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Abstract

Introduction: While blood parasites are common in many birds in the wild, some groups seem to be much less
affected. Seabirds, in particular, have often been reported free from blood parasites, even in the presence of
potential vectors.

Results: From a literature review of hemosporidian prevalence in seabirds, we collated a dataset of 60 species, in
which at least 15 individuals had been examined. These data were included in phylogenetically controlled
statistical analyses of hemosporidian prevalence in relation to ecological and life-history parameters. Haemoproteus

parasites were common in frigatebirds and gulls, while Hepatozoon occurred in albatrosses and storm petrels, and
Plasmodium mainly in penguins. The prevalence of Haemoproteus showed a geographical signal, being lower in
species with distribution towards polar environments. Interspecific differences in Plasmodium prevalence were
explained by variables that relate to the exposure to parasites, suggesting that prevalence is higher in burrow
nesters with long fledgling periods. Measures of Plasmodium, but not Haemoproteus prevalences were influenced
by the method, with PCR-based data resulting in higher prevalence estimates.

Conclusions: Our analyses suggest that, as in other avian taxa, phylogenetic, ecological and life-history parameters
determine the prevalence of hemosporidian parasites in seabirds. We discuss how these relationships should be
further explored in future studies.

Introduction
Birds are infected by a number of intracellular blood

parasites, including Haemosporidia of the genera Plas-

modium, Haemoproteus and Leucocytozoon, Haemogre-

garinidae of the genus Hepatozoon and Piroplasmida of

the genus Babesia. These blood parasites can exert

important selection pressure on their hosts through

effects on survival [1-3], on reproductive success [e.g.,

[4-8]], on plumage colouration [e.g., [9,10]], with impor-

tant ecological and evolutionary consequences, such as

changes in community structure [e.g., [11]].

The rate of infection varies greatly among different

bird orders [e.g., [12,13]], but the reasons for the wide

taxonomic variation in parasite prevalence or diversity

are still poorly understood [14,15]. While some avian

taxa are heavily affected, apparent absence or scarcity of

blood parasites has been reported from others [see

[16,17]], especially in avian groups such as seabirds [e.g.,

[18-22]], swifts [23], waders [24] and parrots [25].

In addition to the apparent phylogenetic bias in the

incidence of parasitic infections among bird taxa, there

is also some evidence that blood parasites are less com-

mon in certain habitats such as the Arctic tundra [e.g.,

[26]], arid environments [e.g., [27,28]], island environ-

ments [e.g.,[29]] or marine environments [e.g., [30-32]].

Several hypotheses have been proposed to explain this

absence [16], such as the absence or scarcity of proper

vectors, a highly specific association between host and

parasites with host switching being infrequent (host-

parasite assemblage), host immunological capabilities

preventing infection by parasites, and competitive exclu-

sion of blood parasite vectors mediated by ectoparasites.

A number of comparative studies have analysed pat-

terns of blood parasite prevalence across bird taxa, with

the aim to understand how the selection pressure from

parasitism is linked to ecological and evolutionary traits

of their hosts [e.g. [3,14,15,33]]. In the present study, we

review information on blood parasites in seabirds. Using
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phylogenetically controlled statistical analyses we tested

if blood parasite prevalence in seabirds is related to the

following factors: 1) historical/phylogenetic factors, 2)

life history parameters, and 3) ecological parameters.

Results
Literature review

From the 113 seabird species listed in Table 1, parasitic

infections by hematozoa were found in 31 species (27%).

This was similar to the percentage of infected species

reported in 60 species with at least 15 individuals

sampled (20 species or 33%, c2 = 0.18 d.f. 1, P = 0.669).

