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Abbreviations	
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DD:	Developmental	Disorder	

DDD:	Deciphering	Developmental	Disorders	study	
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Abstract	
Individuals	with	severe,	undiagnosed	developmental	disorders	(DDs)	are	enriched	for	

damaging	de	novo	mutations	(DNMs)	in	developmentally	important	genes.	We	exome	

sequenced	4,293	families	with	individuals	with	DDs,	and	meta-analysed	these	data	with	

published	data	on	3,287	individuals	with	similar	disorders.	We	show	that	the	most	

significant	factors	influencing	the	diagnostic	yield	of	de	novo	mutations	are	the	sex	of	the	

affected	individual,	the	relatedness	of	their	parents	and	the	age	of	both	father	and	mother.	

We	identified	94	genes	enriched	for	damaging	de	novo	mutation	at	genome-wide	

significance	(P	<	7	x	10
-7
),	including	14	genes	for	which	compelling	data	for	causation	was	

previously	lacking.	We	have	characterised	the	phenotypic	diversity	among	these	genetic	

disorders.	We	demonstrate	that,	at	current	cost	differentials,	exome	sequencing	has	much	

greater	power	than	genome	sequencing	for	novel	gene	discovery	in	genetically	

heterogeneous	disorders.	We	estimate	that	42%	of	our	cohort	carry	pathogenic	DNMs	

(single	nucleotide	variants	and	indels)	in	coding	sequences,	with	approximately	half	

operating	by	a	loss-of-function	mechanism,	and	the	remainder	resulting	in	altered-function	

(e.g.	activating,	dominant	negative).	We	established	that	most	haploinsufficient	

developmental	disorders	have	already	been	identified,	but	that	many	altered-function	

disorders	remain	to	be	discovered.	Extrapolating	from	the	DDD	cohort	to	the	general	

population,	we	estimate	that	developmental	disorders	caused	by	DNMs	have	an	average	

birth	prevalence	of	1	in	213	to	1	in	448	(0.22-0.47%	of	live	births),	depending	on	parental	

age.	

Main	text	
Approximately	2-5%	of	children	are	born	with	major	congenital	malformations	and/or	

manifest	severe	neurodevelopmental	disorders	during	childhood
1,2
.	While	diverse	

mechanisms	can	cause	such	developmental	disorders,	including	gestational	infection	and	

maternal	alcohol	consumption,	damaging	genetic	variation	in	developmentally	important	

genes	has	a	major	contribution.	Several	recent	studies	have	identified	a	substantial	causal	

role	for	DNMs	not	present	in	either	parent
3-15

.	Despite	the	identification	of	many	

developmental	disorders	caused	by	DNMs,	it	is	generally	accepted	that	many	more	such	

disorders	await	discovery
15
,	and	the	overall	contribution	of	DNMs	to	developmental	

disorders	is	not	known.	Moreover,	some	pathogenic	DNMs	completely	ablate	the	function	

of	the	encoded	protein,	whereas	others	alter	the	function	of	the	encoded	protein
16
;	the	

relative	contributions	of	these	two	mechanistic	classes	is	also	not	known.	

	

We	recruited	4,293	individuals	to	the	Deciphering	Developmental	Disorders	(DDD)	study
15
.	

Each	of	these	individuals	was	referred	with	severe	undiagnosed	developmental	disorders	

and	most	were	the	only	affected	family	member.	We	systematically	phenotyped	these	

individuals	and	sequenced	the	exomes	of	these	individuals	and	their	parents.	Analyses	of	

1,133	of	these	trios	were	described	previously
15,17

.	We	generated	a	high	sensitivity	set	of	

8,361	candidate	DNMs	in	coding	or	splicing	sequence	(mean	of	1.95	DNMs	per	proband),	

while	removing	systematic	erroneous	calls	(Supplementary	Table	1).	1,624	genes	contained	

two	or	more	DNMs	in	unrelated	individuals.	

	

Twenty-three	percent	of	individuals	had	likely	pathogenic	protein-truncating	or	missense	

DNMs	within	the	clinically	curated	set	of	genes	robustly	associated	with	dominant	

developmental	disorders
17
.	We	investigated	factors	associated	with	whether	an	individual	
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had	a	likely	pathogenic	DNM	in	these	curated	genes	(Figure	1	A,	B).	We	observed	that	males	

had	a	lower	chance	of	carrying	a	likely	pathogenic	DNM	(P	=	1.8	x	10
-4
;	OR	0.75,	0.65	-	0.87	

95%	CI),	as	has	also	been	observed	in	autism
18
.	We	also	observed	increased	likelihood	of	

having	a	pathogenic	DNM	with	the	extent	of	speech	delay	(P	=	0.00123),	but	not	other	

indicators	of	severity	relative	to	the	rest	of	the	cohort.	Furthermore,	the	total	genomic	

extent	of	autozygosity	(due	to	parental	relatedness)	was	negatively	correlated	with	the	

likelihood	of	having	a	pathogenic	DNM	(P	=	1.7	x	10
-7
),	for	every	log10	increase	in	autozygous	

length,	the	probability	of	having	a	pathogenic	DNM	dropped	by	7.5%,	likely	due	to	

increasing	burden	of	recessive	causation	(Figure	1	C).	Nonetheless,	6%	of	individuals	with	

autozygosity	equivalent	to	a	first	cousin	union	or	greater	had	a	plausibly	pathogenic	DNM,	

underscoring	the	importance	of	considering	de	novo	causation	in	all	families.		

	

Paternal	age	has	been	shown	to	be	the	primary	factor	influencing	the	number	of	DNMs	in	a	

child
19,20

,	and	thus	is	expected	to	be	a	risk	factor	for	pathogenic	DNMs.	Paternal	age	was	

only	weakly	associated	with	likelihood	of	having	a	pathogenic	DNM	(P	=	0.016).	However,	

focusing	on	the	minority	of	DNMs	that	were	truncating	and	missense	variants	in	known	DD-

associated	genes	limits	our	power	to	detect	such	an	effect.	Analysing	all	8,409	high	

confidence	exonic	and	intronic	autosomal	DNMs	confirmed	a	strong	paternal	age	effect	(P	=	

1.4	x	10
-10
,	1.53	DNMs/year,	1.07-2.01	95%	CI),	as	well	as	highlighting	a	weaker,	

independent,	maternal	age	effect	(P	=	0.0019,	0.86	DNMs/year,	0.32-1.40	95%	CI,	Figure	1	

D,	E),	as	has	recently	been	described	in	whole	genome	analyses
21
.		

	

We	identified	genes	significantly	enriched	for	damaging	DNMs	by	comparing	the	observed	

gene-wise	DNM	count	to	that	expected	under	a	null	mutation	model
22
,	as	described	

previously
15
.	We	combined	this	analysis	with	4,224	published	DNMs	in	3,287	affected	

individuals	from	thirteen	exome	or	genome	sequencing	studies	(Supplementary	Table	2)
3-14

	

that	exhibited	a	similar	excess	of	DNMs	in	our	curated	set	of	DD-associated	genes	

(Supplementary	Figure	1).	We	found	93	genes	with	genome-wide	significance	(P	<	5	×	10
-7
,	

Figure	2),	80	of	which	had	prior	evidence	of	DD-association	(Supplementary	Table	3).	We	

have	developed	visual	summaries	of	the	phenotypes	associated	with	each	gene	to	facilitate	

clinical	use.	In	addition,	we	created	anonymised	average	face	images	from	individuals	with	

DNMs	in	genome-wide	significant	genes	(Figure	2).	These	images	highlight	facial	

dysmorphologies	specific	to	certain	genes.	To	assess	any	increase	in	power	to	detect	novel	

DD-associated	genes,	we	excluded	individuals	with	likely	pathogenic	variants	in	known	DD-

associated	genes
15
,	leaving	3,158	probands	from	our	cohort,	along	with	2,955	probands	

from	the	meta-analysis	studies.	In	this	subset,	fourteen	genes	for	which	no	statistically-

compelling	prior	evidence	for	DD	causation	was	available	achieved	genome-wide	

significance:	CDK13,	CHD4,	CNOT3,	CSNK2A1,	GNAI1,	KCNQ3,	MSL3,	PPM1D,	PUF60,	

QRICH1,	SET,	SUV420H1,	TCF20,	and	ZBTB18	(P	<	5	x	10
-7
,	Table	1,	Supplementary	Figure	4).	

