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Prevalence of sexual dimorphism in mammalian
phenotypic traits
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The role of sex in biomedical studies has often been overlooked, despite evidence of sexually

dimorphic effects in some biological studies. Here, we used high-throughput phenotype data

from 14,250 wildtype and 40,192 mutant mice (representing 2,186 knockout lines), analysed

for up to 234 traits, and found a large proportion of mammalian traits both in wildtype and

mutants are influenced by sex. This result has implications for interpreting disease pheno-

types in animal models and humans.
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A
systematic review of animal research studies identified a
vast over-representation of experiments that exclusively
evaluated males. Where two sexes were included,

two-thirds of the time the results were not analysed by sex1,2.
Furthermore, sex is often not adequately reported, despite the
majority of common human diseases exhibiting some sex
differences in prevalence, course and severity3. Fundamental
differences exist between males and females that may influence
the interpretation of traits and disease phenotypes4,5 and their
treatment6. Some, however, have argued that considering both
sexes lead to a waste of resources and underpowered
experiments7, while others have questioned the value of
preclinical research into sex differences8.

Here we quantify how often sex influences phenotype within a
data set by analysing data from 14,250 wildtype animals and
40,192 mutant mice, from 2,186 single gene knockout lines,
produced by the International Mouse Phenotyping Consortium
(IMPC)9. The phenotyping performed by the IMPC explores a
range of vertebrate biology, and aims to collect data from seven
males and seven females from each mutant line with data from
strain-matched controls accumulated over time. Data are
collected at 10 phenotyping centres, providing a unique
opportunity to explore the role of sex on a phenotype within
an experimental data set, and the role of sex on a treatment effect,
where the treatment is a gene disruption event, analogous to a
Mendelian genetic disease. Our findings show that regardless of
research field or biological system, consideration of sex is
important in the design and analysis of animal studies. All data
are freely available at mousephenotype.org.

Results
Sex as a biological variable within an experiment. We first
assessed the contribution of sex using linear modelling to

determine how often sex contributed to the variation in the
phenotype in wildtype mice (control data) for an individual data
set (a phenotypic test/trait at an individual phenotyping centre)
(Supplementary Fig. 1a,b). Phenotypes were classified as either
continuous, such as creatine kinase levels, or categorical, such as
vibrissae shape. Because body size is dimorphic between male and
female mice, and many continuous traits correlate with body
weight, we included weight as a covariate in our analysis for
continuous traits. Using this approach, our analysis revealed that
9.9% of data sets from categorical traits (54/545 data sets) were
significantly influenced by sex at a 5% false discovery rate (FDR)
(Fig. 1a). Many of these cases included phenotypes that would not
a priori be assumed to be sexually dimorphic (SD). For example,
abnormal corneal opacity occurred at a higher rate in female
wildtype mice at most phenotyping centres. Looking at the SD
rate by institute, we find that within categorical data the rate was
relatively consistent (average percentage of traits which were SD
8.9% (s.d.¼ 5.9)) (Fig. 1c).

For continuous traits, a far higher proportion of data sets
(56.6%, 511/903) exhibited sexual dimorphism at a 5% FDR
(Fig. 1b). As expected, this proportion was higher when the
absolute phenotypic differences were considered without taking
body weight into account (73.3%, 662/903 data sets, Fig. 2a).
With the continuous data set, the inter-institute SD rate was more
variable (average percentage of traits which were SD 44%
(s.d.¼ 14)) (Fig. 1d). Variation in sensitivity is to be expected,
arising from the observation that variance for a trait depends on
the institute10 and the size of the control data set (Fig. 2b,d).
Regardless of biological area studied, sex was found to have a role
(Figs 2c and 3a,b) and where calls could be compared across
institutes the effect of sex was in general reproducible, with only
8.7% of variables having opposing effects across the phenotyping
centres (Fig. 3c,d). Variation in husbandry, diet and other
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Figure 1 | Sex as a biological variable in control data. The role of sex in explaining variation in phenotypes of wildtype mice as assessed using data from

the IMPC. (a,b) The proportion of experiments where sex had a significant role in wildtype phenotype. (a) Categorical data sets (n¼ 545). (b) Continuous

data sets (n¼903). (c,d) The distribution of classifications when analysed by institute (c: categorical data sets, d: continuous data sets). BCM: Baylor

