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Abstract
Prevalent gene variants involved in iron metabolism [hemochromatosis (HFE) H63D and
transferrin C2 (TfC2)] have been associated with higher risk and earlier age at onset of
Alzheimer’s disease (AD), especially in men. Brain iron increases with age, is higher in men, and
is abnormally elevated in several neurodegenerative diseases, including AD and Parkinson’s
disease, where it has been reported to contribute to younger age at onset in men. The effects of the
common genetic variants (HFE H63D and/or TfC2) on brain iron were studied across eight brain
regions (caudate, putamen, globus pallidus, thalamus, hippocampus, white matter of frontal lobe,
genu, and splenium of corpus callosum) in 66 healthy adults (35 men, 31 women) aged 55 to 76.
The iron content of ferritin molecules (ferritin iron) in the brain was measured with MRI utilizing
the Field Dependent Relaxation Rate Increase (FDRI) method. 47% of the sample carried neither
genetic variant (IRON−) and 53% carried one and/or the other (IRON+). IRON+ men had
significantly higher FDRI compared to IRON− men (p = 0.013). This genotype effect was not
observed in women who, as expected, had lower FDRI than men. This is the first published
evidence that these highly prevalent genetic variants in iron metabolism genes can influence brain
iron levels in men. Clinical phenomena such as differential gender-associated risks of developing
neurodegenerative diseases and age at onset may be associated with interactions between iron
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genes and brain iron accumulation. Clarifying mechanisms of brain iron accumulation may help
identify novel interventions for age-related neurodegenerative diseases.
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INTRODUCTION
Although essential for cell function, increased tissue iron can promote tissue oxidative
damage to which the brain is especially vulnerable (for review see [1–5]). Human brain has
a higher concentration of iron compared to other species ([6], reviewed in [7]). In human
brain, iron may contribute to the development of abnormal protein deposits that are
pathognomonic for several prevalent age-related neurodegenerative diseases such as
Alzheimer’s disease (AD), Parkinson’s disease (PD), and Dementia with Lewy Bodies
(DLB) (for review see [1,3,4,6–9]). Brain iron levels increase with age [10–15] and are
abnormally elevated in age-related neurodegenerative diseases, suggesting that increased
iron levels may contribute to their increasing prevalence with age (for review see [1,3,4,7–
9]).

We recently demonstrated increased brain iron levels in men compared to women [15] and
that elevated brain iron levels may contribute to the risk of developing neurodegenerative
diseases at earlier ages in men [16]. Men are at higher risk of developing PD than women
and with earlier age of onset [17,18]. Men are also more likely to develop extrapyramidal
(motor) side effects when treated with dopaminergic agents, suggesting an elevated
susceptibility of their basal ganglia to toxicity (reviewed in [19]). Extrapyramidal symptoms
are a core diagnostic feature of DLB, the second most common dementia after AD [20].
Like PD, DLB also has a male predominance [20] especially in individuals with younger age
at onset (under age 70) [20]. Males also have a higher risk of developing AD at younger
ages [21–23].

Epidemiologic studies suggest that highly prevalent gene variants involved in iron
absorption, transport, and metabolism could influence the age at onset of AD ([24–27],
reviewed in [28], but see [29]). The presence of the hemochromatosis (HFE) gene variants
(H63D and C282Y) increases peripheral iron load [30] as well as affecting brain tissue iron
metabolism (reviewed in [1]), and it has been associated with higher risk of developing AD
in individuals with younger age at onset (before age 70) [25], especially in males [23,24],
and increased oxidative stress and disease severity [31]. The H63D gene variant has also
been associated with an increased risk of amyotrophic lateral sclerosis (ALS) [32], can alter
protein profiles in the cerebrospinal fluid (CSF) of individuals with this disease [33], and
may also be associated with other neurodegenerative disorders [32,34,35]. Transferrin is
also crucial for iron metabolism and brain development and repair (reviewed in [1,2,15,36]).
Interactions of HFE genes with the transferrin C2 (TfC2) gene variant have also been
reported to potentiate risk of developing AD and prompted calls for in vivo assessments of
brain iron in carriers and non-carriers of these very common genetic variants [5,27]. Herein
we present the first such study.