The	clinical	features	associated	with	these	newly	confirmed	disorders	are	summarised	in	

Figure	3,	Supplementary	Figure	2	and	Supplementary	Figure	3.	QRICH1	would	not	achieve	

genome-wide	significance	without	excluding	individuals	with	likely	pathogenic	variants	in	

DD-associated	genes.	In	addition	to	discovering	novel	DD-associated	genes,	we	identified	

several	new	disorders	linked	to	known	DD-associated	genes,	but	with	different	modes	of	

inheritance	or	molecular	mechanisms.	We	found	USP9X	and	ZC4H2	had	a	genome-wide	

significant	excess	of	DNMs	in	female	probands,	indicating	these	genes	have	X-linked	

dominant	modes	of	inheritance	in	addition	to	previously	reported	X-linked	recessive	mode	
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of	inheritance	in	males
23,24

.	In	addition,	we	found	truncating	mutations	in	SMC1A	were	

strongly	associated	with	a	novel	seizure	disorder	(P	=	6.5	x	10
-19
),	while	in-frame/missense	

mutations	in	SMC1A	with	dominant	negative	effects
25
	are	a	known	cause	of	Cornelia	de	

Lange	Syndrome	(CdLS).	Individuals	with	truncating	mutations	in	SMC1A	lacked	the	

characteristic	facial	dysmorphology	of	CdLS.	

	

We	then	explored	two	approaches	for	integrating	phenotypic	data	into	disease	gene	

association:	statistical	assessment	of	Human	Phenotype	Ontology	(HPO)	term	similarity	

between	individuals	sharing	candidate	DNMs	in	the	same	gene	(as	we	described	

previously
26
)	and	phenotypic	stratification	based	on	specific	clinical	characteristics.	

Combining	genetic	evidence	and	HPO	term	similarity	increased	the	significance	of	some	

known	DD-associated	genes.		However,	significance	decreased	for	a	larger	number	of	genes	

causing	severe	DD	but	associated	with	non	discriminatory	HPO	terms	(Supplementary	Figure	

5	A).	Although	we	did	not	incorporate	categorical	phenotypic	similarity	in	the	gene	

discovery	analyses	described	above,	the	systematic	acquisition	of	phenotypic	data	on	

affected	individuals	within	DDD	enabled	aggregate	representations	to	be	created	for	each	

gene	achieving	genome-wide	significance.	We	present	these	in	the	form	of	icon-based	

summaries	of	growth	and	developmental	milestones	(PhenIcons),	heatmaps	of	the	

recurrently	coded	HPO	terms	and,	where	sufficient	face	images	were	available,	an	

anonymised	average	facial	representation	(Supplementary	Figure	3).			

	

Twenty	percent	of	individuals	had	HPO	terms	which	indicated	seizures	and/or	epilepsy.		We	

compared	analysis	within	this	phenotypically	stratified	group	with	gene-wise	analyses	of	the	

entire	cohort,	to	see	if	it	increased	power	to	detect	known	seizure-associated	genes	

(Supplementary	Figure	5	B).	Fifteen	seizure-associated	genes	were	genome-wide	significant	

in	both	the	seizure-only	and	the	entire-cohort	analyses.	Nine	seizure-associated	genes	were	

genome-wide	significant	in	the	entire	cohort	but	not	in	the	seizure	subset.	Of	the	285	

individuals	with	truncating	or	missense	DNMs	in	known	seizure-associated	genes,	56%	of	

individuals	had	no	coded	terms	related	to	seizures/epilepsy.	These	findings	suggest	that	the	

power	of	increased	sample	size	far	outweighs	specific	phenotypic	expressivity	due	to	the	

shared	genetic	etiology	between	individuals	with	and	without	epilepsy	in	our	cohort.		

	

The	large	number	of	genome-wide	significant	genes	identified	in	the	analyses	above	allows	

us	to	compare	empirically	different	experimental	strategies	for	novel	gene	discovery	in	a	

genetically	heterogeneous	cohort.	We	compared	the	power	of	exome	and	genome	

sequencing	to	detect	genome-wide	significant	genes,	assuming	that	budget	and	not	samples	

are	limiting,	under	different	scenarios	of	cost	ratios	and	sensitivity	ratios	(Figure	4).	At	

current	cost	ratios	(exome	costs	30-40%	of	a	genome)	and	with	a	plausible	sensitivity	

differential	(genome	detects	5%	more	exonic	variants	than	exome
27
)	exome	sequencing	

detects	more	than	twice	as	many	genome-wide	significant	genes.	These	empirical	estimates	

were	consistent	with	power	simulations	for	identifying	dominant	loss-of-function	genes	

(Supplementary	Figure	6).	In	summary,	while	genome	sequencing	gives	greatest	sensitivity	

to	detect	pathogenic	variation	in	a	single	individual	(or	outside	of	the	coding	region),	exome	

sequencing	is	more	powerful	for	novel	disease	gene	discovery	(and,	analogously,	likely	

delivers	lower	cost	per	diagnosis).	
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Our	previous	simulations	suggested	that	analysis	of	a	cohort	of	4,293	DDD	families	ought	to	

be	able	to	detect	approximately	half	of	all	haploinsufficient	DD-associated	genes	at	genome-

wide	significance
15
.	Empirically,	we	have	identified	47%	(50/107)	of	haploinsufficient	genes	

previously	robustly	associated	with	neurodevelopmental	disorders
17
.	We	hypothesised	that	

genetic	testing	prior	to	recruitment	into	our	study	may	have	depleted	the	cohort	of	the	

most	clinically	recognisable	disorders.	Indeed,	we	observed	that	the	genes	associated	with	

the	most	clinically	recognisable	disorders	were	associated	with	a	significant,	three-fold	

lower	enrichment	of	truncating	DNMs	than	other	DD-associated	genes	(~40-fold	enrichment	

vs	~120-fold	enrichment,	Figure	5	A).	Removing	these	most	recognisable	disorders	from	the	

analysis,	we	identified	55%	(42/76)	of	the	remaining	haploinsufficient	DD-associated	genes.	

The	known	DD-associated	haploinsufficient	genes	that	did	not	reach	genome-wide	

significance	were	clearly	enriched	for	those	with	lower	mutability,	which	we	would	expect	

to	lower	power	to	detect	in	our	analyses.	We	identified	DD-associated	genes	(e.g.	NRXN2)	

with	high	mutability,	low	clinical	recognisability	and	yet	no	signal	of	enrichment	for	DNMs	in	

our	cohort	(Supplementary	Figure	7).	Our	analyses	call	into	question	whether	these	genes	

really	are	associated	with	haploinsufficient	neurodevelopmental	disorders	and	highlights	

the	potential	for	well-powered	gene	discovery	analyses	to	refute	prior	credence	regarding	

disease	gene	associations.		

	

We	estimated	the	likely	prevalence	of	pathogenic	missense	and	truncating	DNMs	within	our	

cohort	by	increasing	the	stringency	of	called	DNMs	until	the	observed	synonymous	DNMs	

equated	that	expected	under	the	null	mutation	model	(Supplementary	Figure	8	A),	then	

quantifying	the	excess	of	observed	missense	and	truncating	DNMs	across	all	genes	(Figure	5	

B).	We	observed	an	excess	of	576	truncating	and	1,220	missense	mutations,	suggesting	

41.8%	(1,796/4,293)	of	the	cohort	has	a	pathogenic	DNM.	This	estimate	of	the	number	of	

excess	missense	and	truncating	DNMs	in	our	cohort	is	robust	to	varying	the	stringency	of	

DNM	calling	(Supplementary	Figure	8	B).	The	vast	majority	of	synonymous	DNMs	are	likely	

to	be	benign,	as	evidenced	by	them	being	distributed	uniformly	(Figure	5	C)	among	genes	

irrespective	of	their	tolerance	of	truncating	variation	in	the	general	population	(as	

quantified	by	the	probability	of	being	LoF-intolerant	(pLI)	metric
28
).	By	contrast,	missense	

and	truncating	DNMs	are	significantly	enriched	in	genes	with	the	highest	probabilities	of	

being	intolerant	of	truncating	variation	(Figure	5	D).	Only	51%	(923/1,796)	of	these	excess	

missense	and	truncating	DNMs	are	located	in	DD-associated	dominant	genes,	with	the	

remainder	likely	to	affect	genes	not	yet	associated	with	DDs.	A	much	higher	proportion	of	

the	excess	truncating	DNMs	(71%)	than	missense	DNMs	(42%)	affected	known	DD-

associated	genes.	This	suggests	that	whereas	most	haploinsufficient	DD-associated	genes	

have	already	been	identified,	many	DD-associated	genes	characterised	by	pathogenic	

missense	DNMs	remain	to	be	discovered.	