College of Medicine, HMGU: Helmholtz Zentrum Munich, ICS: Institut Clinique de la Souris, JAX: The Jackson Laboratory, Harwell: Medical Research

Council Harwell, NING: Nanjing University, RBRC: RIKEN BioResource Centre, TCP: The Centre for Phenogenomics, UC Davis: University of California,

Davis, and WTSI: Wellcome Trust Sanger Institute.
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environmental factors will contribute to this variability11.
Previous manuscripts have conducted extensive analysis
assessing consistency across institutes and found good
agreement in findings10,12. It could be argued that the
consistency is surprising; for example, considering how critical
the microbiome is to phenotypic outcome13,14. While these
studies are contained within facilities with high biosecurity, the
microbiomes will differ from institute to institute. In fact,
microbiomes will differ between individual litters depending on
the maternal microbiome. This study comparing control data
across many litters in effect accounts for this variation, which
might go some way to explaining the consistency of the findings
across sites.

Sex as a modifier of a treatment effect. We next looked at the
role of sex in influencing phenotypes in the context of gene
ablation (Supplementary Fig. 1c–e). Bespoke statistical analyses,
distinct from those implemented on the IMPC portal, were used
to assess sexual dimorphism and control the false positive rate.
For this analysis, we used data collected from 2,186 mutant
mouse lines, first assessing whether genotype significantly
influenced phenotype, and if significant whether the effect was

modified by sex. Of the categorical phenotypes that showed a
significant genotype effect (0.46% 1,220/266,952 data sets at 5%
FDR), 13.3% (162/1,220) were classed as SD at a 20% FDR
(Fig. 4a). Our previous investigations15 found it necessary to use a
higher FDR for categorical traits because of the conservative
nature of this statistical pipeline and multiple testing burden.
For continuous traits, 7.2% (7,929/110,586 at 5% FDR) had a
significant genotype effect, of which 17.7% (1,407/7,929 at 5%
FDR) were classed as SD (Fig. 4b). Increasing the stringency of
the continuous data analysis by decreasing the FDR to 1%,
reduced the number of phenotype calls (3.4%; 3,719/110,586 data
sets) but we still observed a high proportion (12.0%; 446/3,719) of
sexual dimorphism (Fig. 5a). For continuous traits, phenotypes
ascertained using mice phenotyped in multiple batches are more
robust as data is collected across multiple litters and modelling of
environmental variation is more reliable, thereby giving better
control of the false positive rate16. Focusing only on multi-batch
data sets, 8.9% (4,177/46,925) had a significant genotype effect of
which 13.8% were classed as SD (Fig. 5b).

The experimental design and the statistical analysis used here
were formulated to control the type-one error (false positive) rate,
at the expense of sensitivity15 (Figs 6 and 7). The fact that we
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Figure 2 | Sex as a biological variable in wildtype phenotypic continuous data when exploring absolute difference in phenotypes. Exploration of how

often sex was significant at explaining variation at a 5% FDR in an individual experiment using IMPC wildtype data for continuous traits. The analysis

assessed the role of sex in the trait of interest, at a centre level, as an absolute phenotype since weight was not included as a covariate. For all sections, green

indicates the phenotype was greater in the female, magenta indicates the trait was greater in the males, white indicates missing data, and grey indicates

there was no significant sex effect. (a) Pie chart showing the proportion of data sets where sex was a significant source of variation (n¼ 903).