Brain iron levels can be measured in vivo using magnetic resonance imaging (MRI) through
the effect of iron on transverse relaxation rates (R2) [13,37,38]. The bulk of brain iron is
stored in ferritin molecules [39,40], and an in vivo MRI method called field-dependent R2
increase (FDRI) can obtain specific measures of the iron content of ferritin molecules
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[7,13,37]. The method takes advantage of the fact that ferritin increases R2 linearly with the
field strength of the MRI instrument to produce a highly specific and reproducible measure
of this tissue iron store [7,13,37] and has been shown to be elevated in AD, PD, and
Huntington’s disease (HD) [19,41,42].

Briefly, FDRI is the difference in measures of brain R2 obtained with two different field-
strength MRI instruments. In the presence of ferritin, R2 increases with increasing magnetic
field-strength [13,14,37,38,43–45]. This field-dependent R2 increase is specifically
associated with total iron content of ferritin molecules [37,38] and is independent of the
amount of iron loading (number of iron atoms per molecule of ferritin) [45]. Thus, FDRI is a
specific measure of the total iron contained in ferric oxyhydroxide particles that form the
mineral core of ferritin molecules. In human tissue, ferritin and its breakdown product
(hemosiderin) are physiologic sources of such particles [37,38,43,46]. The FDRI measure
will therefore be referred to herein as ferritin iron [19,41].

We tested the hypothesis that over their lifetime, even healthy older carriers of the HFE and/
or TfC2 variants (IRON+) would accumulate more brain ferritin iron than non-carriers
(IRON−). Based on data that men have higher brain iron [7], develop neurodegenerative
diseases at younger ages [16–22], and that in women brain iron may be affected by gender-
specific life events such as hysterectomy (unpublished data), we hypothesized that the
relationship between brain ferritin iron and genes would be most prominent in men.

METHODS
The subjects and methods were described previously [15] and are summarized here.

Subjects
Normal adult volunteers participating in the study were recruited from the community and
hospital staff for a study of healthy aging. Potential subjects were excluded if they had a
history of neurological disorder or a family history of AD or other neurodegenerative
disorder, psychiatric illness (including drug or alcohol abuse), or head injury resulting in
loss of consciousness for more than 10 minutes. The subjects were physically very healthy
and were excluded if they were obese, or if they had a current or prior serious illness. They
were independently functioning and had no evidence of neurocognitive impairment or gross
neurological abnormalities on clinical interview and brief neurological examination with the
study PI. The final population of 66 individuals contained 35 males and 31 females ranging
in age from 55 to 76 years (mean= 66.7 years, SD = 6.1). The sample averaged 15.8 years of
education (SD = 2.5; range = 12–23 years) and the racial composition was comprised of 48
(73%) Caucasian, 13 (20%) Asian, and 5 (7%) African-American subjects.

The participants were first evaluated with MRI (scanned using two MR instruments (1.5 and
0.5T) within 1 hour of each other using the same imaging protocol) and were later
genotyped for the presence of hemochromatosis (HFE) and transferrin (TfC2) genes. Thirty-
five subjects have one or both iron absorption genes (IRON+ group; 20 males, 15 females)
while 31 have neither gene (IRON− group; 15 males, 16 females). Twenty-four percent of
the total sample carried the HFE H63D variant and 38% carried the TfC2 variant. There
were no carriers of the rare HFE C282Y variant in this sample.

MRI protocol
The methods have been previously described in detail [13,15,37]. Coronal and sagittal pilot
scans were first obtained to specify the location and spatial orientation of the head and the
position of the axial image acquisition grid. The axial image acquisition sequence acquired
interleaved contiguous slices using a Carr Purcell Meiboom Gill dual spin-echo sequence
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[time to repetition (TR) = 2500 msec; time to echo (TE) = 20 and 90 msec; 2 excitations; 3
mm slice thickness; 192 gradient steps; and 25 cm field of view]. The coronal and sagittal
pilot scans were used to determine the alignment and accuracy of head repositioning in the
second MRI instrument [13,37].