	

Understanding	the	mechanism	of	action	of	a	monogenic	disorder	is	an	important	

prerequisite	for	designing	therapeutic	strategies
29
.	We	sought	to	estimate	the	relative	

proportion	of	altered-function	and	loss-of-function	mechanisms	among	the	excess	DNMs	in	

our	cohort,	by	assuming	that	the	vast	majority	of	truncating	mutations	operate	by	a	loss-of-

function	mechanism	and	using	two	independent	approaches	to	estimate	the	relative	

contribution	of	the	two	mechanisms	among	the	excess	missense	DNMs	(Methods).	First,	we	

used	the	observed	ratio	of	truncating	and	missense	DNMs	within	haploinsufficient	DD-

associated	genes	to	estimate	the	proportion	of	the	excess	missense	DNMs	that	likely	act	by	
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loss-of-function	(Figure	5	C).	This	approach	estimated	that	47%	(42	-	51%	95%	CI)	of	excess	

missense	and	truncating	DNMs	operate	by	loss-of-function,	and	53%	by	altered-function.	

Second,	we	took	advantage	of	the	different	population	genetic	characteristics	of	known	

altered-function	and	loss-of-function	DD-associated	genes.	Specifically,	we	observed	that	

these	two	classes	of	DD-associated	genes	are	differentially	depleted	of	truncating	variation	

in	individuals	without	overt	developmental	disorders	(pLI	metric
28
).	We	modelled	the	

observed	pLI	distribution	of	excess	missense	DNMs	as	a	mixture	of	the	pLI	distributions	of	

known	altered-function	and	loss-of-function	DD-associated	genes	(Figure	5	E,	F),	and	

estimated	that	63%	(50	-	76%	95%	CI)	of	excess	missense	DNMs	likely	act	by	altered-

function	mechanisms.	Incorporating	the	truncating	DNMs	operating	by	a	loss-of-function	

mechanism,	this	approach	estimated	that	57%	(48	-	66%	95%	CI)	of	excess	missense	and	

truncating	DNMs	operate	by	loss-of-function	and	43%	by	altered-function.	

	

We	estimated	the	birth	prevalence	of	monoallelic	developmental	disorders	by	using	the	

germline	mutation	model	to	calculate	the	expected	cumulative	germline	mutation	rate	of	

truncating	DNMs	in	haploinsufficient	DD-associated	genes	and	scaling	this	upwards	based	

on	the	composition	of	excess	DNMs	in	the	DDD	cohort	described	above	(see	Methods),	

correcting	for	disorders	that	are	under-represented	in	our	cohort	as	a	result	of	prior	genetic	

testing	(e.g.	clinically-recognisable	disorders	and	large	pathogenic	CNVs	identified	by	prior	

chromosomal	microarray	analysis).	This	gives	a	mean	prevalence	estimate	of	0.34%	(0.31-

0.37	95%	CI),	or	1	in	295	births.	By	factoring	in	the	paternal	and	maternal	age	effects	on	the	

mutation	rate	(Figure	1)	we	modelled	age-specific	estimates	of	birth	prevalence	(Figure	6)	

that	range	from	1	in	448	(both	mother	and	father	aged	20)	to	1	in	213	(both	mother	and	

father	aged	45).	

	

In	summary,	we	have	shown	that	de	novo	mutations	account	for	approximately	half	of	the	

genetic	architecture	of	severe	developmental	disorders,	and	are	split	roughly	equally	

between	loss-of-function	and	altered-function.	Whereas	most	haploinsufficient	DD-

associated	genes	have	already	been	identified,	currently	many	activating	and	dominant	

negative	DD-associated	genes	have	eluded	discovery.	This	elusiveness	likely	results	from	

these	disorders	being	individually	rarer,	being	caused	by	a	relatively	small	number	of	

missense	mutations	within	each	gene.	Discovery	of	the	remaining	dominant	developmental	

disorders	requires	larger	studies	and	novel,	more	powerful,	analytical	strategies	for	disease-

gene	association	that	leverage	gene-specific	patterns	of	population	variation,	specifically	the	

observed	depletion	of	damaging	variation.	The	integration	of	accurate	and	complete	

quantitative	and	categorical	phenotypic	data	into	the	analysis	will	improve	the	power	to	

identify	ultrarare	DD	with	distinctive	clinical	presentations.	We	have	estimated	the	mean	

birth	prevalence	of	dominant	monogenic	developmental	disorders	to	be	around	1	in	295,	

which	is	greater	than	the	combined	impact	of	trisomies	13,	18	and	21
30
	and	highlights	the	

cumulative	population	morbidity	and	mortality	imposed	by	these	individually	rare	disorders.	
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Methods	

Family	recruitment	

At	24	clinical	genetics	centers	within	the	United	Kingdom	(UK)	National	Health	Service	and	

the	Republic	of	Ireland,	4,293	patients	with	severe,	undiagnosed	developmental	disorders	

and	their	parents	(4,125	families)	were	recruited	and	systematically	phenotyped.	The	study	

has	UK	Research	Ethics	Committee	approval	(10/H0305/83,	granted	by	the	Cambridge	South	

Research	Ethics	Committee	and	GEN/284/12,	granted	by	the	Republic	of	Ireland	Research	

Ethics	Committee).	Families	gave	informed	consent	for	participation.	

	

Clinical	data	(growth	measurements,	family	history,	developmental	milestones,	etc.)	were	

collected	using	a	standard	restricted-term	questionnaire	within	DECIPHER
31
,	and	detailed	

developmental	phenotypes	for	the	individuals	were	entered	using	Human	Phenotype	

Ontology	(HPO)	terms
32
.	Saliva	samples	for	the	whole	family	and	blood-extracted	DNA	

samples	for	the	probands	were	collected,	processed	and	quality	controlled	as	previously	

described
15
.	

	

Exome	sequencing		

Genomic	DNA	(approximately	1	μg)	was	fragmented	to	an	average	size	of	150	base-pairs	

(bp)	and	subjected	to	DNA	library	creation	using	established	Illumina	paired-end	protocols.	

Adaptor-ligated	libraries	were	amplified	and	indexed	via	polymerase	chain	reaction	(PCR).	A	

portion	of	each	library	was	used	to	create	an	equimolar	pool	comprising	eight	indexed	

libraries.	Each	pool	was	hybridized	to	SureSelect	ribonucleic	acid	(RNA)	baits	(Agilent	Human	

All-Exon	V3	Plus	with	custom	ELID	C0338371	and	Agilent	Human	All-Exon	V5	Plus	with	

custom	ELID	C0338371)	and	sequence	targets	were	captured	and	amplified	in	accordance	

with	the	manufacturer's	recommendations.	Enriched	libraries	were	subjected	to	75-base	

paired-end	sequencing	(Illumina	HiSeq)	following	the	manufacturer's	instructions.	

	

Alignment	and	calling	single	nucleotide	variants,	insertions	and	deletions	

Mapping	of	short-read	sequences	for	each	sequencing	lanelet	was	carried	out	using	the	

Burrows-Wheeler	Aligner	(BWA;	version	0.59)
33
	backtrack	algorithm	with	the	GRCh37	1000	

Genomes	Project	phase	2	reference	(also	known	as	hs37d5).	Sample-level	BAM	

improvement	was	carried	out	using	the	Genome	Analysis	Toolkit	(GATK;	version	3.1.1)
34
	and	

SAMtools	(version	0.1.19)
35
.	This	consisted	of	a	realignment	of	reads	around	known	and	

discovered	indels	followed	by	base	quality	score	recalibration	(BQSR),	with	both	steps	

performed	using	GATK.	Lastly,	SAMtools	calmd	was	applied	and	indexes	were	created.	