(b) Comparison of the reproducibility of the sex differences in the traits monitored within the intra-peritoneal glucose tolerance test across ten phenotyping

centres. (c) Bar graph showing the proportion of data sets where sex was a significant source of variation by procedure. CSD indicates combined SHIRPA and

dysmorphology screen, DEXA: dual-energy X-ray absorptiometry, and PPI: acoustic startle and pre-pulse inhibition. (d) Comparison of the consistency of the

role of sex in the traits monitored within the DEXA procedure across ten phenotyping centres. BCM: Baylor College of Medicine, HMGU: Helmholtz Zentrum

Munich, ICS: Institut Clinique de la Souris, JAX: The Jackson Laboratory, Harwell: Medical Research Council Harwell, NING: Nanjing University, RBRC: RIKEN

BioResource Centre, TCP: The Centre for Phenogenomics, UC Davis: University of California, Davis and WTSI: Wellcome Trust Sanger Institute.
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detected a significant number of SD genotype–phenotype
relationships, despite this limitation and relatively small sample
size, suggests that other traits may display more subtle sexual
dimorphism. The primary impact of sex as a modifier of genotype
effect for continuous traits was that of ‘one sex only’ (12.8% for
all continuous traits using a 5% FDR) where only males or
females showed a statistically significant phenotype (Fig. 4b),
as demonstrated by the Usp47tm1b/tm1b mouse; the mutant
that showed the largest proportion of SD calls (Fig. 8 and
Supplementary Data 1). Of the SD calls in the IMPC data set,
3.5% demonstrated a phenotype that was significant in both sexes
but with opposing phenotypic changes (Fig. 4b); for example a
significant increase in the males and a significant decrease in the
females (Fig. 8b, total protein and red blood cell). In 0.8% of
cases, we observed phenotypes that were significant in both sexes,
when compared to controls, but the phenotype was more
pronounced in one sex when compared to the other (Fig. 4b).
With the goal of assessing the prevalence, a simple summary has
been used; however sensitivity will vary by trait. For categorical
screens the hit rate by screen averaged 12.5% (s.d.¼ 3.2%,

Supplementary Table 1), while for continuous data the average
SD hit rate by screen was 12.6% (s.d.¼ 8.3% Supplementary
Table 2). Co-correlation of phenotypes is expected and future
research will need to focus on cross variable identification of
phenotypic abnormalities, but at present is beyond the scope of
this manuscript.

Our study focused exclusively on mutants of autosomal loci
finding a high proportion associated with one or more SD calls
(33.2% of genes studied: 725/2,186). This result is in keeping with
the view that once the sex determination cascade is initiated,
genes exhibiting SD effects can be located anywhere in the
genome17. Moreover, it illustrates the pervasive nature of sexual
dimorphism that impacts a wide range of loci and genetic
systems.

Sexual dimorphism and gene function. We considered whether
our findings relate to similar examples of SD in humans. Evidence
for SD in humans has typically come from complex disease and
trait studies where the numbers of tested subjects are amenable to
statistical analysis18. However, meta-analysis studies have
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dysmorphology screen, DEXA: dual-energy X-ray absorptiometry and PPI: acoustic startle and pre-pulse inhibition. (b) Bar graph showing the role of sex by

procedure for categorical traits where CSD indicates combined SHIRPA and dysmorphology screen. (c) Comparison of the reproducibility of the sex
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typically failed to replicate findings with only the association of
angiotensin-converting enzyme gene (ACE) and hypertension in
men being consistently replicated18. Within the IMPC portal, we
do relate the knockout phenotypes to Mendelian disease data19

using resources such as Online Mendelian Inheritance in Man
(OMIM)20 and Orphanet21 where we are most likely to reproduce
the phenotypes observed in these single gene diseases. However,
these human resources do not consistently document SD in the
signs and symptoms and it is unlikely the numbers of patients
recorded for these rare diseases would make detection of
significant SD possible.

