

Biochemistry and Cell Biology Biochimie et biologie cellulaire

Prevalence of Externalizing Disorders and Autism Spectrum Disorder among Children with Fetal Alcohol Spectrum Disorder: Systematic Review and Meta-analysis

Journal: Manuscript ID	Biochemistry and Cell Biology bcb-2017-0014.R1
Manuscript ID	bcb-2017-0014 P1
Manuscript Type:	Invited Review
Date Submitted by the Author:	13-Apr-2017
Complete List of Authors:	Lange, Shannon; Centre for Addiction and Mental Health, Institute for Mental Health Policy Research; University of Toronto, Institute of Medical Science Rehm, Jürgen; Centre for Addiction and Mental Health, Institute for Mental Health Policy Research; University of Toronto, Institute of Medical Science; University of Toronto, Dalla Lana School of Public Health; Technische Universitat Dresden, Institute of Clinical Psychology and Psychotherapy & Center of Clinical Epidemiology and Longitudinal Studies Anagnostou, Evdokia; Holland Bloorview Kids Rehabilitation Hospital; University of Toronto, Institute of Medical Science; University of Toronto, Department of Pediatrics Popova, Svetlana; Centre for Addiction and Mental Health, Institute for Mental Health Policy Research; University of Toronto, Dalla Lana School of Public Health; University of Toronto, Institute of Medical Science; University of Toronto, Factor-Inwentash Faculty of Social Work
Is the invited manuscript for consideration in a Special Issue? :	Fetal Alcohol Spectrum Disorder
Keyword:	Autism Spectrum Disorder, Externalizing disorders, Fetal Alcohol Spectrum Disorder, Prevalence, Systematic Review

SCHOLARONE[™] Manuscripts

1	Prevalence of Externalizing Disorders and Autism Spectrum Disorder among
2	Children with Fetal Alcohol Spectrum Disorder:
3 4	Systematic Review and Meta-analysis
5	
6	Shannon Lange ^{1,2} , Jürgen Rehm ^{1,2,3,4} , Evdokia Anagnostou ^{2,5,6} ,
7 8	& Svetlana Popova ^{1,2,3,7*}
8 9	
10 11	 ¹ Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, 33 Russell St., Toronto, ON Canada M5S 2S1
12 13	² Institute of Medical Science, University of Toronto, 1 King's College Cir., Toronto, ON Canada M5S 1A8
14 15	³ Dalla Lana School of Public Health, University of Toronto, 155 College St., Toronto, ON Canada M5T 3M7
16 17 18	⁴ Institute of Clinical Psychology and Psychotherapy & Center of Clinical Epidemiology and Longitudinal Studies, Technische Universität Dresden, Chemnitzer Str. 46, D-01187 Dresden, Germany
19 20	⁵ Holland Bloorview Kids Rehabilitation Hospital Research Institute, 150 Kilgour Rd., East York, ON Canada M4G 1R8
21 22	⁶ Department of Pediatrics, University of Toronto, 555 University Ave., Toronto ON, M5G 1X8
23 24	⁷ Factor-Inwentash Faculty of Social Work, University of Toronto, 246 Bloor St. W., Toronto, ON Canada M5S 1V4
25 26	
27	*Corresponding author:
28	Svetlana Popova, Institute for Mental Health Policy Research, Centre for Addiction and
29	Mental Health, 33 Russell Street, Toronto ON Canada M5S 2S1, e-mail:
30	lana.popova@camh.ca, Tel: 1-416-535-8501 ext. 34558

31	Abstract
32	Due to their central nervous system impairments, children with Fetal Alcohol Spectrum
33	Disorder (FASD) commonly exhibit externalizing behaviours such as hyperactivity,
34	impulsivity, and/or delinquency. The purpose of the current study was to estimate the
35	prevalence of neurodevelopmental disorders with prominent externalizing behaviours,
36	namely Attention-Deficit Hyperactivity Disorder (ADHD), Conduct Disorder (CD),
37	Oppositional Defiant Disorder (ODD), as well as Autism Spectrum Disorder (ASD)
38	among children with FASD. A comprehensive systematic literature search was
39	performed, followed by disorder-specific random-effects meta-analyses. Of the disorders
40	investigated, ADHD was found to be the most common co-morbid disorder among
41	children with FASD (52.9%), followed by ODD (12.9%), CD (7.0%), and ASD (2.6%).
42	When compared to the general population of the United States, these rates are notably
43	higher: 15-times higher for ADHD, two-times higher for ASD, three-times higher for
44	CD, and five-times higher for ODD. The results call attention to the need for identifying
45	a distinct neurodevelopmental profile to aid in the accurate identification of children with
46	FASD and the discrimination of FASD from certain idiopathic neurodevelopmental
47	disorders.
48	

49 Keywords: Autism Spectrum Disorder; Externalizing disorders; Fetal Alcohol Spectrum
50 Disorder; Prevalence; Systematic Review

51 Introduction

52 Prenatal alcohol exposure can result in damage to the brain and other organs of the 53 developing embryo and fetus. A broad range of effects and symptoms caused by prenatal 54 alcohol exposure have been coined under the term Fetal Alcohol Spectrum Disorder 55 (FASD; Cook et al. 2016), which covers the following alcohol-related diagnoses: Fetal 56 Alcohol Syndrome (FAS), Partial FAS (pFAS), Alcohol-Related Neurodevelopmental 57 Disorder (ARND), and depending on the diagnostic guideline, Alcohol-Related Birth 58 Defects (ARBD; Chudley et al. 2005; Hoyme et al. 2016). Recently, Neurobehavioral 59 Disorder Associated with Prenatal Alcohol Exposure (ND-PAE) was included as a 60 condition that warrants further research and also as a specifier for the broader diagnostic 61 term of Other Specified Neurodevelopmental Disorder in the Diagnostic and Statistical 62 Manual of Mental Disorders, Fifth Edition (DSM-5; American Psychiatric Association, 63 2013). ND-PAE is intended to encompass the behavioural, developmental and mental 64 health symptoms associated with prenatal alcohol exposure, and is appropriate for 65 individuals with or without physical findings (Kable et al. 2016). 66 The unifying outcome for FASD is congenital damage to the central nervous 67 system, which is variably associated with a wide range of mental and behavioural 68 disorders (Burd et al. 2003; Fryer et al. 2007; O'Connor et al. 2002; Popova et al. 2016). 69 The mental and behavioural disorders that occur increase the complexity of care, and can 70 negatively impact the developmental trajectory of these individuals. Especially 71 challenging is that individuals with FASD commonly exhibit externalizing behaviours 72 that are directed toward the external environment and include aggression, anger, defiance, 73 destruction of property, hostility, noncompliance, and violations of social rules. These

74	problematic behaviours are the core of a group of neurodevelopmental disorders known
75	as externalizing disorders. Externalizing disorders consist of Attention-Deficit
76	Hyperactivity Disorder (ADHD; DSM-5 code: 314.0X; International Statistical
77	Classification of Diseases and Related Health Problems, 10th revision [ICD-10] code:
78	F90.X), Conduct Disorder (CD; DSM-5 code: 312.8X; ICD-10 code: F91.X), and
79	Oppositional Defiant Disorder (ODD; DSM-5 code: 313.81; ICD-10 code: F91.3). The
80	latter two consist of a persistent pattern of behaviour that include: angry and irritable
81	mood, argumentative and defiant behaviour, and vindictiveness; and aggression,
82	destruction of property, deceitfulness or theft, and serious violations of rules, respectively
83	(American Psychiatric Association 2013). ADHD is characterized by inattention,
84	impulsivity, and hyperactivity (American Psychiatric Association 2013).
85	Compared to IQ-matched, non-alcohol-exposed peers, it has been found that
86	externalizing behaviours are elevated in children with FASD (Mattson and Riley 2000),
87	who are often described as hyperactive, impulsive, disruptive, and/or delinquent (Nash, et
88	al. 2006). Franklin and colleagues (2008) found that among their sample of children with
89	FASD, 75% scored in the "clinical" range on the externalizing problems scale of the
90	Child Behavior Checklist – a well-established standardized parent/caregiver
91	questionnaire utilized for evaluating social competencies and behavioural problems in
92	children 6 to 18 years of age. However, the presence of externalizing behaviours, whether
93	in the clinical range or not, does not necessarily mean the criteria for a clinical diagnosis
94	has been met.
95	It is speculated that both postnatal adversity (e.g., impaired parent-child
06	interpretions mean quality of motormal conscising algorithm factor and and a second

