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ORIGINAL INVESTIGATION

Prevalence of readily detected amyloid 
blood clots in ‘unclotted’ Type 2 Diabetes 
Mellitus and COVID-19 plasma: a preliminary 
report
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Janami Steenkamp3 and Douglas B. Kell1,4,5* 

Abstract 

Background: Type 2 Diabetes Mellitus (T2DM) is a well-known comorbidity to COVID-19 and coagulopathies are a 

common accompaniment to both T2DM and COVID-19. In addition, patients with COVID-19 are known to develop 

micro-clots within the lungs. The rapid detection of COVID-19 uses genotypic testing for the presence of SARS-Cov-2 

virus in nasopharyngeal swabs, but it can have a poor sensitivity. A rapid, host-based physiological test that indicated 

clotting severity and the extent of clotting pathologies in the individual who was infected or not would be highly 

desirable.

Methods: Platelet poor plasma (PPP) was collected and frozen. On the day of analysis, PPP samples were thawed 

and analysed. We show here that microclots can be detected in the native plasma of twenty COVID-19, as well as ten 

T2DM patients, without the addition of any clotting agent, and in particular that such clots are amyloid in nature as 

judged by a standard fluorogenic stain. Results were compared to ten healthy age-matched individuals.

Results: In COVID-19 plasma these microclots are significantly increased when compared to the levels in T2DM.

Conclusions: This fluorogenic test may provide a rapid and convenient test with 100% sensitivity (P < 0.0001) and is 

consistent with the recognition that the early detection and prevention of such clotting can have an important role in 

therapy.
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Background
�e standard method for detecting infection with SARS-

CoV-2 leading to COVID-19 disease involves a genotypic 

(PCR) test for the virus on nasopharyngeal swabs, but 

it is unpleasant, requires specific training, and can have 

poor sensitivity [1–7]. What would be desirable is a rapid 

and phenotypic test on the host that indicates the pres-

ence, and if possible the severity, of clotting pathologies, 

which is one of the consequences of infection. Presently, 

the standard method for this is based on CT chest scans 

for pneumonia, which have high sensitivity but lower 

specificity (see [7–10] and below), but this is neither 

cheap nor universally available.

A poor prognosis for recovery, is linked to vari-

ous comorbidities, of which Type 2 Diabetes Mellitus 
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(T2DM) is probably the most frequently mentioned 

comorbidity. It is widely recognised [11–21] that exten-

sive blood clotting has a major role in the pathophysiol-

ogy of COVID-19 disease severity and progression, yet 

so can excessive bleeding [22, 23]. �e solution to this 

apparent paradox lies in the recognition [24] that these 

phases are separated in time: the later bleeding is medi-

ated by the earlier clotting-induced depletion of fibrino-

gen and of von Willebrand factor (VWF). �is first phase 

of hypercoagulability is accompanied by partial fibrinoly-

sis of the formed clots, and an extent of D-dimer forma-

tion that is predictive of clinical outcomes [25]. �ese 

features, together with the accompanying decrease in 

platelets (thrombocytopaenia), leads to the subsequent 

bleeding. �us it is suggested that the application of 

suitably monitored levels of anti-clotting agents in the 

earlier phase provides for a much better outcome [13, 

24]. In addition, dysregulated hemostasis in COVID-

19-associated disseminated intravascular coagulation is 

exacerbated by an inhibition of fibrinolysis, indicating 

the plasminogen-plasmin-system as a potential target to 

prevent thromboembolic complications in COVID-19 

patients [26]. In addition, patients with COVID-19-asso-

ciated respiratory failure admitted to the intensive care 

unit exhibit a hypercoagulable state which is not appre-

ciable on conventional tests of coagulation. Supranormal 

clot firmness, minimal fibrinolysis, and hyperfibrinoge-

naemia are key findings [27].

As well as the extent of clotting, including states simi-

lar to the life-threatening disseminated intravascular 

coagulation (DIC) [15], a second issue pertains to its 

nature. Some years ago, we discovered that in the pres-

ence of microbial cell wall components [28, 29], and in 

a variety of chronic, inflammatory diseases [30–32] 

(including sepsis [33]), blood fibrinogen can clot into an 

anomalous, amyloid form [34]. �ese forms are easily 

detected by a fluorogenic stain such as thioflavin T, or the 

so-called Amytracker stains [35]. In all cases, however, 

these experiments were performed in vitro using relevant 

plasma, with clotting being induced by the addition of 

thrombin. In our preliminary experiments this was also 

the case for plasma from COVID-19 patients, but the 

signals were so massive that they were essentially off the 

scale. However, as we report here, the plasma of COVID-

19 patients carries a massive load of preformed amyloid 

clots (with no thrombin being added), and this therefore 

provides a rapid and convenient test for COVID-19. As 

the presence of T2DM is a well-known co-morbidity, that 

significantly decreases survival and a positive outcome 

for COVID-19 patients, we included such a group in our 

sample cohort too.