To determine whether prevalent sex differences are the result
of a common biological process, we performed a functional
analysis of a set of 29 genes for which sex differences were
detected on more than 4% of all measures. The statistical analysis,
and subsequent call of SD, is at the level of an individual trait for
a genotype. Therefore, classifying a gene as SD is somewhat
arbitrary as it involves accounting for the number of traits having
a genotypic effect, and the prevalence of SD within these. Despite
this limitation, an evaluation of this set of 29 genes in comparison
to all curated and experimentally derived functional annotation
sets in GeneWeaver22 revealed statistically significant overlap
(J¼ 0.0385; Po1.12� 10� 7) to 25 genes associated with ‘absence
of the oestrous cycle’ (MP:0009009), based on representation of
Kiss1r and Postn on both gene lists. A further review of genes for
which any significant sex*genotype interaction was detected
revealed additional genes associated with MP:0009009, absence of

the oestrous cycle. This additional set includes Fshr, Lhcgr,
Cyp27b1, Fancl and Foxo3. This result suggests that constitutive
perturbations of oestrous cyclicity, including developmental
absence or loss of cyclicity in adulthood, may broadly influence
sex differences. The gene products encoded by Fshr (follicle
stimulating releasing hormone receptor) and Lhcgr (Luteinizing
hormone/choriogonadotropin receptor) have well known effects
on reproductive cycles, and behaviour due to their role in
maintaining hormonal cycles in females. Cyp27b1 is a steroid
synthesizing enzyme, which is primarily involved in vitamin D
metabolism, known to influence many sex-specific phenomena
in autoimmune and other diseases (for a recent example23).
Fancl (Fanconi anema complementation group L) causes male
and female infertility and gonadal hormone abnormalities in
Zebrafish24 through developmental signalling mechanisms via
aromatase conversion of androgen. Foxo3 is associated with
ovarian pathology in humans25 and premature ovarian failure in
mice26. Therefore, each of these gene perturbations has the
capability of influencing hormonal effects on behaviour and
physiology, though it remains to be evaluated whether the sex
differences herein are stable throughout the hormonal cycle or
result from interference in a sex-specific gonadal steroid-
regulated process. An evaluation of other genes with high sex
difference hit rates may reveal additional pervasive effects on
reproductive traits. Other sex differences identified in the IMPC
analysis may be the result of more specific effects of gene
perturbation on a sex-specific process in males or females.
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Discussion
Many authors have raised the need to address the role of sex in
basic biological research and recommendations have been made,
but with limited progress to date. Bespoke analysis of IMPC data,
revealed that 9.9% of qualitative and 56.6% of quantitative data
sets were SD in wildtype mice. Furthermore, as a mediator of a
mutant phenotype, sex modifies the genotype effect in 13.3% of
qualitative data sets and up to 17.7% of quantitative data sets. Our
findings are consistent with a recently published study examining
the role of sex in human genetic variation that found the effect
was of modest magnitude but across a broad spectrum of traits27.
Further studies to understand the biological mechanism of the
interactions reported herein are challenging because of the
difficulty of designing experiments with sufficient sensitivity to
consistently detect those interactions. However, our findings also

span a broad phenotypic spectrum and indicate that regardless of
research field or biological system, consideration of sex is
important in the design and analysis of animal studies for
studies where sex differences could occur, thus supporting the
recent National Institute of Health mandate to consider sex as a
biological variable28.

Methods
Methodology consideration. Bespoke methods were developed to assess for
prevalence of sexual dimorphism and are independent of the methodologies
implemented on the IMPC portal.

Ethical approval. Institutes that breed the mice and collect phenotyping data are
guided by their own ethical review panels and licensing and accrediting bodies,
reflecting the national legislation under which they operate. Details of their ethical
review bodies and licences are provided in Supplementary Table 3. All efforts
were made to minimize suffering by considerate housing and husbandry.
All phenotyping procedures were examined for potential refinements that were
disseminated throughout the consortium. Animal welfare was assessed routinely
for all mice involved.

Mouse generation. Targeted ES cell clones obtained from the European
Conditional Mouse Mutagenesis Program (EUCOMM) and Knockout Mouse
Project (KOMP) resource29,30 were injected into BALB/cAnN, C57BL/6J, CD1
or C57BL/6N blastocysts for chimera generation. The resulting chimeras were
mated to C57BL/6N mice, and the progeny were screened to confirm germline
transmission. Following the recovery of germline-transmitting progeny, for the
majority of lines, heterozygotes were intercrossed to generate homozygous
mutants10. A few knockout lines were generated on other genetic backgrounds,
as detailed in the data output and presented on the IMPC portal. For these lines,
control data from the equivalent genetic background was collected. All lines are
available from http://www.mousephenotype.org/.