The prevalence of multiple infections was very low, as

only five host species were reported infected by more

than one parasite genus (Additional file 1: Table S1):

Fjordland crested penguin Eudyptes pachyrhynchus (2),

little penguin Eudyptula minor (2), African penguin

Spheniscus demersus (3), magnificent frigatebird Fregata

magnificens (2) and yellow-legged gull Larus cachinnans

(2). The other 25 species in which infections were found

only had a single kind of parasite. The proportion of

species infected differed between bird families (Table 1),

from complete absence in some groups such as cormor-

ants (7 species studied), skuas (5 species) and auks (3

species) to 100% of species and populations infected in

frigatebirds (4 species studied so far). The average pre-

valence of haematozoa across all studies here reported

(N = 231 studies, or 6,656 adults and 1,143 chicks, see

Additional file 1: Table S1) was 8.5% (blood smears,

PCR and ELISA combined) or 5.7% (based on blood

smears only).

The occurrence of haemoparasites increased from

polar to tropical seabirds (c2 = 10.6, d.f. = 3, P = 0.031).

Blood parasites were absent from Antarctic and arctic

seabirds (N = 15 species). In the Sub-Antarctic islands,

5 of 21 seabird species (24%) studied were found to

have haemoparasites, while 18 of 57 temperate seabird

species (32%) and 11 of 25 tropical seabirds (44%) had

at least one record (see Additional file 1).

Phylogenetically controlled analysis

Figure 1 shows phylogenetic associations among species

in the study and the information on the presence of

parasites for those species. Even though visual inspec-

tion suggests phylogenetic clustering of the incidence of

parasitism among the different taxa of seabirds (Figure

1), the results of the phylogenetic autoregression ana-

lyses did not support this, as interspecific variation in

parasite prevalence of the main genera of haematozoa

was not explained by phylogenetic associations among

species (Haemoproteus: rho = -0.13, P = 0.292; Plasmo-

dium: rho = -0.21, P = 0.649; Hepatozoon: rho = -1.52,

P = 0.729). Due to the low prevalence, it was not possi-

ble to include Babesia in this analysis.

We included the two most commonly observed para-

sites (Plasmodium, Haemoproteus) into phylogenetically

Table 1 Seabird families, sorted by increasing parasite prevalence

Family (no.
species)

species
studied

species
infected

Mean prevalence
(no. studies)

Plasmodium Haemoproteus Leucozytozoon Hepatozoon Babesia

Pelecanoididae (4) 1 (25%) 0 0 (N = 1) - - - - -

Phaethontidae (3) 3 (100%) 0 0 (N = 7) - - - - -

Pelecanidae (8) 1 (13%) 0 0 (N = 2) - - - - -

Stercorariidae (7) 5 (71%) 0 0 (N = 8) - - - - -

Alcidae (22) 3 (14%) 0 0 (N = 4) - - - - -

Procellariidae (72) 16 (22%) 2 (12%) 0.1% (N = 28) P. sp. (2) - - - -

Phalacrocoracidae
(32)

8 (25%) 1 (12%) 1.3% (N = 13) - - L. vanden-
brandeni (1)

- -

Hydrobatidae (20) 4 (20%) 1 (25%) 3.3% (N = 6) - - - H. sp. (1) -

Spheniscidae (19) 19 (100%) 6 (32%) 14.4% (N = 64) P. relictum (5),
P. sp. (1)

- L. tawaki (2) - B. peircei
(2)

Sulidae (10) 6 (60%) 2 (33%) 7.1% (N = 12) - H. sp. (1) - - B. poelea
(2),

B. sp. (1)

Diomedeidae (14) 7 (50%) 4 (57%) 7.8% (N = 14) - - - H. albatrossi
(4)

-

Lariidae (92) 36 (18%) 7 (59%) 9.2% (N = 59) P. sp. (1) H. larae (5),
H. passeris (1),

H. sp. (4)

- - B.
bennetti

(1)

Fregatidae (5) 4 (80%) 4 (100%) 27.7% (N = 7) - H. iwa (3),
H. sp. (1)

- - -

All seabirds (453) 113 (25%) 31 (27%) 8.4% (N = 224) ≥ 1 spp. ≥ 3 spp. 1 spp. ≥ 1 spp. ≥ 3 spp.

Species infected as percentage of species studied. No data were found for sheathbills Chionididae (2 species) and skimmers Rynchopidae (3 species). For details

and sources, see Table S1 in Additional file 1.
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controlled analyses of hemosporidian prevalence in rela-

tion to ecological and life-history parameters. Given

their low prevalence, it was not possible to include

blood parasites from genera Hepatozoon and Babesia in

this analysis.