96 interactions, poor quality of maternal caregiving, placement in foster care) and prenatal

97	alcohol exposure are significant predictors of externalizing behaviour in children with
98	FASD (Rodriguez et al. 2009; Staroselsky et al. 2009). Prenatal alcohol exposure
99	significantly increases the risk of postnatal adversity, making alcohol-exposed children
100	inherently vulnerable to developing externalizing behaviours.
101	In addition to their behavioural impairments, children with externalizing disorders
102	often have problems with their social and academic functioning. Although not an explicit
103	externalizing disorder, Autism Spectrum Disorder (ASD; DSM-5 code: 299.00; ICD-10
104	code: F84.0) is associated with high rates of externalizing behaviours (Mahan and
105	Matson 2011; Totsika et al. 2011). Children with ASD tend to have more severe
106	externalizing behaviors such as poor attention, disruptive, hyperactive, delinquent and
107	aggressive behaviors than typically developing children and children with intellectual
108	disability (Brereton et al. 2006; Bauminger et al. 2010; Matson et al. 2009).
109	Given that externalizing behaviours are elevated in children with FASD, it is
110	likely that rates of disorders with prominent externalizing behaviours are also elevated.
111	Therefore, the aim of the current study was to estimate the prevalence of ADHD, ASD,
112	CD, and ODD among children with FASD, and compare the prevalence of these
113	disorders among children with FASD to the prevalence among the general population
114	(i.e., children without FASD).
115	

116 Materials and Methods

To begin, a comprehensive systematic literature search was performed to identify allexisting studies that have reported the prevalence of ADHD, ASD, CD, and/or ODD

among children with FASD. Then, disorder-specific random-effects meta-analyses onprevalence were conducted.

121

122 Comprehensive systematic literature search

123 A comprehensive systematic literature search was performed to identify all studies that 124 have reported the prevalence of ADHD, ASD, CD, and/or ODD among a sample of 125 individuals with FASD. The search was conducted in multiple electronic bibliographic 126 databases, including CINAHL, Embase, ERIC, Medline (including Medline In-Process), 127 PsycINFO, Scopus, and Web of Science (including Science Citation Index, Social 128 Sciences Citation Index, and Arts and Humanities Citation Index). The search was 129 conducted using the following keywords: 1) alcohol embryopath*, alcohol* related* birth 130 defect*, alcohol related neurodevelopmental disorder, arbd, arnd, fae, fas, fasd, fetal 131 alcohol effect*, fetal alcohol syndrome, fetal alcohol spectrum disorder*, foetal alcohol 132 effect*, foetal alcohol syndrome, foetal alcohol spectrum disorder*, partial fetal alcohol 133 syndrome, partial foetal alcohol syndrome, pfas, prenatal* alcohol expos*, OR pre-natal* 134 alcohol expos*; AND 2) frequenc*, incidence*, occurren*, prevalence*, OR rate*; AND 135 3) add, adhd, attention deficit disorder^{*}, attention deficit hyperactivity disorder, autism, 136 autism spectrum disorder^{*}, conduct disorder, externalizing disorder^{*}, OR oppositional 137 defiant disorder; AND 4) cohort stud*, cross* sectional stud*, prospective cohort stud*, 138 OR retrospective cohort stud*.

The search was not limited geographically or by language of publication, and was performed to identify all studies published from November 1973 (when FAS was first described; Jones and Smith 1973) up to the end of September 2016. The search was

142	limited to human studies in all databases that allow for this restriction to be specified.
143	Manual reviews of the content pages of the major neurodevelopmental
144	disorders/behavioural journals, as well as citations in any of the relevant articles, were
145	conducted. The full review protocol is available in PROSPERO
146	(http://www.crd.york.ac.uk/PROSPERO/), registration number CRD42016052041.
147	
148	Inclusion and exclusion criteria
149	Articles were retained if they i) consisted of original, quantitative research published in a
150	peer-reviewed journal; ii) included subjects with diagnosed FASD or any of the
151	diagnostic entities that fall within the spectrum (ARBD, ARND, FAS, and pFAS); and
152	iii) reported the prevalence of diagnosed ADHD, ASD, CD, and/or ODD among a sample
153	of individuals with diagnosed FASD with a) a measure of uncertainty (confidence
154	interval [CI] or standard error), or b) either the sample size or number of cases. Articles
155	were excluded if they i) reported a pooled estimate by combining several studies (i.e.,
156	meta-analysis), or ii) were published in iteration (i.e., dual publications). In cases where
157	more than one study used the same dataset or cohort (or there was an overlap in samples),
158	the study with the larger sample size was retained.
159	

160 Data selection and extraction

161 Study selection began by screening titles and abstracts for inclusion. Then, full-text

162 articles of all studies screened as potentially relevant were considered. Two investigators

163 conducted each study selection step; any disagreements were reconciled by team

164 discussion. All data was extracted by one investigator and then independently

165 crosschecked by a second investigator; all discrepancies were reconciled by team

166 discussion. Effort was made to contact the corresponding author of studies where data

167 was either missing or not reported due to small cell counts or there were discrepancies in

168 the data reported.

169

170 Critical appraisal of existing studies

171 Each study was critically appraised using a tool specifically for use in systematic reviews

addressing questions of prevalence (Munn et al. 2014). The following ten criteria were

173 used: i) representativeness of the sample; ii) appropriate recruitment of participants; iii)

adequate sample size ($n \ge 100$); iv) participants and setting described in detail; v)

175 sufficient coverage of the identified sample; vi) use of an objective, standard criteria for

176 measuring the condition; vii) reliability of condition measurement; viii) appropriateness

177 of statistical analysis; ix) identification and accounted for

178 confounders/subgroups/differences; and x) adequate response rate (>70%). Two

investigators independently appraised the quality of each study, and all discrepancies in

180 quality ratings were reconciled by team discussion.

181

182 Meta-analysis

183 In order to estimate the pooled prevalence for ADHD, ASD, CD, and ODD among

184 children with FASD, disorder-specific random-effects meta-analyses (DerSimonian and

- 185 Laird 1986) were performed. As recommended for meta-analyses of prevalence and to
- 186 prevent the overweighting of studies reporting extremely low prevalence (i.e., a
- 187 prevalence approaching zero; Barendregt et al. 2013; Rücker et al. 2009), the data were

188 transformed using the Freeman-Tukey double arcsine transformation (Freeman and 189 Tukey 1950). Score test-based confidence intervals (CI) were estimated for each study 190 specific point estimate, and Wald-type CI were estimated based on the approximate 191 normal distribution of the transformed pooled point estimates. The resulting combined 192 point estimates and respective CI were back-transformed and presented in forest plots. 193 Given that the conceptualization of ADHD, ASD, CD, and ODD has changed over the 194 years, studies were ordered by year of publication in the forest plots in order to explore 195 whether a temporal relationship was likely to exist. Heterogeneity between double arcsine-transformed estimates of ADHD, ASD, CD and ODD was assessed using the I^2 196 197 statistic (Higgins and Thompson 2002). Publication bias was examined by visually 198 inspecting the funnel plot (standard error plotted against the point estimate) for a skewed 199 distribution, and by employing Egger's weighted regression test for small-study effects 200 (Egger et al. 1997). It was decided a priori that i) if publication bias were present it would 201 not be adjusted for, since it was assumed that the prevalence estimates of interest would 202 likely be published even if substantially different from previously reported estimates; and 203 ii) if heterogeneity was present, the following sub-analyses would be conducted: 204 disorder-specific meta-analyses by a) population (general vs. special populations) and b) 205 method of case ascertainment (active vs. passive). All meta-analyses were performed 206 using Stata version 14.2. 207 208 Comparison of the prevalence of ADHD, ASD, CD, and ODD among children with