Genotyping and allele quality control. The targeted alleles were validated by a
combination of short-range PCR, qPCR and non-radioactive Southern blot, as
described previously31,32.

Housing and husbandry. Housing and husbandry data was captured for each
institute as described in Karp et al.33 and is available on the IMPC portal
(http://www.mousephenotype.org/about-impc/arrive-guidelines).

Phenotyping data collection. We have used data collected from high-throughput
phenotyping, which is based on a pipeline concept where a mouse is characterized
by a series of standardized and validated tests underpinned by standard operating
procedures (SOPs). The phenotyping tests chosen cover a variety of disease-related
and biological systems, including the metabolic, cardiovascular, bone, neurological
and behavioural, sensory and haematological systems and clinical chemistry. The
IMPRESS database (https://www.mousephenotype.org/impress), defines all screens,
the purpose of the screen, the experimental design, detailed procedural informa-
tion, the data that is to be collected, age of the mice, significant metadata para-
meters, and data quality control (QC).

Experimental design. At each institute, phenotyping data from both sexes is
collected at regular intervals on age-matched wildtype mice of equivalent genetic
backgrounds. Cohorts of at least seven homozygote mice of each sex per pipeline
were generated. If no homozygotes were obtained from 28 or more offspring of
heterozygote intercrosses, the line was classified as non-viable. Similarly, if o13%
of the pups resulting from intercrossing were homozygous, the line was classified as
being subviable. In such circumstances, heterozygote mice were analysed in the
phenotyping pipelines. The random allocation of mice to experimental group
(wildtype versus knockout) was driven by Mendelian inheritance. The individual
mouse was considered the experimental unit within the studies. Further detailed
experimental design information (for example, exact definition of a control animal)
for each phenotyping institute, or the blinding strategy implemented is captured
with a standardized ontology as detailed in Karp et al.33 and is available from the
IMPC portal (http://www.mousephenotype.org/about-impc/arrive-guidelines).

As a high-throughput project, the target sample size of 14 animals (seven
per sex) per knockout strain is relatively low. This number was arrived at after a
community-wide debate to find the lowest sample size that would consume the
least amount of resources while achieving the goal of detecting phenotypic
abnormalities10. At times, viability issues or the difficulty in administering a test
might further limit the number of animals. As such, whenever data are visualized,
the number of animals phenotyped is listed. In a high-throughput environment,
replication of individual lines is not cost effective. Instead, we are generating and
characterizing a common set of six ‘reference’ knockout lines that will present a
wide range of phenotypes based on previously published research.
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Figure 5 | Role of sex as a modifier of the genotype effect with more

stringent criteria. Exploration of the role of sex in modifying the genotype

effect in studies of continuous traits of knockout mice data from the IMPC.

(a) Distribution of sex effect in the genotype significant data sets when

using a 1% FDR. Overall, 110,586 data sets were tested and 3.4% (3,719)

were significant for the stage 1 genotype effect. Of these, 12% (n¼466)

were classed as SD. (b) Distribution of sex effect in the genotype significant

data sets when processing only multi-batch data sets at a 5% FDR. A total

of 46,925 data sets were tested and 8.9% (3,719) were significant for the

stage 1 genotype effect. Of these, 13.8% (n¼ 575) were classed as SD.
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Data QC. Pre-set reasons are established for QC failures (for example, insufficient
sample) and detailed within IMPRESS to provided standardized options as agreed
by area experts as to when data can be discarded. A second QC cycle occurs when
data are uploaded from the institutes to the Data Coordination Centre using an
internal QC web interface. Data can only be QC failed from the data set if clear
technical reasons can be found for a measurement being an outlier. Reasons are
provided and this is tracked within the database. QC is an ongoing process;
therefore, changes in data composition can occur between different data set
versions if an institute later identifies an issue with the data. Analysis within this
manuscript used IMPC data set version 4.2, published 8th December 2015.