Inter-specific differences in Plasmodium infections

were explained by variables that relate to the exposure

to parasites, suggesting that burrow nesters and species

with longer nestling periods were more likely to harbour

Plasmodium (Table 2), and the Plasmodium prevalence

was also higher in burrow nesters. Method had a signifi-

cant influence on the proportion of infected individuals

detected, with higher prevalences for PCR-based data

(Table 2).

The presence/absence of infections by Haemoproteus

was not associated with any of the ecological or life his-

tory parameters considered in the study. However, a

latitudinal trend was observed in the proportion of

Figure 1 Phylogeny of seabird species and hemoparasite infections. The clasification includes species for which at least 15 individuals have
been sampled for blood parasites, using blood smears or molecular methods. Colour marked are those species which were found to be
infected with Hepatozoon (blue), Plasmodium (red) and Haemoproteus (yellow). The apparent phylogenetic clustering was, however, not
statistically significant.
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individuals infected by Haemoproteus (i.e. prevalence),

with higher number of individuals infected in species

with tropical distribution (Table 3). Method did not

influence measured Haemoproteus prevalences (Table 3).

Discussion
In the present study, we summarize the available infor-

mation on the prevalence of haematozoa of the genera

Plasmodium, Haemoproteus, Leucocytozoon, Hepatozoon

and Babesia in seabirds. As previously suggested [e.g.,

[18-21]], our review underlines that in general, the inci-

dence of blood parasitic infections is low in seabirds

(Table 1 Additional file 1). The average prevalence of

haematozoa across all seabird species studied (Addi-

tional file 1: Table S1) was 8.7%, compared to 26% in a

sample of 14,812 European passerines [14].

Blood parasites and climate

Blood parasites were absent from all Antarctic and arc-

tic seabirds, and the occurrence increased in milder cli-

mates. This finding is in line with previous studies [34]

that noted that blood parasites present in sub-Antarctic

islands were absent in Antarctica and suggested that

this mirrors the absence of suitable vectors in Antarctica

[19]. Latitudinal gradients in the prevalence of blood

parasites have also been found in other bird species [e.g.

[35]], and even in within-species patterns. For example,

shorebirds migrating through Europe were free from

infections while their conspecifics did show infections in

tropical Africa [36].

Haematozoa are transmitted to their vertebrate host

through arthropod vectors. Although still a great deal of

data about the biology and ecology of various vector

species is missing, some authors have suggested that the

limit of the distribution of vectors such as mosquitos

and sandflies corresponds to the 10°C annual isotherm

[e.g., [37]]. Furthermore, for species that hibernate at

the larval stage, the -1°C winter isotherm is decisive for

their distribution since larvae that freeze do not survive.

Thus, vectors would be absent at high latitudes, and

more common with higher temperatures, and this is

reflected in the distribution of blood parasites in the

seabird hosts. Within genera, the present analysis sug-

gested that the prevalence, i.e. the percentage of indivi-

duals infected with Haemoproteus, was higher in species

in more tropical environments, but this was not the case

for Plasmodium. Given the relatively low detection

probability of Plasmodium based on blood smears, it is

possible that a geographical pattern is not apparent

unless more PCR based studies are undertaken. But dif-

ferences in the biology of the vectors might also explain

this difference in the distributon of Haemoproteus and

Plasmodium. While Plasmodium is transferred by mos-

quitoes (Culicidae) and, at least in reptiles, also by sand-

flies (Psychodidae), Haemoproteus is transferred by louse

flies (Hippoboscidae) and biting midges (Ceratopogoni-

dae). Some studies have shown an important effect of

temperature on activity and host location by these

insects [see [38,39]]. However, the identity of vectors is

unknown in most avian and, to our knowledge, all

Table 2 Parameter estimates of phylogenetically informed GLS models and GEE models for Plasmodium

Variables in best-fit model Prevalence (GLS)
N = 60 spp. (PCR data included, method included in model)

Presence/absence (GEE)
N = 60 spp. (PCR data included)