	

Known	indels	for	realignment	were	taken	from	the	Mills	Devine	and	1000	Genomes	Project	

Gold	set	and	the	1000	Genomes	Project	phase	low-coverage	set,	both	part	of	the	GATK	

resource	bundle	(version	2.2).	Known	variants	for	BQSR	were	taken	from	dbSNP	137,	also	

part	of	the	GATK	resource	bundle.	Finally,	single	nucleotide	variants	(SNVs)	and	indels	were	

called	using	the	GATK	HaplotypeCaller	(version	3.2.2);	this	was	run	in	multisample	calling	

mode	using	the	complete	data	set.	GATK	Variant	Quality	Score	Recalibration	(VQSR)	was	

then	computed	on	the	whole	data	set	and	applied	to	the	individual-sample	variant	calling	

format	(VCF)	files.	DeNovoGear	(version	0.54)
36
	was	used	to	detect	SNV,	insertion	and	

deletion	de	novo	mutations	(DNMs)	from	child	and	parental	exome	data	(BAM	files).	
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Variant	annotation	

Variants	in	the	VCF	were	annotated	with	minor	allele	frequency	(MAF)	data	from	a	variety	

of	different	sources.	The	MAF	annotations	used	included	data	from	four	different	

populations	of	the	1000	Genomes	Project
37
	(AMR,	ASN,	AFR	and	EUR),	the	UK10K	cohort,	

the	NHLBI	GO	Exome	Sequencing	Project	(ESP),	the	Non-Finnish	European	(NFE)	subset	of	

the	Exome	Aggregation	Consortium	(ExAC)	and	an	internal	allele	frequency	generated	using	

unaffected	parents	from	the	cohort.		

	

Variants	in	the	VCF	were	annotated	with	Ensembl	Variant	Effect	Predictor	(VEP)
38
	based	on	

Ensembl	gene	build	76.	The	transcript	with	the	most	severe	consequence	was	selected	and	

all	associated	VEP	annotations	were	based	on	the	predicted	effect	of	the	variant	on	that	

particular	transcript;	where	multiple	transcripts	shared	the	same	most	severe	consequence,	

the	canonical	or	longest	was	selected.	We	included	an	additional	consequence	for	variants	

at	the	last	base	of	an	exon	before	an	intron,	where	the	final	base	is	a	guanine,	since	these	

variants	appear	to	be	as	damaging	as	a	splice	donor	variant
26
.	

	

We	categorized	variants	into	three	classes	by	VEP	consequence:		

1. protein-truncating	variants	(PTV):	splice	donor,	splice	acceptor,	stop	gained,	

frameshift,	initiator	codon,	and	conserved	exon	terminus	variant.	

2. missense	variants:	missense,	stop	lost,	inframe	deletion,	inframe	insertion,	coding	

sequence,	and	protein	altering	variant.	

3. silent	variants:	synonymous.	

	

De	novo	mutation	filtering	

We	filtered	candidate	DNM	calls	to	reduce	the	false	positive	rate	but	maximize	sensitivity,	

based	on	prior	results	from	experimental	validation	by	capillary	sequencing	of	candidate	

DNMs
15
.	Candidate	DNMs	were	excluded	if	not	called	by	GATK	in	the	child,	or	called	in	

either	parent,	or	if	they	had	a	maximum	MAF	greater	than	0.01.	Candidate	DNMs	were	

excluded	when	the	forward	and	reverse	coverage	differed	between	reference	and	

alternative	alleles,	defined	as	P	<	10
-3
	from	a	Fisher’s	exact	test	of	coverage	from	orientation	

by	allele	summed	across	the	child	and	parents.		

	

Candidate	DNMs	were	also	excluded	if	they	met	two	of	the	three	following	three	criteria:	1)	

an	excess	of	parental	alternative	alleles	within	the	cohort	at	the	DNMs	position,	defined	as	P	

<	10
-3
	under	a	one-sided	binomial	test	given	an	expected	error	rate	of	0.002	and	the	

cumulative	parental	depth;	2)	an	excess	of	alternative	alleles	within	the	cohort	in	DNMs	in	a	

gene,	defined	as	P	<	10
-3
	under	a	one-sided	binomial	test	given	an	expected	error	rate	of	

0.002	and	the	cumulative	depth,	or	3)	both	parents	had	one	or	more	reads	supporting	the	

alternative	allele.		

	

If,	after	filtering,	more	than	one	variant	was	observed	in	a	given	gene	for	a	particular	trio,	

only	the	variant	with	the	highest	predicted	functional	impact	was	kept	(protein	truncating	>	

missense	>	silent).	Source	code	for	filtering	candidate	DNMs	can	be	found	here:	

	

https://github.com/jeremymcrae/denovoFilter	
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De	novo	mutation	validation	

For	candidate	DNMs	of	interest,	primers	were	designed	to	amplify	150-250	bp	products	

centered	around	the	site	of	interest.	Default	primer3	design	settings	were	used	with	the	

following	adjustments:	GC	clamp	=	1,	human	mispriming	library	used.	Site-specific	primers	

were	tailed	with	Illumina	adapter	sequences.	PCR	products	were	generated	with	JumpStart	

AccuTaq	LA	DNA	polymerase	(Sigma	Aldrich),	using	40	ng	genomic	DNA	as	template.	

Amplicons	were	tagged	with	Illumina	PCR	primers	along	with	unique	barcodes	enabling	

multiplexing	of	96	samples.	Barcodes	were	incorporated	using	Kapa	HiFi	mastermix	(Kapa	

Biosystems).	Samples	were	pooled	and	sequenced	down	one	lane	of	the	Illumina	MiSeq,	

using	250	bp	paired	end	reads.	An	in-house	analysis	pipeline	extracted	the	read	count	per	

site	and	classified	inheritance	status	per	variant	using	a	maximum	likelihood	approach.		

	

Individuals	with	likely	pathogenic	variants	

We	previously	screened	1,133	individuals	for	variants	that	contribute	to	their	disorder
15,17

.	

All	candidate	variants	in	the	1,133	individuals	were	reviewed	by	consultant	clinical	

geneticists	for	relevance	to	the	individuals’	phenotypes.	Most	diagnosable	pathogenic	

variants	occurred	de	novo	in	dominant	genes,	but	a	small	proportion	also	occurred	in	

recessive	genes	or	under	other	inheritance	modes.	DNMs	within	dominant	DD-associated	

genes	were	very	likely	to	be	classified	as	the	pathogenic	variant	for	the	individuals’	disorder.	

Due	to	the	time	required	to	review	individuals	and	their	candidate	variants,	we	did	not	

conduct	a	similar	review	in	the	remainder	of	the	4,293	individuals.	Instead	we	defined	likely	

pathogenic	variants	as	candidate	DNMs	found	in	autosomal	and	X-linked	dominant	DD-

associated	genes,	or	candidate	DNMs	found	in	hemizygous	DD-associated	genes	in	males.	

1,136	individuals	in	the	4,293	cohort	had	variants	either	previously	classified	as	

pathogenic
15,17

,	or	had	a	likely	pathogenic	DNM.	

	

Gene-wise	assessment	of	DNM	significance	

Gene-specific	germline	mutation	rates	for	different	functional	classes	were	computed
15,22

	

for	the	longest	transcript	in	the	union	of	transcripts	overlapping	the	observed	DNMs	in	that	

gene.	We	evaluated	the	gene-specific	enrichment	of	PTV	and	missense	DNMs	by	computing	

its	statistical	significance	under	a	null	hypothesis	of	the	expected	number	of	DNMs	given	the	

gene-specific	mutation	rate	and	the	number	of	considered	chromosomes
22
.	