Wildtype data sets. Wildtype data sets were assembled for a trait by selecting
wildtype mice that were collected at the same institute, on the same genetic
background, the same pipeline and with the same metadata parameters (for
example, instrument). The subsequent statistical pipeline required that data was
available for both sexes and there were more than 100 data points per sex.
The nearest body weight measure was associated with data provided it was within
þ /� 4 days of the collection of the trait of interest.

Wildtype-knockout data sets. Wildtype-knockout data sets were assembled by
selecting data from wildtype mice to associate to the data from the knockout mice
that were collected at the same institute, from the same genetic background, the
same pipeline, and with the same metadata parameters (for example, instrument).
The nearest body weight measure was associated with the data provided it was
within þ /� 4 days of the collection of the trait of interest. A data set was only
assembled for a knockout line and trait if data was available on both sexes, there
were greater than five readings for each sex for the knockout mice, and body weight
data was available. The requirement of a minimum of five readings was to maintain
sensitivity.

This process gave 110,586 wildtype-knockout data sets monitoring
continuous traits from 10 phenotyping centres. For categorical traits, 266,952
wildtype-knockout data sets from 10 centres were returned. The raw data are
available at the IMPC web portal and there is a page detailing the various methods
by which data can be extracted from the portal (http://www.mousephenotype.org/
data/documentation/index). For Fig. 8 of the manuscript, a gene set was
determined by grouping data by phenotyping centre, pipeline, allele, background
strain and zygosity. The number of mice that comprise the Usp47tm1b(EUCOMM)Wtsi

(MGI:5605792) data set presented within Fig. 8 of the manuscript are shown in
Supplementary Table 4.
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Statistical analysis. The analysis methods used were developed specifically to
answer the biological question of the prevalence of SD and therefore are distinct
from the statistical output presented on the IMPC portal. For each statistical
analysis a flow diagram summarizing the analysis pipelines is available in
Supplementary Fig. 1.

For continuous variables, regression analysis is necessary to assess the effect
after accounting for sources of variation such as batch. As such, the estimated effect

observed in the regression model cannot always be seen when visualizing raw
graphs (Supplementary Fig. 1f).

Sex as a biological variable for categorical wildtype data. For categorical traits,
the data were recoded to 0 to represent ‘as expected’ phenotypes or 1 to represent
‘not as expected’ phenotypes. A Bias Reduction Logistic Regression34 was used to
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assess the impact of sex on the abnormality rate with a likelihood ratio test that
compares a test model (YBsex) with a null model (YB1). The P values were
adjusted for multiple testing using the Hochberg method to control the FDR to 5%.
To assess the biological effect, the differences in two binomial proportions were
calculated and the 95% confidence interval calculated utilizing the Newcombe’s
method. The analyses assessing the role of sex on categorical data, assumes that
batch to batch and litter variation is negligible as discussed in ref. 15.

Sex as a biological variable for continuous wildtype data. For continuous traits,
to assess the role of sex after adjusting for potential body weight differences, a
mixed model regression analysis was used with model optimization to select the
covariance structure for the residual to the data with a likelihood ratio test that
compares a test model (equation 1) with a null model (equation 2). The P values
were adjusted for multiple testing using the Hochberg method to control the FDR
to 5%.

Y � SexþWeightþ 1 jBatchð Þ; ð1Þ

Y �Weightþ 1 jBatchð Þ: ð2Þ

The role of sex was also assessed as an absolute difference using a mixed model
regression with a likelihood ratio test to compare a test model (YBSexþ (1|Batch))
with a null model (YB(1|Batch)). The analyses assume that batch is a source of
variation that adds noise in an independent normally distributed fashion. When
weight is included, the analysis assumes that there is a linear relationship between
weight and the variation of interest. Analysis was restricted to data sets with more
than 100 data points per sex, and thus would be a data set comprising multiple
batches and therefore would be robust to the analysis15.

Using the output from the two pipelines assessing the role of sex as a source of
variation, the reproducibility of the role of sex across institutes was assessed for a
variable that had been measured at three or more institutes. As data sets have
differing size, and sensitivity varied across institutes, discordant results were classed
as those where the effect of sex was in opposing direction.