Ecological parameters

Nesting (burrow = 1, others = 0) 0.063 ± 0.026, P = 0.018 3.408 ± 0.977, P = 0.004

Foraging (0 = nearshore, 2 = offshore) - 0.014 ± 0.014, P = 0.301

Life-history parameters

Mean fledging period (days) 0.042 ± 0.060, P = 0.490 5.949 ± 2.045, P = 0.011

Method (smears or PCR) 0.051 ± 0.018, P = 0.006

Means ± s.e. are given. Only variables retained in the best-fit models are presented in the table. Excluded variables: body mass, chick development, maximum

clutch size, mean incubation period, distribution

Table 3 Parameter estimates of phylogenetically informed GLS models and GEE models for Haemoproteus

Variables in best-fit model Prevalence (GLS)
N = 60 spp. (PCR data included, method included in model)

Presence/absence (GEE)
N = 60 spp. (PCR data included)

Ecological parameters

Distribution (1 = polar, 9 = tropical) 0.023 ± 0.010, P = 0.025 0.287 ± 0.209, P = 0.191

Life-history parameters

Mean fledging period (days) -0.128 ± 0.155, P = 0.413 -1.389 ± 2.00, P = 0.499

Method (smears or PCR) -0.013 ± 0.049, P = 0.786

Means ± s.e. are given. Only variables retained in the best-fit models are presented in the table. Excluded variables: Body mass, Nest site, Foraging, chick

development, Maximum clutch size, Mean incubation period
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seabird studies, and we can expect better insight into

parasite distribution from studies of arthropod vectors.

For example, ticks (Ixodidae) were generally thought to

be the vector for Hepatozoon, but one study indicated

that fleas can also serve as a vector [40].

Blood parasites and seabird phylogeny

The most common parasites found in seabirds were

Haemoproteus and Plasmodium (Additional file 1: Table

S1), similar to passeriformes [14]. Hepatozoon occurred

in albatrosses and storm petrels, and Plasmodium

mainly in penguins, while Haemoproteus were especially

common in frigatebirds and gulls (Table 1). In this con-

text, it may be relevant that many gulls are adapted to

exploiting inland and human-modified or urban envir-

onments. These environments may harbour a higher

vector density than saline environments [31]. However,

the apparent difference among seabird families, though

not statistically significant, also suggests a role of immu-

nocompetence in preventing Haemoproteus infection in

marine birds [16]. This possibility should be analyzed

again when data of more seabird species become avail-

able. Babesia was found in different unrelated seabird

species, suggesting the possibility that these infections

result from several independent colonization events [e.g.

[41]].

Blood parasites and life-history parameters

In line with the finding that avian Plasmodium and their

vectors are distributed worldwide except in extreme

habitats [12], the occurrence and prevalence of Plasmo-

dium infections was independent from the host distribu-

tion. However, inter-specific differences were explained

by life-history variables that relate to the exposure to

parasites, with Plasmodium occurrence and prevalence

being higher in burrow nesters and occurrence also in

seabirds with long nestling periods (Table 3).

Studies in other avian taxa have also suggested that

exposure time to vectors is the main factor explaining

differences in malaria prevalence: Similar to the present

results, parasite species richness in 263 bird species

from the Western Palearctic was positively associated

with the duration of the nestling period [15]. Moreover,

the Plasmodium prevalence was associated with the

duration of the nestling period [15]. All these data may

be indicative of the need of a long exposure time to vec-

tors in nests to allow infection by Plasmodium and/or

that infections by this parasite occur mainly during nest-

ling stage or nest attending activities.

Moreover, adult shorebirds also showed higher malaria

prevalence, suggesting that infection probability

increases with cumulative exposure [36]. This is also

partially supported by the non-significant tendency for

infections being more frequent in birds foraging near-

shore, as those expending more time in the vicinity of

land are probably more exposed to vectors. Habitat fea-

tures related to vector availability are also important,

and have been used to explain higher or lower blood

parasite prevalences in species breeding in forested habi-

tats [33,35,42].