Data for each region of interest (ROI) (depicted in Fig. 1) were obtained from contiguous
pairs of slices. The slice containing the anterior commissure and the slice immediately
superior to it were used to obtain the putamen (P) and globus pallidus (G) transverse
relaxation time (T2) data. The third and fourth slices above the anterior commissure were
used to obtain the T2 data for caudate nucleus (C) and the second and third slices superior to
the orbitofrontal gray matter were used to obtain the frontal lobe white matter (Fwm) data.
For the genu of the corpus callosum (Gwm), the two slices on which the angle formed by the
left and right sides of the genu appeared the most linear were chosen in order to obtain a
sample that would be consistently in the middle of the structure, which contains primarily
fibers connecting the prefrontal cortices. For the splenium of the corpus callosum (Swm),
the second and third lowest slices on which the fibers of the splenium connected in the
midline were chosen in order to sample primarily the lower half of the splenium that
contains predominantly primary sensory (visual) fibers. For thalamus (T), the second and
third highest slices on which thalamus appears are chosen. The lateral border of the ROI is
drawn along the white matter of the internal capsule using the TE = 20 image. The medial
and inferior portions bordering CSF are defined using the TE = 90 image. For hippocampus
(Hip), the two contiguous slices that contained the largest areas of these structures were used
in the data analysis. The Hip measure was obtained from the anterior third of the structure
and limited by drawing a horizontal line at the level of the cerebral peduncle to exclude any
tissue posterior to that line [15].

An illustration of the specificity of the FDRI method for measuring iron is depicted in Fig.
1C. The T2 weighted image is similar to a calculated T2 measure (see image analysis section
below). The thick arrows (upper right of image 1C) s how that the T2 signal of Fwm would
be darker [indicating a lower T2 (higher R2)] than C and P regions. This would erroneously
suggest that C and P have lower iron concentrations than Fwm. The FDRI method
eliminates field-independent contributions to T2 (such as the T2 lowering caused by the high
myelin content of Fwm), resulting in the specific measure of ferritin iron that correctly
shows P and C to have much higher iron levels than Fwm (see [15] for validation against
post mortem data). Other field-independent effects having an opposite effect are also
common when tissue damage (as observed in aging and disease) occurs. Tissue damage
would increase tissue water content (e.g., edema), raising T2 (lowering R2) and in effect
would mask (cancel out) T2 reductions due to iron. This would grossly underestimate iron
content and may be a key reason for the failure of some MRI studies to detect iron increases
associated with neurodegenerative diseases (reviewed in [41,42]).

Image analysis
Transverse relaxation times (T2) were calculated for each voxel from the two signal
intensities (TE = 20 and 90) of the dual spin-echo sequence to produce gray-scale encoded
T2 maps of the brain [13]. The T2 measures were extracted using an Apple Macintosh-
configured image analysis workstation. T2 data for each of the ROIs were obtained from
contiguous pairs of slices. The relaxation rate (R2) was calculated as the reciprocal of T2 ×
1000 milliseconds/second.

T2 is a “time” (in milliseconds) and R2 is a “rate” (per second), and these are inversely
related:
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The average R2 of the two slices from both hemispheres were the final measures used in the
subsequent analyses. The FDRI measure was calculated as the difference in R2 (high field
R2 – low field R2). Test-retest reliability for FDRI measures was very high with intra-class
correlation coefficients ranging from 0.88 to 0.99 (p < 0.0023) [13,37].

Data analyses
In order to simultaneously examine the FDRI for all eight brain regions together and to
control for multiple comparisons, a multivariate analysis of covariance (MANOVA) was
conducted with FDRI as the dependent variable and the iron absorption gene (presence
[IRON+] or absence [IRON−] of genes) and gender as the independent variables. The p-
values for the MANOVA were assessed as significant at unadjusted p = 0.05. Post hoc
comparisons using pairwise t-tests were then performed to determine the exact nature of the
difference between groups. Age was not significantly different between the two groups
(IRON+: mean age = 67.2, sd = 6.1; IRON−: mean age = 66.3, sd = 6.1; t = 0.60, df = 64, p
= 0.55). In this restricted 20-year age span, age was also not significantly correlated with
FDRI in any of the eight regions and was therefore not introduced as a covariate in
subsequent analyses. The small sample size did not allow meaningful assessment of the
individual contribution of the two gene variants and their combined effects due to their small
cell sizes (see Table 1).