	

We	also	assessed	clustering	of	missense	DNMs	within	genes
15
,	as	expected	for	DNMs	

operating	by	activating	or	dominant	negative	mechanisms.	We	did	this	by	calculating	

simulated	dispersions	of	the	observed	number	of	DNMs	within	the	gene.	The	probability	of	

simulating	a	DNM	at	a	specific	codon	was	weighted	by	the	trinucleotide	sequence-

context
15,22

.	This	allowed	us	to	estimate	the	probability	of	the	observed	degree	of	clustering	

given	the	null	model	of	random	mutations.	

	

Fisher’s	method	was	used	to	combine	the	significance	testing	of	missense	+	PTV	DNM	

enrichment	and	missense	DNM	clustering.	We	defined	a	gene	as	significantly	enriched	for	

DNMs	if	the	PTV	enrichment	P-value	or	the	combined	missense	P-value	less	than	7	×	10
-7
,	

which	represents	a	Bonferonni	corrected	P-value	of	0.05	adjusted	for	4×18500	tests	(2	×	

consequence	classes	tested	×	protein	coding	genes).	
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Composite	face	generation	

Families	were	given	the	option	to	have	photographs	of	the	affected	individual(s)	uploaded	

within	DECIPHER
31
.	Using	images	of	individuals	with	DNMs	in	the	same	gene	we	generated	

de-identified	realistic	average	faces	(composite	faces).	Faces	were	detected	using	a	

discriminately	trained	deformable	part	model	detector
39
.	The	annotation	algorithm	

identified	a	set	of	36	landmarks	per	detected	face
40
	and	was	trained	on	a	manually	

annotated	dataset	of	3100	images
41
.	The	average	face	mesh	was	created	by	the	Delaunay	

triangulation	of	the	average	constellation	of	facial	landmarks	for	all	patients	with	a	shared	

genetic	disorder.		

	

The	averaging	algorithm	is	sensitive	to	left-right	facial	asymmetries	across	multiple	patients.	

For	this	purpose,	we	use	a	template	constellation	of	landmarks	based	on	the	average	

constellations	of	2000	healthy	individuals
41
.	For	each	patient,	we	align	the	constellation	of	

landmarks	to	the	template	with	respect	to	the	points	along	the	middle	of	the	face	and	

compute	the	Euclidean	distances	between	each	landmark	and	its	corresponding	pair	on	the	

template.	The	faces	are	mirrored	such	that	the	half	of	the	face	with	the	greater	difference	is	

always	on	the	same	side.		

	

The	dataset	used	for	this	work	may	contain	multiple	photos	for	one	patient.	To	avoid	biasing	

the	average	face	mesh	towards	these	individuals,	we	computed	an	average	face	for	each	

patient	and	use	these	personal	averages	to	compute	the	final	average	face.	Finally,	to	avoid	

any	image	in	the	composite	dominating	from	variance	in	illumination	between	images,	we	

normalised	the	intensities	of	pixel	values	within	the	face	to	an	average	value	across	all	faces	

in	each	average.	The	composite	faces	were	examined	manually	to	confirm	successful	

ablation	of	any	individually	identifiable	features.	

	

Assessing	power	of	incorporating	phenotypic	information	

We	previously	described	a	method	to	assess	phenotypic	similarity	by	HPO	terms	among	

groups	of	individuals	sharing	genetic	defects	in	the	same	gene
26
.	We	examined	whether	

incorporating	this	statistical	test	improved	our	ability	to	identify	dominant	genes	at	

genome-wide	significance.	Per	gene,	we	tested	the	phenotypic	similarity	of	individuals	with	

DNMs	in	the	gene.	We	combined	the	phenotypic	similarity	P-value	with	the	genotypic	P-

value	per	gene	(the	minimum	P-value	from	the	DDD-only	and	meta-analysis)	using	Fisher’s	

method.	We	examined	the	distribution	of	differences	in	P-value	between	tests	without	the	

phenotypic	similarity	P-value	and	tests	that	incorporated	the	phenotypic	similarity	P-value.	

	

Many	(854,	20%)	of	the	DDD	cohort	experience	seizures.	We	investigated	whether	testing	

within	the	subset	of	individuals	with	seizures	improved	our	ability	to	find	associations	for	

seizure	specific	genes.	A	list	of	102	seizure-associated	genes	was	curated	from	three	

sources,	a	gene	panel	for	Ohtahara	syndrome,	a	currently	used	clinical	gene	panel	for	

epilepsy	and	a	panel	derived	from	DD-associated	genes
17
.	The	P-values	from	the	seizure	

subset	were	compared	to	P-values	from	the	complete	cohort.	

	

Assessing	power	of	exome	vs	genome	sequencing	

We	compared	the	expected	power	of	exome	sequencing	versus	genome	sequencing	to	

identify	disease	genes.	Within	the	DDD	cohort,	55	dominant	DD-associated	genes	achieve	

genome-wide	significance	when	testing	for	enrichment	of	DNMs	within	genes.	We	did	not	
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incorporate	missense	DNM	clustering	due	to	the	large	computational	requirements	for	

assessing	clustering	in	many	replicates.	

	

We	assumed	a	cost	of	1,000	USD	per	individual	for	genome	sequencing.	We	allowed	the	

cost	of	exome	sequencing	to	vary	relative	to	genome	sequencing,	from	10-100%.	We	

calculated	the	number	of	trios	that	could	be	sequenced	under	these	scenarios.	Estimates	of	

the	improved	power	of	genome	sequencing	to	detect	DNMs	in	the	coding	sequence	are	

around	1.05-fold
27
	and	we	increased	the	number	of	trios	by	1.0–1.2-fold	to	allow	this.	

	

We	sampled	as	many	individuals	from	our	cohort	as	the	number	of	trios	and	counted	which	

of	the	55	DD-associated	genes	still	achieved	genome-wide	significance	for	DNM	enrichment.	

We	ran	1000	simulations	of	each	condition	and	obtained	the	mean	number	of	genome-wide	

significant	genes	for	each	condition.	

	

Associations	with	presence	of	likely	pathogenic	de	novo	mutations	

We	tested	whether	phenotypes	were	associated	with	the	likelihood	of	having	a	likely	

pathogenic	DNM.	Categorical	phenotypes	(e.g.	sex	coded	as	male	or	female)	were	tested	by	

Fisher’s	exact	test	while	quantitative	phenotypes	(e.g.	duration	of	gestation	coded	in	weeks)	

were	tested	with	logistic	regression,	using	sex	as	a	covariate.	

	

We	investigated	whether	having	autozygous	regions	affected	the	likelihood	of	having	a	

diagnostic	DNM.	Autozygous	regions	were	determined	from	genotypes	in	every	individual,	

to	obtain	the	total	length	per	individual.	We	fitted	a	logistic	regression	for	the	total	length	of	

autozygous	regions	on	whether	individuals	had	a	likely	pathogenic	DNM.	To	illustrate	the	

relationship	between	length	of	autozygosity	and	the	occurrence	of	a	likely	pathogenic	DNM,	

we	grouped	the	individuals	by	length	and	plotted	the	proportion	of	individuals	in	each	

group	with	a	DNM	against	the	median	length	of	the	group.	

	

The	effects	of	parental	age	on	the	number	of	DNMs	were	assessed	using	8,409	high	

confidence	(posterior	probability	of	DNM	>	0.5)	unphased	coding	and	noncoding	DNMs	in	

4,293	individuals.	A	Poisson	multiple	regression	was	fit	on	the	number	of	DNMs	in	each	

individual	with	both	maternal	and	paternal	age	at	the	child’s	birth	as	covariates.	The	model	

was	fit	with	the	identity	link	and	allowed	for	overdispersion.	This	model	used	exome-based	

DNMs,	and	the	analysis	was	scaled	to	the	whole	genome	by	multiplying	the	coefficients	by	a	

factor	of	50,	based	on	~2%	of	the	genome	being	well	covered	in	our	data	(exons	+	introns).	

	

Excess	of	de	novo	mutations	by	consequence	

We	identified	the	threshold	for	posterior	probability	of	DNM	at	which	the	number	of	

observed	candidate	synonymous	DNMs	equalled	the	number	of	expected	synonymous	

DNMs.	Candidate	DNMs	with	scores	below	this	threshold	were	excluded.	We	also	examined	

the	likely	sensitivity	and	specificity	of	this	threshold	based	on	validation	results	for	DNMs	

within	a	previous	publication
15
	in	which	comprehensive	experimental	validation	was	

performed	on	1,133	trios	that	comprise	a	subset	of	the	families	analysed	here.		