Sex as a modifier of genotype effect-in categorical data. For each trait of
interest, the data were recoded to either 0 to represent ‘as expected’ phenotypes or 1
to represent ‘not as expected’ phenotypes. The statistical pipeline, comparing the
abnormality rates in the knockout mice against the baseline population was
optimized to maximize sensitivity whilst maintain control of the type-one errors.
In summary, a two stage process was used where first the genotype role was
assessed and, if statistically significant, then the genotype effect by sex was assessed.
To reduce the multiple testing burden, potential filters were used to allow analysis
of only data sets that have the potential for statistical significance to be queried.
To assess potential for a genotype effect, the Mantel–Haenszel alpha star
(the minimal attainable P value for a data set) was calculated. If a data set had
potential (Po0.05), then the role of genotype was assessed using a one-sided
Cochran–Mantel–Haenszel mid P value to compare the proportion of
abnormalities events difference between the knockout and wildtype groups,
stratified by sex. After multiple testing adjustments, using the Hochberg method to
control the FDR to 5%, data sets were selected for stage 2 testing of an interaction.
The interaction was assessed by comparing abnormality rates between the sexes of
the knockout data only using a Bias Reduction Logistic Regression with a likelihood
ratio test that compared a test model (YBsex) with a null model (YB1). Prior to
the assessment, the potential was assessed using a LR_KO alpha star P value,
defined as the most extreme P value possible arising as a function of the number of
abnormal calls and number of readings within a data set was used as a filter to
select data sets for statistical testing for stage 2 (Po0.05). The remaining P values
were adjusted for multiple testing using the Hochberg method to control the
FDR to 20%. Lines were selected on statistical significance. To assess the biological
effect, the difference in two binomial proportions was calculated and the 95%
confidence interval calculated utilizing the Newcombe’s method. For data sets with
a significant effect at stage 1, but not stage 2, the change was classified as ‘genotype
effect with no sex effect’ as there was evidence of a genotype effect but the
genotype*sex interaction was not significant, whilst those which were significant at
stage 2 the change was classified (‘Female greater’ or ‘Male greater’) by comparing
the abnormality rates in the knockout mice by sex. The analyses assessing the
impact of genotype ablation on categorical data, assumes that batch to batch and
litter variation is negligible as discussed in ref. 15.

The C57BL/6NTac strain carries the Crb1Rd8 mutation35. This recessive single
base pair mutation (Retinal degeneration 8) can lead to a mild form of retinal
degeneration that affects vision. The onset of the phenotype appears to be between
2 and 6 weeks of age36. The IMPC consortium within the eye screen monitors
abnormalities including various retina parameters. The statistical analysis
compares the abnormality rate in the knockout to the wildtype within that institute
to account for variation in the penetrance of the retinal degeneration in the
baseline.

The SD hit rate comparison across screens excluded screens with o35 hits.

Sex as a modifier of the genotype effect in continuous data. A two stage
pipeline was implemented; stage 1 assessed the role of genotype and stage 2
assessed whether sex interacted with genotype. The complexity of the model is

limited by the low number of knockout mice used; as such key fixed effects have
been selected and batch is treated as a random effect16,37. For stage 1, testing the
role of genotype, a mixed model regression analysis was used with model
optimization to selects the covariance structure for the residual. The genotype effect
was assessed with a likelihood ratio test comparing a full model (equation 3) with a
null model (equation 4). The resulting P values were adjusted for multiple testing
using the Hochberg method to control the FDR to 5%. For stage 2, testing the role
of sex, a mixed model regression analysis was used with model optimization to
select a covariance structure for the residual. The interaction was assessed with a
likelihood ratio test comparing a full model (equation 3) with a null model
(equation 5). The resulting P values were adjusted for multiple testing using the
Hochberg method to control the FDR to 5%.

