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Abstract

Pharmacogenomics can enhance the outcome of treatment by adopting pharmacogenomic testing to maximize drug

efficacy and lower the risk of serious adverse events. Next-generation sequencing (NGS) is a cost-effective technology

for genotyping several pharmacogenomic loci at once, thereby increasing publicly available data. A panel of 100

pharmacogenes among Southeast Asian (SEA) populations was resequenced using the NGS platform under the

collaboration of the Southeast Asian Pharmacogenomics Research Network (SEAPharm). Here, we present the

frequencies of pharmacogenomic variants and the comparison of these pharmacogenomic variants among different

SEA populations and other populations used as controls. We investigated the different types of pharmacogenomic

variants, especially those that may have a functional impact. Our results provide substantial genetic variations at 100

pharmacogenomic loci among SEA populations that may contribute to interpopulation variability in drug response

phenotypes. Correspondingly, this study provides basic information for further pharmacogenomic investigations in

SEA populations.

Pharmacogenomics is the study of how an individual’s

genomic profile influences their response to drug treat-

ments. This has emerged as a potential tool to optimize

medications and reduce adverse drug events1. Genotyping

data from next-generation sequencing (NGS) technolo-

gies are increasing in international public databases,

thereby enabling new advances in pharmacogenomic

research. Implementation guidelines of the data are now
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available from organizations such as the Clinical Phar-

macogenetics Implementation Consortium (CPIC)2.

The Southeast Asian Pharmacogenomics Research

Network (SEAPharm) was founded in 2012. SEAPharm

aims to be the regional pharmacogenomics (PGx) network

to strengthen the knowledge of PGx research and its

implementation approaches in SEA countries3. In 2018,

the annual SEAPharm meeting approved an expanded

research collaboration under the project entitled “Re-

sequencing Project of 1,000 Southeast Asian Individuals

Using the 100 Pharmacogene - Next Generation

Sequencing Panel” using the NGS platform. Nine coun-

tries participated in this project: seven countries from

Southeast Asia (Indonesia, Laos, Malaysia, Myanmar,

Philippines, Thailand, and Vietnam) and one each from

Europe (Greece) and Western Asia (United Arab

Emirates; UAE).

The 100 PKSeq panel is composed of 37 drug trans-

porter genes, 30 cytochrome P450 (CYP) enzyme-

encoded genes, 10 uridine diphosphate glucuronosyl-

transferase (UGT) genes, 5 flavin-containing mono-

oxygenase (FMO) genes, 4 glutathione S-transferase

(GST) genes, 4 sulfotransferase (SULT) genes, and oth-

ers4. Initially, the 100 pharmacogene resequencing pro-

cesses were performed by RIKEN, Japan. Genomic DNA

samples were collected from nine countries: Indonesia (N

= 562), Laos (N= 100), Malaysia (N= 105), Myanmar (N

= 100), the Philippines (N= 100), Thailand (N= 100),

Vietnam (N= 100), the UAE (N= 100), and Greece (N=

304). The latter two populations were used as a control

for the former seven populations. Targeted resequencing

processes were performed as described previously4. After

sequencing, the raw data (.fastq files) were further ana-

lyzed by the Center for Medical Genomics, Thailand, for

primary sequence analysis. Sequencing reads were aligned

to the human reference genome (GRCh37/hg19) by using

the Burrows-Wheeler Aligner (0.7.17). Variants, including

single-nucleotide polymorphisms (SNPs) and short

insertions and deletions (indels), were called using the

Genome Analysis Toolkit (GATK, v3.5)5. Variant quality

score recalibration (VQSR) was also applied as call set

refinement to reduce the number of false-positive calls.

BCFtools was used to manipulate the variant calling for-

mat (.vcf) files and to calculate the pairwise weighted Fst

value. Linkage disequilibrium (LD) plots were created by

LDBlockShow (Supplementary Figs. 1–13)6. Downstream

variant annotation and statistical analysis, including

plotting, were performed using VarSeq (Golden Helix,

Inc., Bozeman, MT, USA, www.goldenhelix.com.) and R

software (R Foundation for Statistical Computing, Vienna,

Austria, www.R-project.org).