Methods
Ethical considerations

Ethical approval for blood collection and analysis of 

the patients with COVID-19, T2DM and healthy indi-

viduals, was given by the Health Research Ethics Com-

mittee (HREC) of Stellenbosch University (reference 

number: 9521). �is laboratory study was carried out in 

strict adherence to the International Declaration of Hel-

sinki, South African Guidelines for Good Clinical Prac-

tice and the South African Medical Research Council 

(SAMRC), Ethical Guidelines for research. Oral consent 

was obtained from COVID-19 patients to participate in 

the study. Written consent was obtained from T2DM 

patients and healthy participants.

Patient sample

Covid-19 patients

20 COVID-19-positive samples (11 males and 9 females) 

were obtained and blood samples collected before treat-

ment was embarked upon. Blood samples were collected 

by JS. Platelet poor plasma (PPP) prepared and stored at 

− 80 °C, until fluorescent microscopy analysis.

Type 2 Diabetes Mellitus (T2DM)

Stored Platelet poor plasma samples were randomly 

selected from our Laboratory’s stored sample repository. 

10 age-matched T2DM (6 Males and 4 females), collected 

in 2018, were used in this analysis.

Healthy samples

Our healthy sample was 10 age-matched controls (4 

males and 6 females), previously collected and stored 

in our plasma repository. �ey were non-smokers, with 

CRP levels within healthy ranges, and not on any anti-

inflammatory medication.

Lung CT scans

Amongst the COVID-19 patient sample 10 patients were 

admitted, but stabilized and blood drawn and sent home 

for observation. Where patients were clinically deemed 

as moderate or severely ill, CT scans of the patients 

were performed to determine the severity of the lung 

pathology. We divided our sample into mild disease (no 

CT scan) and moderate to severely ill. �e CT scan and 

severity score [36] confirmed moderate to severely ill 

patients according to the ‘ground glass’ opacities in the 

lungs.

Fluorescent Microscopy of patient whole blood 

and platelet poor plasma (PPP)

A simple fluorescence assay was developed by compar-

ing fluorescent (anomalous) amyloid signals present in 

PPP from COVID-19 patients, T2DM and those from 
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healthy age-matched individuals, all of whom were 

studied using PPP that had been stored at −80 °C. On 

the day of analysis, PPP was thawed and incubated with 

the dye thioflavin T (�T; 5  µM final concentration), 

which detects amyloid-like structures [37]. Following 

this, the sample was incubated for 30  min (protected 

from light) at room temperature. PPP smears were 

then created by transferring a small volume (5  µl) of 

the stained PPP sample to a microscope slide (simi-

lar methods were followed to create a blood smear). 

A cover slip was placed over the prepared smear and 

viewed using a Zeiss AxioObserver 7 fluorescent 

microscope with a Plan-Apochromat 63x/1.4 Oil DIC 

M27 objective.

For �T quantification, the excitation was set at 450 

to 488 nm and emission at 499 to 529 nm. Unstained 

samples were also prepared with both healthy and 

COVID-19 PPP, to assess any autofluorescence. Micro-

graph analysis was done using ImageJ (version 2.0.0-rc-

34/1.5a). �e % area of amyloid were calculated using 

the thresholding method. �is method allows a meas-

urement of area of amyloid signal. �e RGB images are 

opened in ImageJ, each image is calibrated by setting 

the scale (calculated using the image pixel size and the 

known size of the scale bar). Each image is then con-

verted to black and white (8 bit, this is adjusted under 

the image type setting). �e next step is to threshold the 

image by adjusting the background intensity to white 

(255) and then thresholding the now black amyloid sig-

nal (in these images between 11 and 15). We used the 

Huang setting during thresholding. Huang’s method is 

an optimization method which finds the optimal thresh-

old value by minimizing the measures of fuzziness. 