RESULTS
When the genders were combined into a single sample, the MANOVA model did not
indicate an overall effect of the genotype on brain iron levels (Wilks’ Lambda = 0.849, F =
1.22, p = 0.304). As expected from our previous findings involving the larger parent sample
[15], a significant gender effect was observed (Wilks’ Lambda = 0.755, F = 2.23, p = 0.039)
with the men possessing higher FDRI. Post hoc comparisons showed the differences to be
significant in frontal lobe white matter (p = 0.028) and thalamus (p = 0.002). We also
observed the predicted interaction between iron gene and gender was at the trend level of
significance (Wilks’ Lambda=0.782, F = 1.92, p = 0.075). We therefore performed the
MANOVA on each gender separately.

A significant effect of iron genes on brain ferritin iron was detected in men (Wilks’
Lambda=0.510, F = 3.12, p = 0.013). This effect remains significant even when the
Bonferroni correction is applied for the multiple comparison of assessing the genders
separately. Post hoc comparisons revealed that the IRON+ men had significantly higher
FDRI levels than IRON− men in the caudate (p = 0.034) with a trend in the splenium of the
corpus callosum (p = 0.061); this group also had numerically higher FDRI in genu and
putamen but not the other regions (see Table 2). There were no significant differences in the
FDRI measure between IRON+ and IRON− groups of women (Wilks’ Lambda=0.826, F =
0.58, p = 0.784).

DISCUSSION
The common genetic variants involved in iron absorption and metabolism (HFE and TfC2)
have been reported to potentiate the risk of developing AD ([5,27], reviewed in [28]). These
data prompted calls for in vivo assessments of brain iron in gene carriers and non-carriers
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[27]. Herein we demonstrate for the first time that presence of these prevalent genetic
variants is associated with brain iron levels in men.

The iron-increasing effect of these genes was not observed in women. In women, the
relationships between gene and brain iron may be masked/obscured by reproduction-
associated differences in iron needs, iron loss, or iron metabolism, which do not affect men
([15,47], Bartzokis et al. unpublished data). We previously reported gender differences in
brain iron (higher in men) in 165 healthy adults across the age-span (19–82 years of age)
[15]. The current subsample of older individuals was derived from this larger sample. The
current data suggest that gender differences in brain iron may be driven in part by increased
levels in IRON+ males.

Men have a younger age at onset for several neurodegenerative conditions including PD
[17,18], DLB [20], and AD ([21–23], reviewed in [15]). We previously proposed that a
portion of the earlier age at onset of neurodegenerative diseases such as AD, PD, and DLB
in males may be accounted for by brain ferritin iron levels that are elevated in males [15,16].
We now suggest that male carriers of the HFE and TfC2 variants (approximately 50% of
males in this sample) may be at an especially increased risk. The influence of these genes
may be especially prominent in presymptomatic stages of the disease [25,27]. Thus, similar
to the effect of apolipoprotein E4 alleles that primarily reduce the age at onset of AD [22],
HFE and TfC2 mutations may manifest primarily as earlier age at onset [25], especially in
men [3,16,23,24]. This possibility is also supported by recent data showing increased CNS
iron levels in preclinical stages of AD [9,48]. Intracellular iron levels may promote both
production of pathologic proteins (reviewed in [1,5,49]) as well as their oligomerization
[50,51] supporting suggestions that abnormal protein aggregations and their cytotoxic
effects in general may be dependent on transition metals such as iron (for review see
[3,9,15]). Reducing brain iron accumulations in old age may be a modifiable risk factor for
age-related neurodegenerative diseases [15]. It remains to be determined what interventions
are capable of safely reducing brain iron or combating its deleterious effects [8,52–55].

One possibility is that reducing peripheral iron levels may reduce brain iron [15]. It is well
established that women have lower peripheral iron levels compared to men [56,57]. There is
also evidence that brain iron is responsive to peripheral iron status (for review see [58]). In
this context, the gene- and gender-related differences in brain ferritin iron suggest that lower
peripheral iron levels could in turn reduce brain iron levels [15]. This possibility was first
noted by Hallgren and Sourander [10] based on anecdotal observations made during their
landmark postmortem study of human nonheme brain iron levels. They observed that
subjects with known hemorrhages or severe anemia ante mortem had lower brain iron levels
at postmortem, and suggested that brain iron may be mobilized for metabolic needs outside
the brain [10]. Conversely, our own preliminary data suggests that a history of hysterectomy
(which would eliminate menstrual iron loss) may increase brain iron levels in healthy older
women (Bartzokis, et al., unpublished data).