209 FASD to the prevalence among those without FASD

- 210 The prevalence estimates of ADHD, ASD, CD, and ODD among children with FASD
- 211 were compared to the prevalence of these disorders among the general population of the
- 212 United States, obtained from the available literature.
- 213
- 214 **Results**
- 215 Comprehensive systematic literature search
- 216 Initially, the electronic search yielded a total of 931 articles and six articles were
- 217 identified through the manual search. After removing 379 duplicate articles, a total of 558
- 218 articles were screened using titles and abstracts. One hundred and forty-three full-text
- 219 articles were retrieved for further consideration, 123 of which were subsequently
- 220 excluded. Twenty articles were identified and included in the meta-analyses. It should be
- 221 noted that one article that reported an extremely high prevalence of ASD among children
- with FASD (76.2%; Mukherjee et al. 2011) was excluded as it was conducted among a
- highly selected non-random group of individuals referred to a specialist psychiatric
- 224 neurodevelopmental clinic. A schematic diagram of the search strategy is depicted in
- Figure 1.
- 226
- Insert Figure 1 about here -
- 228

Twenty studies reported the prevalence of ADHD among a total of 2,582 children with FASD, six studies reported the prevalence of ASD among a total of 1,029 children with FASD, five studies reported the prevalence of CD among a total of 1,514 children with FASD, and 11 studies reported the prevalence of ODD among a total of 2,719

233	children with FASD. The mean age of the participants in the identified studies ranged
234	from 6.2 to 22.0 years, and the percentage of males in the samples ranged from 41.9% to
235	78.3%. Thirteen of the studies utilized passive methods of case ascertainment (e.g.,
236	surveys, medical charts) and seven studies actively assessed the study participants'
237	neurodevelopmental status. Fifteen studies were conducted among a sample drawn from
238	the general population, two studies were among an Aboriginal population, and three
239	studies were conducted among children in care (e.g., children in foster care, orphanage).
240	Only seven of the studies reported the diagnostic criteria used when diagnosing the
241	disorders of interest (ADHD, ASD, CD, and ODD), while 17 studies explicitly stated the
242	criteria used for ascertaining cases of FASD. See Table 1 for the study characteristics and
243	the prevalence of ADHD, ASD, CD, and ODD among individuals with FASD reported in
244	the individual studies.
245	
246	- Insert Table 1 about here -
247	
248	Critical appraisal of existing studies
249	Eighteen studies (90%) utilized a sample representative of the target population; 20
250	studies (100%) recruited study participants in an appropriate way; 5 studies (25%) had an
251	adequate sample size ($n\geq 100$); 14 studies (70%) described the participants and setting in
252	detail; 11 studies (55%) had sufficient coverage of the identified sample; seven studies
253	(35%) used an objective, standard criteria for measuring the disorders of interest (ADHD,
254	ASD, CD, and ODD); 15 studies (75%) measured the disorders of interest (ADHD, ASD,
255	CD, and ODD) in a standardized way; 19 studies (95%) conducted an appropriate

- statistical analysis of the data; 13 studies (65%) identified and accounted for
- 257 confounders/subgroups/differences; and eight studies (40%) of studies had an adequate
- 258 response rate.
- 259
- 260 Meta-analysis
- 261 Pooled prevalence of ADHD, ASD, CD, and ODD among children with FASD
- 262 The results of this meta-analysis revealed that ADHD had the highest prevalence among
- 263 children with FASD (52.9%; 95% CI: 43.7%–62.0%), followed by ODD (12.9%; 95%
- 264 CI: 8.4%–18.2%), CD (7.0%; 95% CI: 2.5%–13.2%), and ASD (2.6%; 95% CI: 1.4%–
- 4.14%; Table 2). For the forest plots of the prevalence of ADHD, ASD, CD, and ODD
- among children with FASD see Figure 2.
- 267
- 268 Insert Table 2 about here -
- Insert Figure 2 about here -
- 270
- 271 The tests of heterogeneity demonstrated that heterogeneity was present in the estimates of
- 272 ADHD, CD, and ODD (I^2 =94.6% for ADHD, I^2 =80.8% for CD, and I^2 =89.0% for ODD;
- Table 2). Further, according to the funnel plots and Egger's weighted regression test,
- there was evidence for the presence of publication bias in the meta-analyses of ADHD,
- ASD, and ODD (*P*=0.000 for ADHD, *P*=0.025 for ASD, and *P*=0.046 for ODD; Table
- 276 2). For the funnel plots of the prevalence of ADHD, ASD, CD, and ODD among children
- with FASD see Figure 3.
- 278

279	- Insert Figure 3 about here -
280	
281	Sub-analyses
282	Neither population or method of ascertainment were determined to be sources of
283	heterogeneity in the disorder-specific estimates where heterogeneity was found to be
284	present (i.e., ADHD, CD, and ODD). See Table 3 for the results of the disorder-specific
285	meta-analyses by population and by method of case ascertainment.
286	
287	- Insert Table 3 about here -
288	
289	Comparison of the prevalence of ADHD, ASD, CD, and ODD among children with
290	FASD to the prevalence among those without FASD
291	The prevalence among the general population of the United States was reported to be
292	4.1% for ADHD (versus 52.9% among children with FASD; Kessler et al. 2005), 1.5%
293	for ASD (versus 2.6%; Christensen et al. 2016), 2.7% for CD (versus 7.0%; Costello et
294	al. 2003), and 2.7% for ODD (versus 12.9%; Costello et al. 2003). See Figure 4 for the
295	prevalence of ADHD, ASD, CD, and ODD among children with FASD and without
296	FASD (i.e., the general population).
297	
298	- Insert Figure 4 about here -
299	
300	Discussion

Page 14 of 40

301	The current study revealed that, of the disorders investigated, ADHD was the most
302	common co-morbid disorder among children with FASD (52.9%), followed by ODD
303	(12.9%), CD (7.0%), and ASD (2.6%). These rates are notably higher compared to the
304	general population of the United States: 15-times higher for ADHD, two-times higher for
305	ASD, three-times higher for CD, and five-times higher for ODD (Christensen et al. 2016;
306	Costello et al. 2003; Kessler et al. 2005). Based on a population of 73.6 million children
307	and youth (0-18 years of age; U.S. Census Bureau 2016) and an FASD prevalence of
308	1.5% among the general population (Popova et al. 2017), it is estimated that there were
309	1.1 million children and youth with FASD in the United States in 2016. As per the results
310	of the current study, 592.1 thousand children and youth with FASD in the United States
311	will have a co-morbid diagnosis of ADHD, 144.4 thousand will have a co-morbid
312	diagnosis of ODD, 78.4 thousand will have a co-morbid diagnosis of CD, and 29.1
313	thousand will have a co-morbid diagnosis of ASD. These staggering numbers highlight
314	the burden that FASD has on the mental health care system. To attest to this, it was
315	estimated that the cost for psychiatric care hospital days associated with a diagnosis of
316	FAS in Canada in 2008–2009 was approximately \$1.2 million (Popova et al. 2012).
317	However, the extent of the relation between FASD and the examined
318	neurodevelopmental disorders (ADHD, ASD, CD and ODD) may be inflated due to two
319	main reasons: i) overlapping diagnostic criteria, and ii) referral bias (McLennan 2015).
320	First, currently, there are a number of clinical guidelines for diagnosing FASD (e.g.,
321	Astley 2004; Chudley et al. 2005; Hoyme et al. 2016; Landgraf et al. 2013; Watkins et al.
322	2013), and although there is considerable overlap in the current criteria, there are also
323	notable differences. The general lack of consensus in the operationalization of the

diagnostic criteria of FASD and especially on the pathognomonic behavioural
manifestation of prenatal alcohol exposure and/or FASD has resulted in the overlapping
of the diagnostic criteria for FASD with that of other neurodevelopmental disorders
among children who were not exposed to alcohol prenatally or for whom prenatal alcohol
exposure is not etiologic (McLennan 2015).
Second, FASD research typically relies on clinically-referred samples. This is