In this report, the frequencies of pharmacogenomic

variants in SEA populations based on the 100 PKSeq

panel are reported (Supplementary Tables 1–7). Based on

the variant calling processes, 3527 variants were called

and passed for VQSR processes. In total, 306 variants

(excluding multiallelic variants) were jointly observed in

the SEA populations (Supplementary Table 8). To quan-

tify the differences in frequencies between this dataset and

the public genome dataset, the frequencies of the 306

variants identified in this dataset and in the East Asian

(EAS) control datasets from the Genome Aggregation

Database (gnomAD v.2.1.1) were compared using scatter

plots and correlation coefficient analysis (Fig. 1a). The

results revealed concordance between the allelic fre-

quencies in this dataset (in all the SEA populations) and in

the EAS dataset from gnomAD. Considering the corre-

lation coefficient R, there was a trend of high correlations

in the frequencies of variants in the Thailand, Vietnam,

and EAS datasets. To investigate the proportion of the

total pharmacogenomic variants contained in SEA

populations, pairwise Fst statistics of the seven SEA

countries, UAE, and Greece were performed. The results

indicated that the SEA populations had modest genetic

similarity (pairwise Fst value <0.05; Fig. 1b). The greatest

genetic similarity was observed in the mainland SEA

populations based on their pharmacogenomic back-

ground. The Malaysian population seemed to share more

similarities with other SEA populations, with the Phi-

lippines showing the least similarities among the SEA

neighbors. To our knowledge, this is the first report to

compare the total pharmacogenomic variants between

SEA populations based on the 100 PKSeq panel. A pre-

vious study demonstrated the comparison of pairwise Fst

values between Singapore Genome Variation Project

(SGVP) populations (Chinese (CHS), Indian (INS), and

Malay (MAS)), South Asians (SAS), and Europeans by

using the variants of ADME7. The results showed that the

CHS and MAS populations were profoundly different

from the SAS and INS populations, which exhibited

substantial similarity7.

The allele frequencies of the genes responsible for drug

metabolism enzymes and transporters in the SEA popu-

lations were then explored8,9. The frequencies of the

variants of CYP2C9, CYP2C19, CYP2D6, CYP3A4,

ABCB1, ABCG2, SLC22A2, SLC22A6, SLC22A8,

SLCO1B3, and SLCO1B3, which were jointly observed in

the SEA populations, are shown in Fig. 2a. Two variants of

CYP2D6 differed in the observed minor allele frequencies

(MAFs), with an allele frequency <0.5, between the SEA

populations. The MAF of CYP2D6 rs1065852 (A) was

0.410 in and 0.495 in the Burmese and Malaysian popu-

lations. The frequency of the A allele of CYP2D6

rs1081003 was 0.395, 0.490, and 0.492 in the Burmese,

Malaysian, and Indonesian populations; however, allele A

was found to be a major allele in other SEA populations.

As previously described, the frequencies of pharmacoge-

nomic variants among the sample population from
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Myanmar residing in the USA demonstrated that the

MAF of rs1065852 was higher in this population (A)

(MAF= 0.36) than in the American (AMR, MAF= 0.15)

and South Asian (SAS, MAF= 0.16) populations and

slightly lower than that in the EAS population10.

rs1065852 (A) is recognized as a key mutation in

CYP2D6*10. In Malaysia, the allelic frequencies of

CYP2D6*10 differed between the Chinese-Malaysians,

Malay-Malaysians, and Indian-Malaysians11. Only the

MAF of the CYP2D6*10 allele was noted in the Indian-

Malaysians (MAF= 0.214). However, the frequencies of

rs1065852 (A) are not represented for CYP2D6 copy

number variation (CNV)-variable haplotypes such as

CYP2D6*36. The frequency of rs1081003 (A) was 0.412

among the Chinese population. The frequencies also

varied among subpopulations (i.e., Shanghai (MAF=

0.484), Xi’an (MAF= 0.407), Shenyang (MAF= 0.467),

and Shantou (MAF= 0.288))12. In addition, this variant

has been reported as a major allele in Taiwanese13. The

LD plot of CYP2D6 in the population revealed that five

SNPs (rs1135840, rs16947, rs1058164, rs1081003, and

rs1065852) in the Philippinean, Thailand, and Vietnamese

populations and three SNPs (rs1058164, rs1081003, and

rs1065852) in the Laos population were in very high LD

(Supplementary Fig. 13). These SNPs are key mutations in

CYP2D6*10A and CYP2D6*54 and cause a decrease in

enzyme activity. As previously described, CYP2D6*10 is

responsible for the intermediate metabolizer status in SEA

populations. However, the prevalence of these alleles

is low in Malay-Singaporeans, Chinese-Singaporeans,

Fig. 1 Scatter plot and correlation coefficient of this dataset and EAS datasets from gnomAD and pairwise weighted Fst statistics between