	

The	numbers	of	expected	DNMs	per	gene	were	calculated	per	consequence	from	expected	

mutation	rates	per	gene	and	the	2,407	male	and	1,886	females	in	the	cohort.	We	calculated	
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the	excess	of	DNMs	for	missense	and	PTVs	as	the	ratio	of	numbers	of	observed	DNMs	

versus	expected	DNMs,	as	well	as	the	difference	of	observed	DNMs	minus	expected	DNMs.	

	

Ascertainment	bias	within	dominant	neurodevelopmental	genes	

We	identified	150	autosomal	dominant	haploinsufficient	genes	that	affected	

neurodevelopment	within	our	curated	developmental	disorder	gene	set.	Genes	affecting	

neurodevelopment	were	identified	where	the	affected	organs	included	the	brain,	or	where	

HPO	phenotypes	linked	to	defects	in	the	gene	included	either	an	abnormality	of	brain	

morphology	(HP:0012443)	or	cognitive	impairment	(HP:0100543)	term.		

	

The	150	genes	were	classified	for	ease	of	clinical	recognition	of	the	syndrome	from	gene	

defects	by	two	consultant	clinical	geneticists.	Genes	were	rated	from	1	(least	recognisable)	

to	5	(most	recognisable).	Categories	1	and	2	contained	5	and	22	genes	respectively,	and	so	

were	combined	in	later	analyses.	The	remaining	categories	had	more	than	33	genes	per	

category.	The	ratio	of	observed	loss-of-function	DNMs	to	expected	loss-of-function	DNMs	

was	calculated	for	each	recognisability	category,	along	with	95%	confidence	intervals	from	a	

Poisson	distribution	given	observed	counts.		

	

Proportion	of	de	novo	mutations	with	loss-of-function	mechanism	

The	observed	excess	of	missense/inframe	indel	DNMs	is	composed	of	a	mixture	of	DNMs	

with	loss-of-function	mechanisms	and	DNMs	with	altered-function	mechanisms.	We	found	

that	the	excess	of	PTV	DNMs	within	dominant	haploinsufficient	DD-associated	genes	had	a	

greater	skew	towards	genes	with	high	intolerance	for	loss-of-function	variants	than	the	

excess	of	missense	DNMs	in	dominant	non-haploinsufficient	genes.	We	binned	genes	by	the	

probability	of	being	loss-of-function	intolerant
28
	constraint	decile	and	calculated	the	

observed	excess	of	missense	DNMs	in	each	bin.	We	modelled	this	binned	distribution	as	a	

two-component	mixture	with	the	components	representing	DNMs	with	a	loss-of-function	or	

function-altering	mechanism.	We	identified	the	optimal	mixing	proportion	for	the	loss-of-

function	and	altered-function	DNMs	from	the	lowest	goodness-of-fit	(from	a	spline	fitted	to	

the	sum-of-squares	of	the	differences	per	decile)	to	missense/inframe	indels	in	all	genes	

across	a	range	of	mixtures.	

	

The	excess	of	DNMs	with	a	loss-of-function	mechanism	was	calculated	as	the	excess	of	

DNMs	with	a	VEP	loss-of-function	consequence,	plus	the	proportion	of	the	excess	of	

missense	DNMs	at	the	optimal	mixing	proportion.	

	

We	independently	estimated	the	proportions	of	loss-of-function	and	altered-function.	We	

counted	PTV	and	missense/inframe	indel	DNMs	within	dominant	haploinsufficient	genes	to	

estimate	the	proportion	of	excess	DNMs	with	a	loss-of-function	mechanism,	but	which	were	

classified	as	missense/inframe	indel.	We	estimated	the	proportion	of	excess	DNMs	with	a	

loss-of-function	mechanism	as	the	PTV	excess	plus	the	PTV	excess	multiplied	by	the	

proportion	of	loss-of-function	classified	as	missense.	

	

Prevalence	of	developmental	disorders	from	dominant	de	novo	mutations	

We	estimated	the	birth	prevalence	of	monoallelic	developmental	disorders	by	using	the	

germline	mutation	model.	We	calculated	the	expected	cumulative	germline	mutation	rate	
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of	truncating	DNMs	in	238	haploinsufficient	DD-associated	genes.	We	scaled	this	upwards	

based	on	the	composition	of	excess	DNMs	in	the	DDD	cohort	using	the	ratio	of	excess	DNMs	

(n=1816)	to	DNMs	within	dominant	haploinsufficient	DD-associated	genes	(n=412).	Around	

10%	of	DDs	are	caused	by	de	novo	CNVs
42,43

,	which	are	underrepresented	in	our	cohort	as	a	

result	of	prior	genetic	testing.	If	included,	the	excess	DNM	in	our	cohort	would	increase	by	

21%,	therefore	we	scaled	the	prevalence	estimate	upwards	by	this	factor.		

	

Mothers	aged	29.9	and	fathers	aged	29.5	have	children	with	77	DNMs	per	genome	on	

average
20
.	We	calculated	the	mean	number	of	DNMs	expected	under	different	

combinations	of	parental	ages,	given	our	estimates	of	the	extra	DNMs	per	year	from	older	

mothers	and	fathers.	We	scaled	the	prevalence	to	different	combinations	of	parental	ages	

using	the	ratio	of	expected	mutations	at	a	given	age	combination	to	the	number	expected	at	

the	mean	cohort	parental	ages.		
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Tables	
Table	1:	Genes	achieving	genome-wide	significant	statistical	evidence	without	previous	compelling	

evidence	for	being	developmental	disorder	genes.	The	numbers	of	unrelated	individuals	with	

independent	de	novo	mutations	(DNMs)	are	given	for	protein	truncating	variants	(PTV)	and	missense	

variants.	If	any	additional	individuals	were	in	other	cohorts,	that	number	is	given	in	brackets.	The	P-

value	reported	is	the	minimum	P-value	from	the	testing	of	the	DDD	dataset	or	the	meta-analysis	

dataset.	The	subset	providing	the	P-value	is	also	listed.	Mutations	are	considered	clustered	if	the	P-

value	proximity	clustering	of	DNMs	is	less	than	0.01.	

Gene	 Missense	 PTV	 P-value	 Test	 Clustering	

CDK13	 10	 1	 3.2	x	10
-19
	 DDD	 Yes	

GNAI1	 7	(1)	 1	 2.1	x	10
-13
	 DDD	 No	

CSNK2A1	 7	 0	 1.4	x	10
-12
	 DDD	 Yes	

PPM1D	 0	 5	(1)	 6.3	x	10
-12
	 Meta	 No	

CNOT3	 5	 2	(1)	 5.2	x	10
-11
	 DDD	 Yes	

MSL3	 0	 4	 2.2	x	10
-10
	 DDD	 No	

KCNQ3	 4	(3)	 0	 3.4	x	10
-10
	 Meta	 Yes	

ZBTB18	 1	(1)	 4	 1.4	x	10
-9
	 DDD	 No	

PUF60	 4	(1)	 3	 2.6	x	10
-9
	 DDD	 No	

TCF20	 1	 5	 2.7	x	10
-9
	 DDD	 No	

SUV420H1	 0	(2)	 2	(3)	 2.9	x	10
-9
	 Meta	 No	

CHD4	 8	(1)	 1	 7.6	x	10
-9
	 DDD	 No	

SET	 0	 3	 1.2	x	10
-7
	 DDD	 No	

QRICH1	 0	 3	(1)	 3.6	x	10
-7
	 Meta	 No	
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Supplementary	Tables	
	

Table	provided	in	external	spreadsheet.	

Supplementary	Table	1:	Table	of	de	novo	mutations	(DNM)	in	the	4,293	DDD	individuals.	The	table	

includes	sex,	chromosome,	position,	reference	and	alternate	alleles,	HGNC	symbol,	VEP	

consequence,	posterior	probability	of	DNM	and	validation	status	where	available.	Individual	IDs	are	

available	on	request.	This	list	excludes	the	sites	that	failed	validations,	but	includes	sites	that	passed	

validation	(confirmed),	sites	that	were	uncertain	(uncertain),	and	sites	that	were	not	tested	by	

secondary	validation	(NA).	Genome	positions	are	given	as	GRCh37	coordinates.	
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Supplementary	Table	2:	Details	of	cohorts	used	in	meta-analyses.	This	includes	numbers	of	individuals	by	sex	and	publication	details.	