330 problematic given that children and youth with obvious disruptive behaviours are more 331 likely to get referred to a specialized FASD diagnostic clinic than those without such 332 behaviours. Further, clinical populations are likely to be much more severely impaired 333 and have crossed a threshold where parents or caretakers are seeking help. Thus, relying 334 on clinically-referred samples to determine the prevalence of neurodevelopmental 335 disorders with prominent externalizing behaviours is likely to result in inflated estimates 336 (McLennan 2015). Therefore, it is necessary to investigate the prevalence of co-morbid 337 neurodevelopmental disorders among children with FASD in non-referred samples (i.e., 338 population-based samples). In addition, adverse life outcomes such as parental abuse and 339 substance use could be the reason for the referral to a diagnostic clinic, which could have 340 predisposed the child to mental health problems (Streissguth et al. 2004); thus, potential 341 confounders need to also be considered.

Regardless, whether it is due to the diagnostic overlap or true co-morbidity, children with FASD often receive multiple diagnoses before they are appropriately assessed and diagnosed with FASD (Chasnoff et al. 2015). To attest to this, Chasnoff and colleagues (2015) found that ADHD was the most common referral diagnosis for children who ultimately were diagnosed with FASD. Alarmingly, misdiagnosed children are often

347	prescribed inappropriate medications and receiving therapies that are not necessary
348	(Chasnoff et al. 2015). Another reason for the misdiagnosis of children with FASD is
349	stigmatization – the diagnosis of an externalizing disorder is less stigmatizing as
350	compared to FASD and therefore, they are preferentially used by health care practitioners
351	(Elliott et al. 2006; Payne et al. 2005).
352	Misdiagnosis of FASD (and in general) has a number of consequences, namely
353	implications for the pharmacologic and therapeutic approach to treatment,
354	mismanagement of behavioural symptoms, inaccurate incidence and prevalence
355	estimates, and reduced power to detect a clinically meaningful difference between groups
356	in clinical research studies (Astley and Clarren 2000; Chasnoff et al. 2015). As such, this
357	study highlights the need for teratological history to be sought for all children with any
358	neurodevelopmental disorder (especially externalizing disorders) in order to enhance the
359	differential diagnostic process and provide an accurate and appropriate diagnosis.
360	Further, health care providers need to routinely consider prenatal alcohol exposure in the
361	differential diagnosis of behavioural problems.
362	An early and accurate diagnosis of FASD is essential, as it can lead to early
363	participation in targeted developmental interventions, which can ultimately improve the
364	child's quality of life and lead to a more prosperous developmental trajectory in terms of
365	social functioning. Early and accurate diagnosis is also important for parents/caregivers.
366	It provides them with an explanation for the behavioural problems exhibited and can
367	improve parenting by increasing their understanding of the child's disabilities and
368	impairments, and can result in more realistic expectations for the future. However,

369 diagnosis is only useful if the necessary interventions are made available to the affected370 child.

371 It is important to acknowledge that externalizing behaviours exhibited by children 372 with FASD can be considered either a response to or an impairment caused by the brain damage that is due to the exposure to alcohol prenatally. This distinction is important in 373 374 terms of intervention, as behaviours can often be modified by behaviour management, 375 whereas impairments can be managed by accommodations (Paintner et al. 2012). 376 Additional research is this area is needed. However, the co-occurrence of the examined 377 neurodevelopmental disorders (ADHD, ASD, CD and ODD) and FASD represent many 378 complex cases, and deserve timely and tailored intervention. 379 The current study has a number of strengths such as, the comprehensive search 380 strategy, strict inclusion and exclusion criteria, critical appraisal of studies included in the 381 meta-analyses, and identification of dual publications (thereby avoiding any potential of 382 double counting cases). However, there are a few limitations worth noting. First, as stated 383 above, FASD research studies typically rely on clinically-referred samples, and the 384 studies included in the current investigation are no exception. Second, small sample sizes remain a common limitation in the field of FASD research, and the majority of studies 385 386 (75%) included had a sample size below 100 participants. Third, very few (six) studies 387 included explicitly stated the criteria used for identifying cases of ADHD, ASD, CD, and 388 ODD. Fourth, the conceptualization of ADHD, CD, ODD and especially ASD has 389 changed over the years, which was not possible to control for in the current study. 390 However, as per the forest plots, a temporal relationship does not appear to be present for

any of the disorders of interest (i.e., ADHD, ASD, CD, and ODD).

392	Nevertheless, the results call attention to the need for identifying a distinct
393	neurodevelopmental profile, which would aid in the accurate identification of children
394	with FASD and the discrimination of FASD from certain idiopathic neurodevelopmental
395	disorders. In addition, a neurodevelopmental profile, that is pathognomonic of FASD,
396	will have important clinical implications by assisting in the ascertainment of accurate
397	prevalence estimates, planning/development of appropriate targeted interventions, and
398	enhancement of clinical services to children, adolescents and adults with FASD.
399	Additional research in this area is needed, as it is possible that individuals with FASD
400	exhibit more than one neurodevelopmental profile.
401	To conclude, the results of the current study should not be misused for the further
402	stigmatization of children with FASD. Rather, they should be used as strong scientific
403	evidence demonstrating to clinicians working with children the complexity of FASD and
404	the large portion of children with FASD that meet the criteria for other
405	neurodevelopmental disorders.

406 Acknowledgements

- 407 The authors would like to thank Dr. Raja Mukherjee for his thoughtful comments on the
- 408 first draft of this article.

409	References
409	References

410	American Psychiatric Association. 2013. Diagnostic and statistical manual of mental
411	disorders, 5 th edition: DSM-5. American Psychiatric Association, Washington,
412	DC.
413	Astley, S.J. 2004. Diagnostic Guide for Fetal Alcohol Spectrum Disorders: The 4-Digit
414	Diagnostic Code. Third Edition. University of Washington Seattle, Washington
415	DC.
416	Astley, S.J. 2010. Profile of the first 1,400 patients receiving diagnostic evaluations for
417	fetal alcohol spectrum disorder at the Washington State Fetal Alcohol Syndrome
418	Diagnostic & Prevention Network. Can J Clin Pharmacol. 17(1): e132–e164.
419	Astley, S.J., and Clarren, S.K. 2000. Diagnosing the full spectrum of fetal alcohol-
420	exposed individuals: Introducing the 4-digit diagnostic code. Alcohol Alcohol.
421	35 (4): 400–410.
422	Barendregt, J.J., Doi, S.A., Lee, Y.Y., Norman, R.E., and Vos, T. 2013. Meta-analysis of
423	prevalence. J Epidemiol Community Health. 67: 974–978.
424	Bauminger, N., Solomon, M., and Rogers, S. J. (2010). Externalizing and internalizing
425	behaviors in ASD. Autism Res. $3(3)$: 101–112.
426	Bell, S.H., Stade, B., Reynolds, J.N., Rasmussen, C., Andrew, G., Hwang, P.A., and
427	Carlen, P.L. 2010. The remarkably high prevalence of epilepsy and seizure
428	history in fetal alcohol spectrum disorders. Alcohol Clin Exp Res. 34(6): 1084–
429	1089.
430	Burd, L., Klug, M.G., Martsolf, J.T., and Kerbeshian, J. 2003. Fetal alcohol syndrome:

431 neuropsychiatric phenomics. Neurotoxicol Teratol. **25**(6): 697–705.