SEA populations. a Frequencies of the 306 pharmacogenomic variants between this dataset and East Asian (EAS) datasets from gnomAD. AF Allele

frequency. b Pairwise weighted Fst statistics between SEA, UAE, and Greek populations.
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Indian-Malaysians, and Indian-Singaporeans14. Addition-

ally, two variants of the drug transporter genes, namely,

rs1128503 (G) and rs2291075 (T) of ABCB1 and

SLCO1B1, respectively, differed in the observed allele

frequencies between populations (Fig. 2b). Interestingly,

some ABCB1 variants seem to be more frequent in Fili-

pinos, such as rs1045642 (G), with an allele frequency of

0.71. However, ABCB1 rs1128503 (G), a minor allele in

other SEA populations, was found to be a major allele

among Filipinos. Previously, rs1128503 (G) was docu-

mented as a major allele among Chinese and Singaporean

populations; however, rs1128503 (G) was found to be a

minor allele in the Indonesian population15,16. rs1128503,

rs2032582, and rs1045642 are the most common SNPs in

the coding region of ABCB1; moreover, these SNPs are in

strong LD17. The homozygous variants for one of three

ABCB1 variants, rs1128503 (T), rs2032582 (T, A), and

rs1045642 (T), are associated with significantly high

short-term remission rates after tacrolimus treatment in

steroid-refractory ulcerative colitis (UC) patients18. The

MAFs of rs2291075 (T) are 0.400 and 0.470 in the Bur-

mese and Vietnamese populations. In Singapore, the fre-

quencies of rs2291075 (T) vary between subpopulations

(CHS, INS, and MAS); nonetheless, the MAF was

observed only in INS (MAF= 0.031)19. Moreover,

rs2291075 (T) was previously described as a MAF in

Korean (MAF= 0.436) and Japanese (MAF= 0.367)

populations. In contrast, this variant was found to be a

major allele among the Chinese population20. rs2291075,

which encodes the transporter OATP1B1, is in strong LD

with rs2306283 and rs4149056. Inheritance of variability

in the transporter OATP1B1 may influence the effec-

tiveness of acute myeloid leukemia (AML) therapy

because this transporter is responsible for the systemic

pharmacokinetics of several drugs used in AML

treatment21.

Although the SEA populations seem to have genetic

similarities, differences in allele frequencies between the

populations were observed. A previous large-scale study

of pharmacogenomic biomarkers in 18 European popu-

lations demonstrated allele frequency differences in the

interpopulations22. Additionally, the genotyping of CYP

genes across Native American and Ibero-American

populations revealed differences within Native Amer-

icans23. These findings support that ethnicity affects dif-

ferences in drug response and/or toxicity. To support the

need for personalized precision medicine, the interethnic

differences of SEA populations should be taken into

consideration to reliably predict drug safety and efficacy at

the population level.

We further investigated the functional impact of these

pharmacogenomic variants, including deleterious mis-

sense mutations and loss-of-function mutations, among

the SEA populations. Deleterious missense mutations

were determined by multiple algorithms from a database

for the functional predictions of nonsynonymous SNPs

(dbNSFP v3.0) via VarSeq (Golden Helix, Inc., Bozeman,

MT, USA, www.goldenhelix.com). Considering the func-

tional impacts of the variants (i.e., major allele frequencies

and MAFs), there was a trend of higher proportions of

deleterious missense and loss-of-function mutations in

the MAF variants (Supplementary Fig. 14). In particular,

rare variants (MAF < 0.01) accounted for the highest

proportions of deleterious missense and loss-of-function

mutations. Whole-genome sequencing of Malaysians

revealed 693 variants of 8550 predicted deleterious var-

iants in 437 pharmacogenomic genes involved in drug

metabolism. Almost seventy percent (70%) of the variants

were rare alleles24. The investigation of variants in 12 CYP

genes revealed that the majority of variants are remark-

ably rare in both African-American and European-

American ancestries25. Additionally, a large proportion

of rare alleles with the potential to impact drug metabo-

lism has been documented in Slovenian and Latino

Fig. 2 Comparison of the frequencies of major genes responsible

for drug metabolism enzymes and transporters in the SEA

populations. a) Frequencies of pharmacogenomic variants of CYP2C9,

CYP2C19, CYP2D6, and CYP3A4. b) Frequencies of pharmacogenomic

variants of ABCB1, ABCG2, SLC22A2, SLC22A6, SLC22A8, SLCO1B3 and

SLCO1B3. AF, Allele frequency.
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populations26,27. This is also supported by the investiga-

tion of individual variants by sequencing drug target

genes, which demonstrated that rare variants are abun-

dant in humans, and many have potentially relevant

effects on drug metabolism25,28,29. Rare variants of phar-

macogenes are significantly associated with variations that

contribute to a significant portion of the unexplained

interindividual differences in drug metabolism pheno-

types, thereby causing functional alterations28,30.

In conclusion, this report presents the data on the fre-

quencies of 100 pharmacogenes from the 100 PKSeq

resequencing panel. We reported the frequencies of the

pharmacogenomic variants and compared the pharma-

cogenomic variants among different SEA populations.

Additionally, we examined the functional impact of the

pharmacogenomic variants that potentially caused func-

tional alterations. These data provide a useful resource for

future pharmacogenomic research in SEA populations.
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