AD rates double every 5 years after age 60; therefore, a modifiable risk factor that delays
onset by 5 years could represent a major intervention that could potentially halve the number
of cases of AD. In the context of high levels of peripheral iron in the United States
population (even in the elderly) [56] and the high prevalence of these iron-related gene
variants [27,59], reducing peripheral iron levels could have substantial public health
implications and deserves closer scrutiny [15].

Whether differences in ferritin iron reflect higher iron content per ferritin molecule as
reported in some diseases like AD and PD [60,61], larger numbers of ferritin molecules, or
other forms of iron particles [62,63], is not directly discernable from the FDRI data and
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remains to be determined. Further limitations of this study also need to be considered. First,
interpretation of gene-related differences must be made with caution in cross sectional
studies [64] and prospective data are needed to further define gene-related effects on iron
levels in both health and disease. Second, the small sample size did not allow meaningful
assessment of the individual contribution of the two gene variants or their combined effects.
Third, the absence from the sample of children, adolescents, and younger adults limits the
ability to determine the age when the impact of genes is greatest and pinpoint the optimal
age for intervention. Finally, although reproducible [13,41] and very highly correlated with
postmortem iron levels [15], the FDRI measure specifically quantifies ferritin iron load and
not the amount of free iron or other transition metals that may also be associated with toxic
consequences [48,65].

Neuroimaging can assess tissue ferritin iron with specificity on a regional basis and could be
used to examine the endophenotype of individuals with genetic- [24–26,32,34,35] and
disease-related [66,67] markers of iron dysregulation. Neuroimaging can also be used to
more precisely target emerging therapeutic interventions (for review see [8,52–55]) to high-
risk groups identified by MRI, years before clinical manifestations of disease. Early
intervention may make it possible to increase effectiveness of such treatments, decrease the
need for later more aggressive approaches, and ultimately may represent a heretofore
unexplored opportunity for primary prevention of neurodegenerative diseases [3].
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Fig. 1.
Region of interest (ROI) definition is depicted on axial MRI TE20 (image A) and TE90
(images B, C, D). The TE20 has optimal contrast between gray (appears light gray) and
white matter (appears dark gray). The TE90 has optimal contrast between brain (appears
gray) and CSF (appears white). Both TE20 and TE90 images are used to draw each ROI as
this combination of slices maximizes contrast needed for accurate ROI definition. As an
example, the use of both contrasts is depicted in the thalamus ROI that borders CSF
medially and white matter laterally and posteriorly (images A and B). Data for each ROI are
obtained from contiguous pairs of slices. Only one hemisphere ROI is depicted on the
figures although ROIs are measured bilaterally for all regions except for midline corpus
callosum regions (Gwm and Swm). a&b: Frontal lobe white matter (Fwm): the second and
third slices superior to the orbitofrontal gray matter are chosen. A standard circular ROI
template is first positioned within the desired area. The ROI is then manually edited to
exclude any unwanted gray matter (which appears hyperintense) or other hyperintensities.
Genu (Gwm): the two slices are chosen on which the angle formed by the left and right sides
of the genu appears the most horizontal (linear). This results in a sample consistently in the
middle of the structure, which contains primarily fibers connecting the prefrontal cortices.
Splenium (Swm): the second and third lowest slices on which the fibers of the splenium
connected in the midline are chosen. This results in a sample primarily in the lower half of
the splenium, which contains predominantly primary sensory (visual) fibers. For the two
corpus callosum regions (Gwm and Swm), a standard rectangular ROI template is first
positioned on the midline, and then the anterior and posterior borders are manually edited to
exclude non-corpus callosum tissue. Lateral borders are defined by the dimensions of the
rectangular template. Caudate nucleus (C): the third and fourth slices above the anterior
commissure (not shown) are chosen. Thalamus (T): the second and third highest slices on
which thalamus appears are chosen. The lateral border of the ROI is drawn along the white
matter of the internal capsule using the TE20 image (A). The medial and inferior portions
bordering CSF are defined using the TE90 image (B). C: Putamen (P) and globus pallidus
(G): the slice containing the anterior commissure and the slice immediately superior to it
(image C) are chosen. D: Hippocampus (Hip): the slices containing the largest area of
anterior hippocampus are chosen. The anterior Hip measure is limited posteriorly by
drawing a horizontal line at the level of the cerebral peduncle to exclude any tissue below
that line. The thick arrows in upper right of image C point to Fwm and P regions and are
referred to in the text (see Methods section, MRI protocol, third paragraph) as an illustration
of the specificity of the FDRI method.