432	Brereton, A.V., Tonge, B.J., and Einfeld, S.L. 2006. Psychopathology in children and
433	adolescents with autism compared to young people with intellectual disability. J
434	Autism Dev Disord. 36 (7): 863–870.
435	Centers for Disease Control and Prevention (CDC). 1995. Update: trends in fetal alcohol
436	syndromeUnited States, 1979-1993. MMWR Morb Mortal Wkly Rep. 44(13):
437	249–251.
438	Chasnoff, I.J., Wells, A.M., and King, L. 2015. Misdiagnosis and missed diagnoses in
439	foster and adopted children with prenatal alcohol exposure. Pediatrics. 135(2):
440	264–270.
441	Chen, M.L., Olson, H.C., Picciano, J.F., Starr, J.R., and Owens, J. 2012. Sleep problems
442	in children with fetal alcohol spectrum disorders. J Clin Sleep Med. 8(4): 421-
443	429.
444	Christensen, D.L., Baio, J., Braun, K.V., Bilder, D., Charles, J., Constantino, J.N. et al.
445	2016. Prevalence and characteristics of autism spectrum disorder among children
446	aged 8 years — autism and developmental disabilities monitoring Nnetwork, 11
447	Sites, United States, 2012. MMWR Surveill Summ. 65(No. SS-3): 1–23.
448	Chudley, A.E., Conry, J., Cook, J.L., Loock, C., Rosales, T., and LeBlanc, N. 2005. Fetal
449	alcohol spectrum disorder: Canadian guidelines for diagnosis. CMAJ. 172(5
450	suppl): S1–S21.
451	Clark, E., Lutke, J., Minnes, P., and Ouellette-Kuntz, H. 2004. Secondary disabilities
452	among adults with fetal alcohol spectrum disorder in British Columbia. J FAS
453	Int. 2 (13): 1–12.

454	Cook, J.L., Green, C.R., Lilley, C.M., Anderson, S.M., Baldwin, M.E., Chudley, A.E., et
455	al. 2016. Fetal alcohol spectrum disorder: a guideline for diagnosis across the
456	lifespan. CMAJ. 188(3):191–197.
457	Costello, E.J., Mustillo, S., Erkanli, A., Keeler, G., and Angold, A. 2003. Prevalence and
458	development of psychiatric disorders in childhood and adolescence. Arch Gen
459	Psychiatry. 60(8): 837–844.
460	DerSimonian, R., and Laird, N. 1986. Meta-analysis in clinical trials. Control Clin Trials.
461	7 (3): 177–188.
462	Egger, M., Smith, G.D., Schneider, M., and Minder, C. 1997. Bias in meta-analysis
463	detected by a simple, graphical test. Br Med J. 315 (7109): 629–634.
464	Elgen, I., Bruaroy, S., and Laegreid, L.M. 2007. Lack of recognition and complexity of
465	foetal alcohol neuroimpairments. Acta Pædiatr. 96(2): 237–241.
466	Elliott, E.J., Payne, J., Morris, A., Haan, E., and Bower, C. 2008. Fetal alcohol syndrome:
467	a prospective national surveillance study. Arch Dis Child. 93 (9): 732–737.
468	Elliott, E.J., Payne, J., Haan, E., and Bower, C. 2006. Diagnosis of foetal alcohol
469	syndrome and alcohol use in pregnancy: A survey of paediatricians' knowledge,
470	attitudes and practice. J Paediatr Child Health. 42(11): 698–703.
471	Franklin, L., Deitz, J., Jirikowic, T., and Astley, S. 2008. Children with fetal alcohol
472	spectrum disorders: problem behaviors and sensory processing. Am J Occup Ther.
473	62 (3): 265–273.
474	Freeman, M.F., and Tukey, J.W. 1950. Transformations related to the angular and the
475	square root. Ann Math Stat. 21(4): 607–611.

476	Fryer, S.L., McGee, C.L., Matt, G.E., Riley, E.P., and Mattson, S.N. 2007. Evaluation of
477	psychopathological conditions in children with heavy prenatal alcohol
478	exposure. Pediatrics. 119 (3): e733–e741.
479	Green, C.R., Mihic, A.M., Nikkel, S.M., Stade, B.C., Rasmussen, C., Munoz, D.P., and
480	Reynolds, J.N. 2009. Executive function deficits in children with fetal alcohol
481	spectrum disorders (FASD) measured using the Cambridge Neuropsychological
482	Tests Automated Battery (CANTAB). J Child Psychol Psychiatry. 50(6): 688-
483	697.
484	Habbick, B.F., Nanson, J.L., Snyder, R.E., Casey, R.E., and Schulman, A.L. 1995. Foetal
485	alcohol syndrome in Saskatchewan: unchanged incidence in a 20-year period. Can
486	J Public Health. 87(3): 204–207.
487	Hamilton, D.A., Barto, D., Rodriguez, C.I., Magcalas, C.M., Fink, B.C., Rice, J.P., et al.
488	2014. Effects of moderate prenatal alcohol exposure and age on social behavior,
489	spatial response perseveration errors and motor behavior. Behav Brain Res. 269:
490	44–54.
491	Higgins, J.P., and Thompson, S.G. 2002. Quantifying heterogeneity in a meta-analysis.
492	Stat Med. 21 (11): 1539–1558.
493	Hoyme, H.E., Kalberg, W.O., Elliott, A.J., Blankenship, J., Buckley, D., Marais, A.S., et
494	al. 2016. Updated clinical guidelines for diagnosing fetal alcohol spectrum
495	disorders. Pediatrics. 138(2): e20154256.
496	Jones, K.L., and Smith, D.W. 1973. Recognition of the fetal alcohol syndrome in early
497	infancy. Lancet, 302 (7836), 999–1001.

498	Kable, J.A., O'Connor, M.J., Olson, H.C., Paley, B., Mattson, S.N., Anderson, S.M., and
499	Riley, E.P. 2016. Neurobehavioral disorder associated with prenatal alcohol
500	exposure (ND-PAE): Proposed DSM-5 diagnosis. Child Psychiatry Hum Dev.
501	47 (2): 335–346.
502	Kessler, R.C., Chiu W.T., Demler, O., and Walters, E.E. 2005. Prevalence, severity, and
503	comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey
504	Replication. Arch Gen Psychiatry. 62(2): 617–627.
505	Kvigne, V.L., Leonardson, G.R., Neff-Smith, M., Brock, E., Borzelleca, J., and Welty,
506	T.K. 2004. Characteristics of children who have full or incomplete fetal alcohol
507	syndrome. J Pediatr. 145(5), 635–640.
508	Landgraf, M.N., Nothacker, M., Heinen, F. 2013. Diagnosis of fetal alcohol syndrome
509	(FAS): German guideline version 2013. Eur J Paediatr Neurol. 17(5): 437–446.
510	Landgren, M., Svensson, L., Strömland, K., and Grönlund, M.A. 2010. Prenatal alcohol
511	exposure and neurodevelopmental disorders in children adopted from eastern
512	Europe. Pediatrics. 125 (5), e1178–e1185.
513	Lewis, C.E., Thomas, K.G., Molteno, C.D., Kliegel, M., Meintjes, E.M., Jacobson, J.L.,
514	and Jacobson, S.W. 2016. Prospective Memory Impairment in Children with
515	Prenatal Alcohol Exposure. Alcohol Clin Exp Res. 40(5), 969–978.
516	Mahan, S., and Matson, J.L. 2011. Children and adolescents with autism spectrum
517	disorders compared to typically developing controls on the Behavioral
518	Assessment System for Children, Second Edition (BASC-2). Res Autism Spectr
519	Disord. 5(1): 119–125.