We here found breeding habitat type (burrow) and

exposure time at the nest (fledging period) explaining

variation in Plasmodium but not Haemoproteus infec-

tions. This might reflect the habitat needs for the differ-

ent vectors such as mosquitoes (Culicidae) and sandflies

(Psychodidae) for Plasmodium and louse flies (Hippo-

boscidae) and biting midges (Ceratopogonidae) in Hae-

moproteus. For example, sandfly larvae often inhabit

damp places containing organic matter such as cracks in

walls or rock and animal burrows, where they feed on

dead organic matter. Adults are blood suckers, but to

our knowledge, the actual vectors for Plasmodium infec-

tions in seabirds are not known, and other arthropod

larvae might have similar habitat requirements. The pre-

sent analysis therefore strongly suggests that the vectors

of seabird blood parasites deserve further study if we are

to understand distribution patterns.

Previous phylogenetically controlled comparative stu-

dies have further identified body mass [14,15,43] and

embryonic development period [15,33] as explanatory

variables for parasite prevalence. The latter might be

due to enhanced immune performance in more slowly

developing birds with longer embryonic development

periods [44]. Although no such relationship was found

in the present study, the overall low prevalence across

the generally long-lived, slowly developing seabird taxa

strongly suggests that such a mechanism also works in

seabirds. It should also be noted that the relationship

was not found for any parasite genus analysed separately

in Western Paleartic birds [15].

Slightly different variables enter in the best-fit models

predicting interspecific variation in parasite impact in

seabirds, when the dependent variable is parasite preva-

lence (continuous variable) or the presence/absence of

infections (categorical variable). These differences might

be due to the fact that the analyses with the variable

presence/absence ignore variation among infected spe-

cies (as they are all scored as 1), and also stress the

need for more data to obtain more robust patterns

across species. Alternatively, the differences might be

explained by traits concerning the life cycle of blood

parasites or their vectors, which deserve more study.

Conclusions
In summary, seabirds are long-lived with a relatively

slow-life history and low rates of haemoparasite infec-

tion. Partly owing to the scarcity of infection, no com-

parative information on parasite prevalences had been
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reported so far for most seabird taxa. The present

results show that multiple factors are responsible for

patterns of association between parasitic infections and

ecological and life history traits in seabirds. Life history

parameters and ecological parameters that show some

correlation with parasite abundance seem to be asso-

ciated to the abundance and/or life cycle requirements

of specific vectors. The findings on nesting habitat and

exposure time, in particular, are well in line with studies

across avian taxa. To better understand the underlying

ecological relationships, however, efforts are now needed

to identify the arthropod vectors and gain a better

knowledge of their distribution and biology.

Historical/phylogenetic factors also play a role, as indi-

cated by the high prevalence of Haemoproteus in gulls

and frigatebirds, the apparent confinement of Hepato-

zoon to albatross and storm-petrel species, and the high

prevalence of Plasmodium in penguins. Studies of the

phylogentic relationships of these parasites will be

instructive in order to understand the evolution of such

host-parasite associations.

Methods
Literature review

In first reviews on infections by the main genera of hae-

moparasites in different bird species [45,46] as well as

later updates [e.g., [13,47]] no data on prevalence or

sample sizes were given, and many data from birds in

captivity were included. In our present review (Addi-

tional file 1), we included only data of studies on wild-

caught birds. We checked all the original references for

this point, and references of birds of uncertain origin (e.

g. bird rescue stations) were not included. Prevalence of

current or past infections is measured as the proportion

of individuals infected with haematozoa, recorded either

by microscopic inspection of blood smears or by mole-

cular methods that detect antibodies (ELISA) or genetic

material of the haematozoa (PCR).

In the last decade, numerous studies have focused in

molecular detection of blood parasitic infections in

birds, mainly by amplifying DNA of the parasite by PCR

[e.g., [22,48-50]], or by immunological detection of the

presence of specific antibodies by ELISA [e.g., [51]].

Although these techniques are more sensitive, especially

in detecting low intensity infections that may have

passed unnoticed by microscopy [e.g., [52]], the small

number of seabird species with molecular data available

to date, does not allow comparative analyses at a broad

taxonomic scale. However, we reviewed the existing lit-

erature in molecular detection of blood parasites in sea-

birds. There were only two cases (penguin species) that

we classified as having zero prevalence of blood para-

sites, but that have been reported as positive using

molecular techniques (Figure 1).