Phenotype	 Year	 Male	 Female	 Note	 Citation	

Intellectual	disability	 2012	 47	 53	 	 De	Ligt,	et	al.	
3
	

Autism	spectrum	disorder	 2012	 314	 29	 subset	of	Iossifov,	et	al.	
9
	 Iossifov,	et	al.	

10
	

Autism	spectrum	disorder	 2012	 151	 58	 subset	of	Iossifov,	et	al.	
10
	 O’Roak,	et	al.	

11
	

Intellectual	disability	 2012	 19	 32	 	 Rauch,	et	al.	
12
	

Autism	spectrum	disorder	 2012	 157	 68	 subset	of	Iossifov,	et	al.	
9
	 Sanders,	et	al.	

13
	

Seizures	 2013	 156	 108	
subset	of	EuroEPINOMICS-RES	

Consortium,	et	al.	
6
	

Epi4K	Consortium	and	Epilepsy	

Phenome/Genome	Project	
5
	

Congenital	heart	disease	 2013	 220	 142	 	 Zaidi,	et	al.	
14
	

Seizures	 2014	 54	 38	 	
EuroEPINOMICS-RES	

Consortium,	et	al.	
6
	

Schizophrenia	 2014	 308	 317	 	 Fromer,	et	al.	
7
	

Intellectual	disability	 2014	 0	 0	 subset	of	De	Ligt,	et	al.	
3
	 Gilissen,	et	al.	

8
	

Autism	spectrum	disorder	(normal	IQ)	 2014	 1099	 74	
Counts	are	for	individuals	with	IQ	>=	

70.	
Iossifov,	et	al.	

9
	

Autism	spectrum	disorder	 2014	 446	 112	 Probands	with	IQ	<	70.	 Iossifov,	et	al.	
9
	

Autism	spectrum	disorder	 2014	 1192	 253	

Counts	are	extrapolated	from	the	sex	

ratio	of	individuals	with	de	novo	

mutations.	

De	Rubeis,	et	al.	
4
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Table	provided	in	external	spreadsheet.	

Supplementary	Table	3:	Genes	with	genome-wide	significant	statistical	evidence	to	be	developmental	

disorder	genes.	The	numbers	of	unrelated	individuals	with	independent	de	novo	mutations	(DNMs)	are	

given	for	protein	truncating	variants	(PTV)	and	missense	variants.	If	any	additional	individuals	were	in	

other	cohorts,	that	number	is	given	in	brackets.	The	P-value	reported	is	the	minimum	P-value	from	the	

testing	of	the	DDD	dataset	or	the	meta-analysis	dataset.	The	subset	providing	the	P-value	is	also	listed.	

Mutations	are	considered	clustered	if	the	P-value	proximity	clustering	of	DNMs	is	less	than	0.01.	
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Figures	
	

	
Figure	1:	Association	of	phenotypes	with	presence	of	likely	pathogenic	de	novo	mutations	(DNMs).	A)	

Odds	ratios	and	95%	confidence	intervals	(CI)	for	binary	phenotypes.	Positive	odds	ratios	are	associated	

with	increased	risk	of	pathogenic	DNMs	when	the	phenotype	is	present.	P-values	are	given	for	a	Fisher’s	

Exact	test.	B)	Beta	coefficients	and	95%	CI	from	logistic	regression	of	quantitative	phenotypes	versus	

presence	of	a	pathogenic	DNM.	All	phenotypes	aside	from	length	of	autozygous	regions	were	corrected	

for	gender	as	a	covariate.	The	developmental	milestones	(age	to	achieve	first	words,	walk	

independently,	sit	independently	and	social	smile)	were	log-scaled	before	regression.	The	growth	

parameters	(height,	birthweight	and	occipitofrontal	circumference	(OFC))	were	evaluated	as	absolute	

distance	from	the	median.	C)	Relationship	between	length	of	autozygous	regions	chance	of	having	a	

pathogenic	DNM.	The	regression	line	is	plotted	as	the	dark	gray	line.	The	95%	confidence	interval	for	the	

regression	is	shaded	gray.	The	autozygosity	lengths	expected	under	different	degrees	of	consanguineous	

unions	are	shown	as	vertical	dashed	lines.	n,	number	of	individuals	in	each	autozygosity	group.	D)	

Relationship	between	age	of	fathers	at	birth	of	child	and	number	of	high	confidence	DNMs.	n,	number	

of	high	confidence	DNMs.	E)	Relationship	between	age	of	mothers	at	birth	of	child	and	number	of	high	

confidence	DNMs.	n,	number	of	high	confidence	DNMs.		
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Figure	2:	Genes	exceeding	genome-wide	significance.	Manhattan	plot	of	combined	P-values	across	all	

tested	genes.	The	red	dashed	line	indicates	the	threshold	for	genome-wide	significance	(P	<	7	x	10
-7
).	

Genes	exceeding	this	threshold	have	HGNC	symbols	labelled.	Composite	facial	images	from	individuals	

with	DNMs	in	selected	genes	are	included	for	the	six	most-significantly	associated	genes.		
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Figure	3:	Phenotypic	summary	of	genes	without	previous	compelling	evidence.	Phenotypes	are	grouped	

by	type.	The	first	group	indicates	counts	of	individuals	with	DNMs	per	gene	by	sex	(m:	male,	f:	female),	

and	by	functional	consequence	(nsv:	nonsynonymous	variant,	PTV:	protein-truncating	variant).	The	

second	group	indicates	mean	values	for	growth	parameters:	birthweight	(bw),	height	(ht),	weight	(wt),	

occipitofrontal	circumference	(OFC).	Values	are	given	as	standard	deviations	from	the	healthy	

population	mean	derived	from	ALSPAC	data.	The	third	group	indicates	the	mean	age	for	achieving	

developmental	milestones:	age	of	first	social	smile,	age	of	first	sitting	unassisted,	age	of	first	walking	

unassisted	and	age	of	first	speaking.	Values	are	given	in	months.	The	final	group	summarises	Human	

Phenotype	Ontology	(HPO)-coded	phenotypes	per	gene,	as	counts	of	HPO-terms	within	different	clinical	

categories.	
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Figure	4:	Power	of	genome	versus	exome	sequencing	to	discover	dominant	genes	associated	with	

developmental	disorders.	The	power	was	estimated	at	three	different	fixed	budgets	(1	million	(M)	USD,	

2M	and	3M)	and	a	range	of	relative	sensitivities	for	genomes	versus	exomes	to	detect	de	novo	

mutations.	The	number	of	genes	identifiable	by	exome	sequencing	are	shaded	blue,	whereas	the	

number	of	genes	identifiable	by	genome	sequencing	are	shaded	green.	indicate	The	regions	where	

exome	sequencing	costs	30-40%	of	genome	sequencing	are	shaded	with	a	grey	background,	which	

corresponds	to	the	price	differential	in	2016.	
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Figure	5:	Excess	of	de	novo	mutations	(DNMs).	A)	Enrichment	ratios	of	observed	to	expected	loss-of-

function	DNMs	by	clinical	recognisability	for	dominant	haploinsufficient	neurodevelopmental	genes	as	

judged	by	two	consultant	clinical	geneticists.	B)	Enrichment	of	DNMs	by	consequence	normalised	

relative	to	the	number	of	synonymous	DNMs.	C)	Proportion	of	excess	DNMs	with	loss-of-function	or	

altered-function	mechanisms.	Proportions	are	derived	from	numbers	of	excess	DNMs	by	consequence,	

and	numbers	of	excess	truncating	and	missense	DNMs	in	dominant	haploinsufficient	genes.	D)	