Y � Genotypeþ SexþGenotype�SexþWeightþ 1 jBatchð Þ; ð3Þ

Y � SexþWeightþ 1 jBatchð Þ; ð4Þ

Y � Genotypeþ SexþWeightþ 1 jBatchð Þ; ð5Þ

Y � SexþGenotype :SexþWeightþ 1 jBatchð Þ: ð6Þ

A final model was fitted (equation 6) to estimate the genotype effect by sex
which was used to classify the genotype effect. The estimated genotype effect for
each sex, and associated standard error, was standardized by dividing the values by
the average of the average wildtype male and female mice to allow comparison
across traits. Data sets were also given a workflow classification depending on how
the knockout data were collected. Multi-batch data sets were defined as those with
four or more distinct batches consisting of three or more batches within one sex
and two or more for the other sex. One-batch data sets were defined as those
with knockout mice collected in one batch. All other workflows were classed as
low-batch. When a genotype effect was detected for a data set, the effect was
classified as described in Supplementary Fig. 1d. For example, if a data set was
significant at stage 1 but not for stage 2, as there was evidence of a genotype effect
but the genotype*sex interaction was not significant, the effect would be classified
as ‘genotype effect with no sex effect’.

The calls were reviewed individually by biologists to validate the calls made by
the computational pipeline. Where questions were raised on a computational call,
if a statistical issue could be identified (for example, a continuous variable was
bound and thus was not appropriate for a mixed model methodology) then all data
sets for that variable were removed. See the list detailed in the available code38.

The analyses assume that batch is a source of variation that adds noise in an
independent normally distributed fashion. When weight is included, the analysis
assumes that there is a linear relationship between weight and the variation of
interest and that the slope doesn’t not dependent on sex. To address the concern
that an interaction between weight and sex could act as a confounder, the data was
processed with a model with an additional weight*sex term. The results were
equivalent to that seen without the inclusion of the term (data not shown, but
available at ref. 38). To validate the analysis pipeline, the control of type-one errors
was investigated by a series of resampling studies of wildtype data from Wellcome
Trust Sanger Institute MouseGP pipeline under the null at both stage 1 and 2 as
described in ref. 16. Wildtype data was taken from five procedures (clinical
chemistry, dual-energy X-ray absorptiometry (DEXA), immunophenotyping,
haematology and open field) giving 60 traits. The simulated wildtype-knockout
data sets were then examined statistically to assess the type-one error rate control at
stage 1 and stage 2.

The control of type-one errors for stage 2 was also assessed under the null for
stage 2 in the presence of a genotype effect that affected both sexes equally.
Simulated data was constructed based on the signal characteristics (mean, variance
and sex effect) of five clinical chemistry traits to give 14 male and 14 female data
points in 300 batches. Batch variation was simulated under the assumption it was
normally distributed with mean zero and defined variance that was 25% of the
estimated s.d. Body weight data was generated by random sampling from the
average signal for a wildtype female mouse. Resampling studies mimicking a
random workflow were run as described in ref. 16 to build wildtype-knockout data
sets (iterations 2,000). Signal was added to the knockout mice as a proportion of
standard deviation (0, 0.5, 1, 1.5, 2) to represent a main effect genotype effect.
The resulting data set were then examined statistically to assess the type-one error
rate at stage 2.

The SD hit rate comparison across screens excluded screens with o35 hits.

Enrichment analysis. A list of genes (GSID¼GS248996) and their SD hit rate
(per cent of measures showing a statistically significant sex*genotype interaction)
were entered into the GeneWeaver database. Genes with a 4% or greater hit rate
(GSIDS¼GS248973) were stored in a gene set. A ‘search for similar gene sets’ was
performed using Jaccard similarity of GS248973f against GeneWeaver’s database of
4100,000 gene sets from multiple sources including gene expression studies,
curated annotations and other genomic data resources22. A statistically similar gene
set was compared to the larger set of all sex*genotype interactions (GS248996)
using the Jaccard similarity analysis tool to find additional relevant genes.
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Data availability. All data sets, scripts and output have been made available at
www.mousephenotype.org/data/sexual-dimorphism and as a Zenodo repository at
http://doi.org/10.5281/zenodo.260398 (ref. 38).
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Manuela A. Östereicher35, Holger Maier35, Claudia Stoeger35, Stefanie Leuchtenberger35, Ali Ö. Yildrim35,36,37,
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