520	Matson, J.L., Wilkins, J., and Macken, J. 2009. The relationship of challenging behaviors
521	to severity and symptoms of autism spectrum disorders. J Ment Health Res
522	Intellect Disabil. 2 (1): 29–44.
523	Mattson, S.N., and Riley, E.P. 2000. Parent ratings of behavior in children with heavy
524	prenatal alcohol exposure and IQ-matched controls. Alcohol Clin Exp Res. 24(2):
525	226–231.
526	McLennan, J.D. 2015. Misattributions and potential consequences: The case of child
527	mental health problems and fetal alcohol spectrum disorders. Can J Psychitry.
528	60(12): 587–590.
529	Mukherjee, R., Layton, M., Yacoub, E., and Turk, J. 2011. Autism and autistic traits in
530	people exposed to heavy prenatal alcohol: data from a clinical series of 21
531	individuals and nested case control study. Adv Ment Health Intellect
532	Disabil. 5 (1): 42–49.
533	Munn, Z., Moola, S., Riitano, D., and Lisy, K. 2014. The development of a critical
534	appraisal tool for use in systematic reviews addressing questions of prevalence.
535	Int J Health Policy Manag. 3 (3):123–128.
536	Nash, K., Rovet, J., Greenbaum, R., Fantus, E., Nulman, I., and Koren, G. 2006.
537	Identifying the behavioural phenotype in fetal alcohol spectrum disorder:
538	Sensitivity, specificity and screening potential. Arch Womens Ment Health. 9(4):
539	181–186.
540	O'Connor, M.J., Shah, B., Whaley, S., Cronin, P., Gunderson, B., and Graham, J. 2002.
541	Psychiatric illness in a clinical sample of children with prenatal alcohol
542	exposure. Am J Drug Alcohol Abuse. 28(4): 743–754.

543	Paintner, A., Williams, A.D., Burd, L. 2012. Fetal alcohol spectrum disorders-
544	Implications for child neurology, Part 2: Diagnosis and management. J Child
545	Neurol. 27 (3):355–362.
546	Payne, J., Elliott, E., D'Antoine, H., O'Leary, C., Mahony, A., Haan, E., and Bower, C.
547	2005. Health professionals' knowledge, practice and opinions about fetal alcohol
548	syndrome and alcohol consumption in pregnancy. Aust N Z J Public Health.
549	29 (6): 558–564.
550	Popova, S., Lange, S., Burd, L., and Rehm, J. 2012. Health care burden and cost
551	associated with Fetal Alcohol Syndrome in Canada: based on official Canadian
552	data. PLoS One, 7(8): e43024.
553	Popova, S., Lange, S., Probst, C., and Rehm, J. 2017. Prevalence of alcohol consumption
554	during pregnancy and Fetal Alcohol Spectrum Disorders among the general and
555	Aboriginal populations in Canada and the United States. Eur J Med Genet. 60(1):
556	32-48.
557	Rasmussen, C., Benz, J., Pei, J., Andrew, G., Schuller, G., Abele-Webster, L., et al. 2010.
558	The impact of an ADHD co-morbidity on the diagnosis of FASD. Can J Clin
559	Pharmacol. 17(1): e165–e176.
560	Rodriguez, A., Olsen, J., Kotimaa, A.J., Kaakinen, M., Moilanen, I., Henriksen, T.B., et
561	al. 2009. Is prenatal alcohol exposure related to inattention and hyperactivity
562	symptoms in children? Disentangling the effects of social adversity. J Child
563	Psychol Psychiatry. 50(9): 1073–1083.

564	Rücker, G., Schwarzer, G., Carpenter, J., and Olkin, I. 2009. Why add anything to
565	nothing? The arcsine difference as a measure of treatment effect in meta-analysis
566	with zero cells. Stat Med. 28 (5): 721–738.
567	Stevens, S.A., Nash, K., Koren, G., and Rovet, J. 2013. Autism characteristics in children
568	with fetal alcohol spectrum disorders. Child Neuropsychol. 19(6), 579–587.
569	Staroselsky, A., Fantus, E., Sussman, R., Sandor, P., Koren, G., and Nulman, I. 2009.
570	Both parental psychopathology and prenatal maternal alcohol dependency can
571	predict the behavioral phenotype in children. Pediatric Drugs. 11(1):22–25.
572	Streissguth, A.P., Bookstein, F.L., Barr, H.M., Sampson P.D., O'Malley, K., and Young,
573	J.K. 2004. Risk factors for adverse life outcomes in fetal alcohol syndrome and
574	fetal alcohol effects. J Dev Behav Pediatr. 25(4): 228–238.
575	Strömland, K., Ventura, L.O., Mirzaei, L., Fontes de Oliveira, K., Marcelino Bandim, J.,
576	Parente Ivo, A., and Brandt, C. 2015. Fetal alcohol spectrum disorders among
577	children in a Brazilian orphanage. Birth Defects Res A Clin Mol Teratol. 103(3),
578	178–185.
579	Totsika, V., Hastings, R.P., Emerson, E., Lancaster, G.A., and Berridge, D.M. 2011. A
580	population-based investigation of behavioural and emotional problems and
581	maternal health. Associations with autism spectrum disorder and intellectual
582	disability. J Child Psychol Psychiatry. 52(1), 91-99.
583	U.S. Census Bureau. 2016. Estimates of the Total Resident Population and Resident
584	Population Age 18 Years and Older for the United States, States, and Puerto Rico:
585	July 1, 2016 (SCPRC-EST2016-18+POP-RES). U.S. Census Bureau, Population
586	Division.

587	Watkins, R.E., Elliott, E.J., Wilkins, A., Mutch, R.C., Fitzpatrick, J.P., Payne, J.M., et al.
588	2013. Recommendations from a consensus development workshop on the
589	diagnosis of fetal alcohol spectrum disorders in Australia. BMC Pediatr. 13: 156.
590	Williams, L., Jackson, C., Choe, N., Pelland, L., Scott, S.H., and Reynolds, J.N. 2014.
591	Sensory-Motor Deficits in Children with Fetal Alcohol Spectrum Disorder
592	Assessed Using a Robotic Virtual Reality Platform. Alcohol Clin Exp Res. 38(1),
593	116–125.

594 Table 1. Study characteristics and prevalence of ADHD, ASD, CD, and ODD among children with FASD reported in the identified

595 studies

Reference; Country	Year(s) of data collection	Population	Age range in years (mean)	Gender: % of males	Sample size; Diagnostic breakdown	Prevalence of ADHD n (%)	Prevalence of ASD n (%)	Prevalence of CD n (%)	Prevalence of ODD n (%)	Diagnostic criteria used for comorbid disorders	FASD Diagnostic criteria used	Method of ascertainment
Astley 2010; United States of America	1993- 2005	General population	0-50 (9.0)	59.6	1270*; FASD = 59 FAS + 95 pFAS 394 SE/AE + 722 ND/AE	447 (57.3%)	-	42 (3.3%)	119 (9.4%)	n/a	4-digit diagnostic code (Astley & Clarren, 1999)	Passive: medical records
Bell et al. 2010; Canada	n/a	General population	2-49 (15.2)	59.8	425; FASD = 86 FAS/pFAS + 339 ARND	200 (47.1%)	8 (1.9%)	-	42 (9.9%)	n/a	Canadian diagnostic guidelines (Chudley et al., 2005)	Passive: medical records
Burd et al. 2003; United States of America	n/a	General population	0-56 (8.2)	58.9	303; FASD = 152 FAS + 151 pFAS	219 (72.3%)	-	-	53 (17.5%)	n/a	FAS Diagnostic Checklist (Burd & Martsolf, 1989)	Passive: registry
CDC 1995; United States of America	1981-92	Aboriginal population	0-31 (8.0)	58.3	60; 60 FAS	12 (20.0%)	-	-	-	n/a	Sokol & Clarren (1989)	Passive: medical records
Chasnoff et al. 2015; United States of America	n/a	Foster and adopted children/you th	4-18 (9.4)	63.8	156; FASD = 93 FAS + 1 pFAS + 61 ARND + 1 ARBD	88 (56.4%)	8 (5.1%)	-	4 (2.6%)	n/a	4-digit diagnostic code (Astley & Clarren,	Active: psychological assessment