Enrichment	ratios	of	observed	to	expected	DNMs	by	pLI	constraint	quantile	for	loss-of-function,	

missense	and	synonymous	DNMs.	Counts	of	DNMs	in	each	lower	and	upper	half	of	the	quantiles	are	

provided.	E)	Normalised	excess	of	observed	to	expected	DNMs	by	pLI	constraint	quantile.	This	includes	

missense	DNMs	within	all	genes,	loss-of-function	including	missense	DNMs	in	dominant	

haploinsufficient	genes	and	missense	DNMs	in	dominant	nonhaploinsufficient	genes	(genes	with	

dominant	negative	or	activating	mechanisms).	F)	Proportion	of	excess	missense	DNMs	with	a	loss-of-

function	mechanism.	The	red	dashed	line	indicates	the	proportion	in	observed	excess	DNMs	at	the	

optimal	goodness-of-fit.	The	histogram	shows	the	frequencies	of	estimated	proportions	from	1000	

permutations,	assuming	the	observed	proportion	is	correct.		
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Figure	6:	Prevalence	of	live	births	with	developmental	disorders	caused	by	dominant	de	novo	mutations	

(DNMs).	The	prevalence	within	the	general	population	is	provided	as	percentage	for	combinations	of	

parental	ages,	extrapolated	from	the	maternal	and	paternal	rates	of	DNMs.	Distributions	of	parental	

ages	within	the	DDD	cohort	and	the	UK	population	are	shown	at	the	matching	parental	axis.	
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Supplementary	Figures	
	

	
Supplementary	Figure	1:	Proportion	of	individuals	with	a	de	novo	mutation	(DNM)	likely	to	be	

pathogenic.	These	only	included	individuals	with	protein	altering	or	protein	truncating	DNMs	in	

dominant	or	X-linked	dominant	developmental	disorder	(DD)	associated	genes,	or	males	with	DNMs	in	

hemizygous	DD-associated	genes.	The	proportions	given	are	for	those	individuals	with	any	DNMs	rather	

than	the	total	number	of	individuals	in	each	subset.	Cohorts	included	in	the	DNM	meta-analyses	are	

shaded	blue.	
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Supplementary	Figure	2:	Phenotypic	summary	of	individuals	with	de	novo	mutations	in	genes	achieving	

genomewide	significance.	Phenotypes	are	grouped	by	type.	The	first	group	indicates	counts	of	

individuals	with	DNMs	per	gene	by	sex	(m:	male,	f:	female),	and	by	functional	consequence	(nsv:	

nonsynonymous	variant,	PTV:	protein-truncating	variant).	The	second	group	indicates	mean	values	for	

growth	parameters:	birthweight	(bw),	height	(ht),	weight	(wt),	occipitofrontal	circumference	(OFC).	

Values	are	given	as	standard	deviations	from	the	healthy	population	mean	derived	from	ALSPAC	data.	

The	third	group	indicates	the	mean	age	for	achieving	developmental	milestones:	age	of	first	social	smile,	

age	of	first	sitting	unassisted,	age	of	first	walking	unassisted	and	age	of	first	speaking.	Values	are	given	in	

months.	The	final	group	summarises	Human	Phenotype	Ontology	(HPO)-coded	phenotypes	per	gene,	as	

counts	of	HPO-terms	within	different	clinical	categories.	
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Supplementary	Figure	3:	Example	of	an	icon-,	heat	map-	and	image-based	summary	of	the	quantitative,	

categorical	and	average	face	for	each	of	the	genes	exceeding	genome-wide	significance.	This	uses	data	

on	the	17	individuals	with	de	novo	mutations	(DNMs)	in	EP300.		A	separate	pdf	file	containing	these	

“phenicons”	for	all	genes	is	provided.		Each	has	up	to	three	parts.	The	left	hand	half	of	each	page	

provides	visual	representations	of	the	gene	name,	the	number	of	individuals	with	de	novo	mutations	in	

that	gene,	sex	ratio,	gestation	(in	weeks),	anthropometric	data	(z	scores	for	birth	weight,	height,	weight	

and	occipital-frontal	head	circumference	(ofc))	and	developmental	milestones	(in	months	for	attainment	

of	social	smile,	sitting	unaided,	walking	unaided	and	first	clear	words)	from	individuals	with	DNMs	in	the	

gene.		The	scaled	cartoon	figure	shows	the	height	weight	and	OFC	with	the	colour	of	the	head,	trunk	and	

height	graded	with	grey	representing	a	z	score	of	0	and	red	increasing	negative	and	green	increasing	

positive	scores.		For	each	metric	a	scatter	plot	is	given	above	the	indicator	bar	representing	the	

measurement	for	each	individual.		Where	more	that	four	values	are	available	two	density	plots	are	given	

below	the	bar	the	grey	representing	the	data	for	all	individuals	in	the	94-gene	set	and	coloured	the	

density	plot	for	the	gene	in	question.		In	EP300	the	OFC	measurements	are	shifted	significantly	to	the	

left	compared	to	the	whole	group.		For	the	z	score	data	mean	values	are	provided	and	for	the	

developmental	data	median	values	are	given	above	the	bar.		The	top	panel	on	the	left	hand	side	of	the	

page	summarises	the	key	Human	Phenotype	Ontology	(HPO)	terms	for	each	gene.	The	HPO	terms	in	the	

individuals	were	selected,	including	the	ancestral	terms.	Terms	that	are	rarer	in	the	4,293	individuals	

rank	higher,	adjusted	by	the	number	of	individuals	with	DNMs	who	had	the	term.	The	heatmaps	are	

shaded	by	the	number	of	individuals	with	each	term.	The	heatmaps	exclude	terms	that	rank	lower	than	

a	descendant	term	(excluding	more	general	terms	if	a	more	specific	term	occurred	first),	and	terms	

where	fewer	than	25%	of	individuals	had	the	term,	or	in	genes	with	less	than	8	individuals,	terms	with	

fewer	than	two	individuals.	The	bottom	panel	on	the	right	hand	half	of	the	page	summarises	the	facial	

photographs	from	individuals	with	DNMs	in	each	gene.	The	averaged	face	images	are	only	available	for	

selected	genes,	based	on	the	availability	of	sufficient	high-quality	facial	photographs	of	individuals	for	

each	gene.		The	whole	image	was	generated	using	a	custom	R	script	employing	grid	based	graphics.	
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Supplementary	Figure	5:	Effect	of	clustering	by	phenotype	on	the	ability	to	identify	genomewide	

significant	genes.	A)	Comparison	of	P-values	derived	from	genotypic	information	alone	versus	P-values	

that	incorporate	genotypic	information	and	phenotypic	similarity.	B)	Comparison	of	P-values	from	tests	

in	the	complete	DDD	cohort	versus	tests	in	the	subset	with	seizures.	Genes	that	were	previously	linked	

to	seizures	are	shaded	blue.	
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Supplementary	Figure	6:	Simulated	estimates	of	power	to	detect	loss-of-function	genes	in	the	genome	

at	difference	cohort	sizes,	given	fixed	budgets.	
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Supplementary	Figure	7:	Neurodevelopmental	genes	classified	by	clinical	recognisability	were	compared	

for	the	gene-wise	significance	versus	the	expected	number	of	mutations	per	gene.	Points	are	shaded	by	

recognisability	category.	Genes	have	been	separated	into	two	plots,	one	plot	with	genes	for	cryptic	

disorders	with	low,	mild	or	moderate	clinical	recognisability,	and	one	plot	with	genes	for	distinctive	

disorders	with	high	clinical	recognisability.	
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Supplementary	Figure	8:	Stringency	of	de	novo	mutation	(DNM)	filtering.	A)	Sensitivity	and	specificity	of	

DNM	validations	within	sets	filtered	on	varying	thresholds	of	DNM	quality	(posterior	probability	of	

DNM).	The	analysed	DNMs	were	restricted	to	sites	identified	within	the	earlier	1133	trios
15
,	where	all	

candidate	DNMs	underwent	validation	experiments.	The	labelled	value	is	the	quality	threshold	at	which	

the	number	of	candidate	synonymous	DNMs	equals	the	number	of	expected	synonymous	mutations	

under	a	null	germline	mutation	rate.	B)	Excess	of	missense	and	loss-of-function	DNMs	at	varying	DNM	

quality	thresholds.	The	DNM	excess	is	adjusted	for	the	sensitivity	and	specificity	at	each	threshold.	
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