Phylogenetically controlled analysis

a) Variables and database

In the phylogenetically controlled comparative models,

we included life history and ecological variables that

could explain inter-specific differences in prevalence of

avian hematozoa. The variables we used were extracted

from those available in reviews on bird body masses

[53] and seabird biology [54]: (1) average body mass, (2)

ecological parameters: (a) distribution on a scale from 1

= polar to 9 = tropical, (b) nesting habits, as either “1”

for burrow or crevice nesters, or “0” for open nesters,

including open ground, cliff, marsh or tree nesters, (c)

foraging distribution on a scale from 0 = nearshore to 2

= offshore, and (3) Life-history parameters: (a) chick

developmental mode on a scale from 0 = altricial, 1 =

semialtricial, 2 = semiprecocial and 3 = precocial, (b)

maximum clutch size, (c) incubation period (days) and

(d) mean fledging period (days).

To control for the effect of sample size on the reliabil-

ity of estimates of parasite prevalence, we restricted our

comparative analyses to species for which at least 15

individuals have been sampled for blood parasites, using

either blood smears [55], PCR, or both methods.

Three species (Silver gulls Larus novaehollandiae,

Dolphin gulls Larus scoresbii and Little Pied cormorants

Phalacrocorax melonoleucos) were excluded from the

analyses, as we could not find information on all life his-

tory parameters for the analyses for these species.

The timing of blood sampling can affect the observed

blood parasite prevalence in many species. Several

weeks or months after infection, blood parasites can

enter a latent stage, when the parasites disappear from

the peripheral blood, but can persist in the internal

organs. Relapses are usually synchronized with the

breeding period of birds [13]. As most seabirds can only

be accessed during the breeding season, the degree of

parasitemia is then expected to be highest.

b) Phylogeny

We constructed a phylogenetic tree using published

information on phylogenetic associations among the

species of our study, in particular for Neoaves [56,57],

for Sphenisciformes [58], for Procellariiformes [59-63],

for Phaethontidae [64], for Pelecaniformes [65-68] and

for Charadriiformes [69-77].

Because we used information from different sources

and the branch lengths were not specified in all studies

we used to reconstruct the phylogeny, we conducted all

analyses with a tree of equal branch lengths, which

assumes a punctuational model of evolution [78]. The

software MESQUITE [79] was used to construct the

phylogenetic tree (see tree topology in Figure 1).

c) Statistical analyses

We included all available data (from blood smears and

PCR data) for each species with at least 15 sampled
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individuals. Parasite prevalences were arsin-square root

transformed, while the variables body mass, clutch size,

incubation and nestling period were log10-transformed.

To control for allometric effects on parasite prevalence,

average adult body mass for the species (obtained from

the literature) was included in all analyses as a predictor

variable. Evolutionary models were tested by General-

ized Least Squares models fitted by REML, incorporat-

ing phylogenetic information with a Brownian motion

correlation structure, and method (smears vs. PCR) as a

variable. Model selection was based on Akaike’s infor-

mation criterion (AIC). All analyses were repeated using

parasite prevalence as a categorical variable (presence/

absence) in phylogenetically informed Generalized Esti-

mating Equations (GEE) models [80]. To estimate para-

meters of character evolution and the proportion of

variance in parasite prevalence explained by phyloge-

netic associations among species, we computed phyloge-

netic autorregressions and calculated Moran’s

autocorrelation Index [81]. We used R 2.11.1 (R Devel-

opment Core Team 2010) and the package “ape” [82]

for the analyses.

Additional material

Additional file 1: Table S1. Studies of intracellular hematozoa in

wild seabirds. Most studies were conducted by examination of blood
smears. Any other techniques (ELISA, PCR) are detailed in the column
“method” together with the target Genus (P-Plasmodium, L-
Leucocytozoon, H-Hemoproteus). Prevalence was added in brackets where
known [83-143].
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