�e black amyloid area is then analyzed using the ana-

lyze particle setting where we use the particle size that 

is measured from 1 to infinity. �e particle size setting 

allows us to exclude any background signal that might 

not be true amyloid signal. �e area per data per particle 

size that is generated is then copied into a spreadsheet 

(see our raw data). Statistical analysis was done using 

GraphPad Prism 8 (version 8.4.3). Sensitivity and speci-

ficity of the data were calculated according to the follow-

ing calculations:

Sensitivity = true positive fraction

=
true positive × 100%

true positive + false negatives

Specificity = true negative fraction

=
true negatives × 100%

true negatives + false positives

Results
Age-matched COVID-19 (average age 49.9y) and 

healthy individuals (58.8y), and T2DM (62.1y) were 

used in this analysis (p = 0.06). Platelet poor plasma 

(PPP) was collected and frozen. On the day of analy-

sis, all PPP samples were thawed and analysed. We also 

confirmed that the same results are visible in freshly 

prepared PPP samples. Figure  1 shows representative 

CT scans of four of the COVID-19 patients. Raw data 

are shared in https ://1drv.ms/u/s!AgoCO mY3bk KHirZ 

Ou5YK Plq1x 5f1AQ ?e=xmWGK m.

Figures  2, 3, 4, 5 show representative fluorescence 

micrographs of PPP from healthy, T2DM and COVID-

19 individuals. In healthy PPP smears (Fig.  2), very lit-

tle �T fluorescent signal is visible. In plasma smears 

from T2DM (Fig. 3), individuals, there were a significant 

increase in signal, compared to controls, and an even 

more pronounced increase in signal in COVID-19 indi-

viduals (Fig. 4), where abundant amyloid signal is noted. 

Note that these signals were as received; no thrombin was 

added to induce clotting. Figure  5 shows the additional 

presence of fibrous or cellular deposits in the PPP smears 

of COVID-19 patients. �ere have been reports of exten-

sive endotheliopathy in COVID-19 patients [38, 39], and 

these deposits might contribute to this endotheliopathy. 

Figure 6a and b show box plots of the % area of amyloid 

signal calculated from representative micrographs of 

each individual. A nonparametric one-way ANOVA test 

(Kruskal–Wallis test) between all groups showed a highly 

significant difference (p =  < 0.0001). However, a Mann–

Whitney analysis between the mild and the moderate 

to severe COVID-19 individuals showed no significant 

Fig. 1  a–d Representative CT scans of a COVID-19 patient. Yellow 

arrows show ground glass opacities

https://1drv.ms/u/s!AgoCOmY3bkKHirZOu5YKPlq1x5f1AQ?e=xmWGKm
https://1drv.ms/u/s!AgoCOmY3bkKHirZOu5YKPlq1x5f1AQ?e=xmWGKm
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difference (p = 0.554). Amyloid formation in plasma is 

therefore present in the early stages of COVID-19, when 

the patients are sufficiently unwell to visit the hospital 

and in need of stabilization.

Fig. 2  a–d Representative fluorescence micrographs of platelet 

poor plasma from healthy individuals. Most signals are very weak, as 

shown by the arrows in a 

Fig. 3  a–f Representative fluorescence micrographs of platelet poor 

plasma from Type 2 Diabetes Mellitus (T2DM) patients

Fig. 4  a–h Representative fluorescence micrographs of platelet poor 

plasma from COVID-19 patients

Fig. 5 Fibrous or cellular deposits in the plasma smears from 

COVID-19 patients
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Sensitivity and speci�city

Table 1 shows the average % amyloid area for each sam-

ple, ranked from lowest to highest values, as well as the 

sensitivity and specificity calculations. We set the cut-

off % amyloid area as 1.3% for controls, and 3.05% for 

T2DM (see Table 1 and raw data file in shared data link). 

Using these calculations, the % amyloid area sensitiv-

ity and specificity in control versus COVID-19 samples 

is 85% and 100% respectively, and % amyloid sensitivity 

and specificity in T2DM versus COVID-19 is 69% and 

67%, respectively. Similarly, the % amyloid area sensitiv-

ity and specificity for controls versus T2DM is 100% and 

100% respectively, suggesting that T2DM is potentially 

a big confounder. �ese results suggest that T2DM dis-

ease increase the propensity for an individual to develop 

COVID-19.

Discussion
Strongly bound up with the coagulopathies accompany-

ing severe COVID-19 disease is the presence of hyperfer-

ritinaemia (in cases such as the present it is a cell damage 

marker [40]) and a cytokine storm, [41–45] which usually 

occurs in the later phase of the disease [24]. In addition, 

there has been reports of pulmonary vascular endotheli-

alitis, thrombosis, and angiogenesis in Covid-19 [39]. In 

addition, excess iron has long been known to cause blood 

to clot into an anomalous form [46], later shown to be 

amyloid in nature [28–34]. Increased serum ferritin lev-

els are also known to be present in T2DM [47–50]. �ese 

kinds of phenomena seem to accompany essentially every 

kind of inflammatory disease (e.g. [51]), but the amyloi-

dogenic coagulopathies are normally assessed following 

the ex vivo addition of thrombin to samples of plasma.