Reference; Country	Year(s) of data collection	Population	Age range in years (mean)	Gender: % of males	Sample size; Diagnostic breakdown	Prevalence of ADHD n (%)	Prevalence of ASD n (%)	Prevalence of CD n (%)	Prevalence of ODD n (%)	Diagnostic criteria used for comorbid disorders	FASD Diagnostic criteria used	Method of ascertainment
Chen et al. 2012; United States of America	2007	General population	4-12 (7.5)	66.7	33; FASD = 5 FAS/pFAS + 21 ND/AE + 7 SE/AE	25 (75.8%)	-	-	-	n/a	1999) 4-digit diagnostic code (Astley & Clarren, 1999)	Passive: parental reports
Clark et al. 2004; Canada	2002	General population	17-43 (22.0)	41.9	62; FASD = 34 FAS/probable FAS + 28 FAE/probable FAE	40 (64.5%)	-	-	3 (4.8%)	n/a	n/a	Passive: survey (caregivers)
Elgen et al. 2007; Norway	1999- 2004	General population	0-16 (7.8)	59.6	45; FASD = 25 FAS + 22 other-FASD	42 (93.3%) ^b	Fy.	-	-	ICD-10	CDC diagnostic criteria (Bertrand et al., 2004)	Passive: survey (health professionals)
Elliot et al. 2008; Australia	2001-04	General population (including Aboriginals)	0-15 (3.3, median)	53.3	92; FASD = 25 FAS + 65 pFAS + 2 suspected FAS	11 (12.0%)	-	-	-	n/a	IOM criteria (Stratton et al., 1996)	Passive: survey (health professionals)
Fryer et al. 2006; United States of America	n/a	General population	8-15 (12.1)	53.8	39; n/a	37 (94.9%)	-	7 (17.9%)	15 (38.5%)	DSM-IV	n/a	Passive: interview (caregivers)
Green et al. 2009; Canada	n/a	General population	8-15 (10.7)	49.4	89; n/a	53 (59.6%)	2 (2.2%)	3 (3.4%)	19 (21.3%)	n/a	Canadian diagnostic guidelines (Chudley	Passive: medical records

Reference; Country	Year(s) of data collection	Population	Age range in years (mean)	Gender: % of males	Sample size; Diagnostic breakdown	Prevalence of ADHD n (%)	Prevalence of ASD n (%)	Prevalence of CD n (%)	Prevalence of ODD n (%)	Diagnostic criteria used for comorbid disorders	FASD Diagnostic criteria used	Method of ascertainment
Habbick et al. 1996; Canada	1992-94	General population (including Aboriginals)	0-28 (6.3)	52.7	207; n/a	68 (32.9%)	7 (3.4%)	-	10 (4.8%)	n/a	et al., 2005) Guidelines by the Fetal Alcohol Study Group of the Research Society on Alcoholism (Rossett, 1980) & Sokol & Clarren (1989)	Active: psychological assessment
Kvigne et al. 2004; United States of America	1981-93	Aboriginal population	4-21	53.8	78; FASD = 43 FAS + 35 "incomplete" FAS	20 (25.6%)	-	10 (12.8%)	-	n/a	n/a	Passive: medical records
Landgren et al. 2010; Sweden	1998- 2002	Adopted children (from Eastern Europe)	5-10	56.8	37; FASD = 21 FAS + 10 pFAS + 6 ARND	21 (56.8%)	2 (5.4%)	2 (5.4%)	15 (40.5%)	DSM-IV	Revised IOM criteria (Hoyme et al., 2005)	Active: psychological assessment
Lewis et al. 2016; South Africa	n/a	General population	(11.0)	55.2	29; 29 FAS/pFAS	9 (31.0%)	-	-	-	Case definition provided	Revised IOM criteria (Hoyme et al., 2005)	Active: psychological assessment

Reference; Country	Year(s) of data collection	Population	Age range in years (mean)	Gender: % of males	Sample size; Diagnostic breakdown	Prevalence of ADHD n (%)	Prevalence of ASD n (%)	Prevalence of CD n (%)	Prevalence of ODD n (%)	Diagnostic criteria used for comorbid disorders	FASD Diagnostic criteria used	Method of ascertainment
O'Connor et al. 2002; United States of America	n/a	General population	5-13 (8.3)	78.3	23; FASD = 2 FAS + 4 pFAS + 17 ARND	3 (13.0%)	1 (4.3%)	-	-	DSM-IV	4-digit diagnostic code (Astley & Clarren, 1999)	Active: psychological assessment
Rasmussen et al. 2010; Canada	2005-08	General population	4-17 (8.8)	53.8	52; FASD = 1 FAS + 6 pFAS + 13 ND/AE + 32 SE/AE	33 (63.5%)	-	-	-	n/a	4-digit diagnostic code (Astley & Clarren, 1999)	Active: psychological assessment
Stevens et al. 2012; Canada	n/a	General population	8-12 (10.3)	52.0	25; FASD = 5 pFAS + 20 ARND	16 (64.0%)	E.	-	5 (20.0%)	n/a	Canadian diagnostic guidelines (Chudley et al., 2005)	Passive: medical records
Strömland et al. 2015; Brazil	n/a	Children residing in an orphanage	2-12 (6.2)	43.8	16; FASD = 3 FAS + 6 pFAS + 7 ARND	6 (37.5%)	-	-	1 (6.3%)	DSM-IV & ICD-10	Revised IOM criteria (Hoyme et al., 2005)	Active: psychological assessment
Williams et al. 2014; Canada	n/a	General population	5-18 (11.5)	61.3	31; n/a	22 (71.0%)	-	-	-	n/a	Canadian diagnostic guidelines (Chudley et al., 2005)	Passive: medical records

- 596 ADHD: Attention Deficit Hyperactivity Disorder; ARBD: Alcohol-Related Birth Defects; ARND: Alcohol-Related
- 597 Neurodevelopmental Disorder; ASD: Autism Spectrum Disorder; CD: Conduct Disorder; DSM-IV: Diagnostic and Statistical Manual
- of Mental Disorders, Fourth Revision; FAS: Fetal Alcohol Syndrome; FASD: Fetal Alcohol Spectrum Disorder; ICD-10: International
- 599 Classification of Diseases and Related Health Problems, 10th Revision; ODD: Oppositional Defiant Disorder; pFAS: Partial Fetal
- 600 Alcohol Syndrome; n/a: not available; ND/AE: Neurobehavioral Disorder, Alcohol Exposed; SE/AE: Static Encephaly, Alcohol
- 601 Exposed
- *The sample size for Astley (2010) was 780 for ADHD, 1271 for CD, and 1268 for ODD

603 Table 2. Pooled prevalence (results from meta-analysis) of ADHD, ASD, CD, and ODD

among children with FASD and results of the tests of heterogeneity and publication bias

Diagnosis	Number of included	Number of subjects	Pooled prevalence	95% Cor inter		I ²	P-value (regression
	studies		estimate	Lower	Upper		test)
ADHD	20	2,582	52.9%	43.7%	62.0%	94.6%	0.000
ASD	6	1,029	2.6%	1.4%	4.1%	15.1%	0.025
CD	5	1,514	7.0%	2.5%	13.2%	80.8%	0.534
ODD	11	2,719	12.9%	8.4%	18.2%	89.0%	0.046

