 and CNOT2 are 1505 

more frequent (10 out of 13) than MDM2 solely. Just GBM was found to rely more on 1506 

MDM2 only amplifications (8 out of 14, Supp Fig. 4E).  1507 

Only 3 tumor samples were CNOT2 amplified but MDM2-non amplified (all 3 having a 1508 

TP53 phenocopy score lower than 0.5, Supp Fig. 4E). No cancer type relied on CNOT2 1509 

only amplifications. 1510 

 1511 

 1512 

Supplementary Data are attached as separate files. 1513 

Supplementary Data 1 - TCGA TP53 Phenocopy scores 1514 

Supplementary Data 2 - Gene coefficients 1515 

Supplementary Data 3 - USP28/ATM fitness effect 1516 

Supplementary Data 4 – Cell lines TP53 Phenocopy scores 1517 

Supplementary Data 5 - Two-way associations 1518 
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Supplementary Figures 1-7 are given in a separate document. 1520 
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