Many clinical features of COVID-19 are unprece-

dented, and here we demonstrate yet another: the pres-

ence in PPP to which thrombin has not been added 

of amyloid microclots. �ese microclots are also an 

pathological feature of PPP from T2DM patients, how-

ever there is a significant increase of the microclots in 

COVID-19 patients. �is kind of phenomenon explains 

at once the extensive microclotting that is such a feature 

of COVID-19 [11], and adds strongly to the view that its 

prevention via anti-clotting agents should lie at the heart 

of therapy. In addition, individuals with T2DM are more 

prone to develop microclots, due to an increased pres-

ence of circulating inflammatory biomarkers that cause 

hypercoagulability. T2DM patients are therefore pre-

disposed due to their condition. When these individu-

als then contract SARS-CoV-2, they are already prone to 

hypercoagulation. �is hyperocuagulable predisposition, 

explains why individuals with T2DM are more prone to 

develop severe hypercoagulability when diagnosed with 

COVID-19. Although fluorescence microscopy is a spe-

cialized laboratory technique,  TEG® is a well-known 

point of care technique, which is cheap and reliable. Sam-

ples can be collected and PPP can be analysed immedi-

ately, or frozen and thawed for later analysis. All told, the 

relative ease of fluorescence microscopy, speed (40  min 

including 30  min �T incubation time) and cheapness 

of the assay we describe might be of significant utility 

in differentiating COVID-19 from other inflammatory 

diseases.

Of course this must also be monitored (e.g. via �rom-

boelastography [52–55]) lest the disease enters its later 

phase in which bleeding rather than clotting is the 

Fig. 6  a, b Amyloid % area in platelet poor plasma smears with 

mean and SEM (p =  < 0.0001). a All controls, Type 2 Diabetes Mellitus 

(T2DM) and all COVID-19 patients. b All controls vs T2DM vs 10 mild 

and 10 moderate to severely ill COVID-19 patients
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greater danger [24]. Although not shown here, an impor-

tant consideration is that  TEG® can be used to study the 

clotting parameters of both whole blood and PPP. Whole 

blood  TEG® gives information on the clotting potential 

affected by the presence of both platelets and fibrinogen, 

while PPP  TEG® only presents evidence of the clotting 

potential of the plasma proteins [52–55].

Point-of-care devices and diagnostics like  TEG® 

are also particularly useful to assess fibrinolysis. In 

COVID-19 patients, Wright and co-workers reported 

Table 1 Sensitivity and speci�city of % area amyloid (% amyloid was scaled for each sample type from low to high)

Controls T2DM COVID-19 Controls vs COVID-19

0.09% T2DM Cut-off % amyloid area set 
as 3.05%

True positives 17 × COVID-19

0.11% True negatives 10 × Controls

0.18% False positives 0

0.24% False negatives 3 × COVID-19

0.36% Sensitivity 85%

0.37% Specificity 100%

0.43% T2DM vs COVID-19

0.48% True positives 9 × COVID-19

0.80% True negatives 10 × T2DM

0.81% False positives 5 × T2DM

0.96% 1.07% False negatives 4 × COVID-19

1.23% Sensitivity 69%

Control cut-off % amyloid area set 
as 1.3%

1.47% Specificity 67%

Controls vs T2DM

1.86% True positives 10 × T2DM

2.12% True negatives 10 × Controls

2.73% False positives 0

2.84% False negatives 0

3.00% Sensitivity 100%

3.35% Specificity 100%

3.60%

3.60%

3.64%

3.87%

4.03%

4.98%

5.08%

5.28%

6.73%

9.29%

9.87%

14.39%

16.29%

18.45%

18.69%

18.91%

21.34%

21.79%

26.05%

36.39%
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fibrinolysis shutdown, confirmed by complete failure of 

clot lysis at 30 min on the  TEG® [56]. �us  TEG® can 

therefore predict thromboembolic events in patients 

with COVID-19 [56].

Conclusion
What we have shown here is that the clotting that is 

commonly seen in COVID-19 patients is in an amy-

loid form that forms large deposits that might be able 

to occlude fine capillaries. In addition, these depos-

its would interfere with fibrinolysis and cause the 

decreased ability to pass  O2 into the blood that is such a 

feature of the disease. As T2DM is a significant comor-

bidity to COVID-19, exceptional care must be taken 

when such patients are diagnosed with COVID-19. 

Consequently, the prevention of coagulopathies must 

lie at the heart of successful therapies.
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