605 ADHD: Attention Deficit Hyperactivity Disorder; ASD: Autism Spectrum Disorder; CD:

606 Conduct Disorder; ODD: Oppositional Defiant Disorder

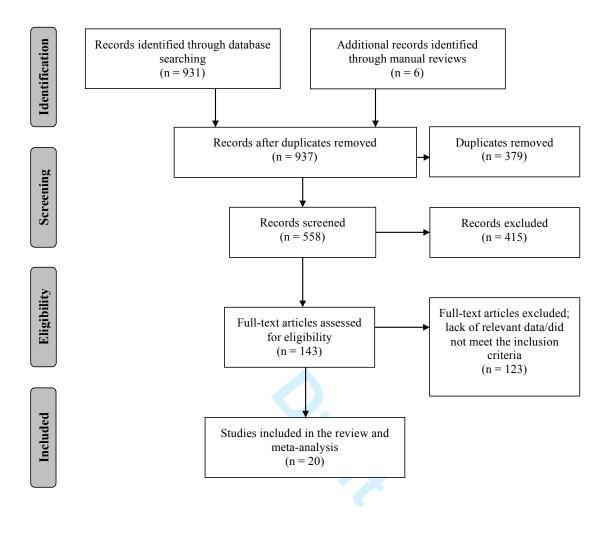
- 607 **Table 3.** Sub-analyses of the pooled prevalence (results from meta-analysis) of ADHD,
- 608 CD, and ODD among children with FASD by population and method of ascertainment

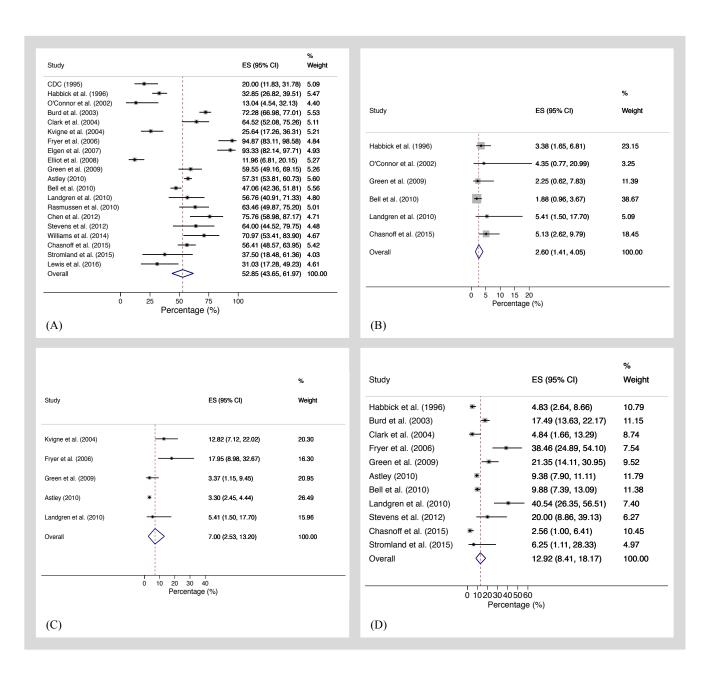
and results of the tests of heterogeneity and publication bias

Diagnosis; Population; Method of ascertainment	Number of included	Number of subjects	Pooled prevalence	95% Confidence interval		\mathbf{I}^2	P-value (regression
within the aster taniment	studies	subjects	estimate	Lower	Upper		test)
ADHD							
Population							
General population	15	2,235	57.5%	46.8%	67.8%	95.2%	0.000
Aboriginal population	2	138	23.1%	16.4%	30.6%	-	-
Children in care	3	209	55.1%	47.9%	62.1%	2.1%	0.060
Method of ascertainment							
Active	7	520	42.1%	29.4%	55.4%	86.2%	0.007
Passive	13	2,062	58.5%	46.7%	69.8%	95.8%	0.005
CD		,					
Population							
General population	3	1,399	5.8%	1.2%	13.1%	81.3%	0.932
Method of ascertainment							
Passive	4	1,477	7.5%	2.3%	15.0%	85.3%	0.725
ODD							
Population							
General population	8	2,418	13.0%	8.6%	18.1%	87.2%	0.097
Children in care	3	209	13.0%	0.0%	45.2%	94.0%	0.648
Method of ascertainment							
Active	4	416	10.0%	1.2%	24.4%	91.2%	0.546
Passive	7	2,211	14.7%	9.8%	20.4%	86.5%	0.097

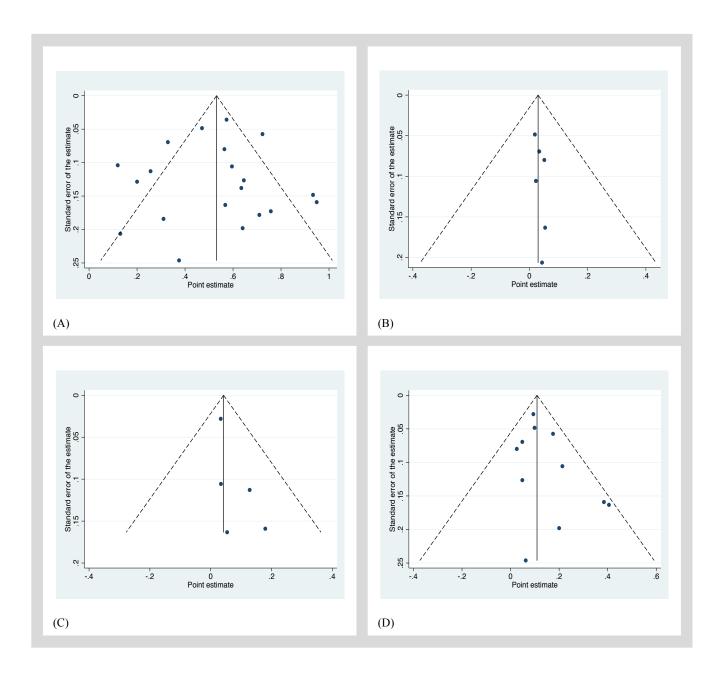
610 ADHD: Attention Deficit Hyperactivity Disorder; CD: Conduct Disorder; ODD:

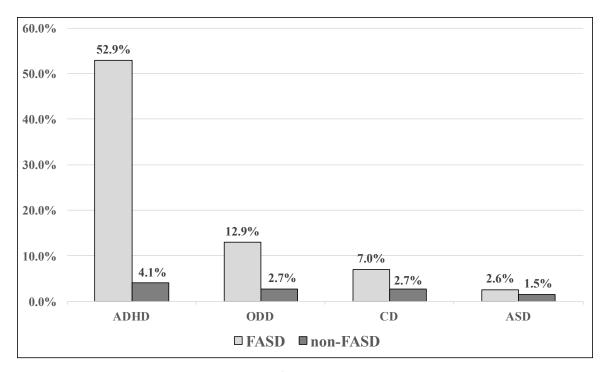
611 Oppositional Defiant Disorder


612 Note. Sub-analyses were conducted for those disorders where heterogeneity was found to


613 be present, and as such, ASD was not included.

614 Figure Captions


616	Figure 1.	Schematic	diagram o	depicting	the search	strategy	employed


- 617
- 618 **Figure 2.** Forest plot of the prevalence of ADHD (A), ASD (B), CD (C), and ODD (D)
- among children with FASD reported in the studies included in meta-analysis
- 620 CI: confidence interval.
- 621 *Note.* The size of the box around the point estimate is representative of the weight of the
- 622 estimate used in calculating the pooled point estimate.
- 623
- 624 **Figure 3.** Funnel plot of the prevalence of ADHD (A), ASD (B), CD (C), and ODD (D)
- among children with FASD reported in the studies included in meta-analysis
- 626
- 627 **Figure 4.** The prevalence of ADHD, ASD, CD and ODD among children with FASD and
- 628 without FASD (i.e., the general population of the United States)
- 629 ADHD: Attention Deficit Hyperactivity Disorder; ASD: Autism Spectrum Disorder; CD:
- 630 Conduct Disorder; ODD: Oppositional Defiant Disorder
- 631 *Sources:* Christensen et al. (2016), Costello et al. (2003), and Kessler et al. (2005).

https://mc06.manuscriptcentral.com/bcb-pubs