Bartzokis et al. Page 12

J Alzheimers Dis. Author manuscript; available in PMC 2011 June 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Bartzokis et al. Page 13

Ta
bl

e 
1

St
ud

y 
sa

m
pl

e 
br

ea
kd

ow
n 

by
 g

en
de

r, 
ag

e,
 a

nd
 g

en
es

D
em

og
ra

ph
ic

va
ri

ab
le

s
M

al
es

(n
 =

 3
5)

Fe
m

al
es

(n
 =

 3
1)

A
ge

66
.5

 (6
.0

)
67

.1
 (6

.2
)

IR
O

N
+

(n
 =

 2
0)

IR
O

N
−

(n
 =

 1
5)

IR
O

N
+ 

(n
 =

 1
5)

IR
O

N
−

(n
 =

 1
6)

A
ge

67
.4

 (5
.9

)
65

.5
 (6

.1
)

67
.1

 (6
.5

)
67

.2
 (6

.2
)

H
63

D
+

(n
 =

 7
)

H
63

D
+/

/
Tf

C
2+

(n
 =

 4
)

Tf
C

2+
(n

 =
 9

)
H

63
D

+
(n

 =
 3

)
H

63
D

+/
/

Tf
C

2+
(n

 =
 2

)

Tf
C

2+
(n

 =
 1

0)

A
ge

 d
id

 n
ot

 d
iff

er
 si

gn
ifi

ca
nt

ly
 b

et
w

ee
n 

m
al

e 
an

d 
fe

m
al

es
 in

 th
e 

ov
er

al
l s

am
pl

e 
(t 

= 
0.

39
, d

f =
 6

4,
 p

 =
 0

.7
0)

 o
r w

ith
in

 IR
O

N
+ 

an
d 

IR
O

N
−

 g
ro

up
s (

p 
> 

0.
44

) o
r b

et
w

ee
n 

IR
O

N
+ 

an
d 

IR
O

N
−

 su
bg

ro
up

s (
p 

>
0.

55
).

J Alzheimers Dis. Author manuscript; available in PMC 2011 June 20.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Bartzokis et al. Page 14

Ta
bl

e 
2

Ef
fe

ct
 o

f i
ro

n 
ge

ne
s o

n 
br

ai
n 

fe
rr

iti
n 

iro
n 

in
 m

en
 in

 in
di

vi
du

al
 re

gi
on

s

M
en

 a
ge

 5
5 

an
d 

ol
de

r

IR
O

N
+ 

(n
 =

 2
0)

IR
O

N
−

 (n
 =

 1
5)

R
eg

io
n

m
ea

n
sd

m
ea

n
sd

t
p

C
2.

71
0.

42
2.

36
0.

52
2.

21
0.

03
4

G
4.

67
0.

84
4.

72
0.

85
−
0.
18

0.
85

5

P
3.

14
0.

57
2.

98
0.

63
0.

78
0.

44
4

T
1.

31
0.

25
1.

45
0.

34
−
1.
36

0.
18

4

Fw
m

1.
60

0.
26

1.
71

0.
30

−
1.
19

0.
24

4

G
w

m
1.

29
0.

28
1.

19
0.

36
0.

91
0.

36
8

Sw
m

1.
12

0.
38

0.
85

0.
44

1.
94

0.
06

1

H
ip

0.
81

0.
26

0.
85

0.
28

−
0.
40

0.
69

1

M
A

N
O

V
A

 a
na

ly
si

s c
om

bi
ni

ng
 a

ll 
ei

gh
t b

ra
in

 re
gi

on
s r

ev
ea

le
d 

no
 si

gn
ifi

ca
nt

 d
iff

er
en

ce
 in

 w
om

en
 (W

ilk
s’

 L
am

bd
a=

0.
82

6,
 F

 =
 0

.5
8,

 p
 =

 0
.7

84
), 

w
hi

le
 m

en
 sh

ow
ed

 a
 si

gn
ifi

ca
nt

 e
ff

ec
t o

f i
ro

n 
ge

ne
 c

ar
rie

r
st

at
us

 o
n 

br
ai

n 
fe

rr
iti

n 
iro

n 
(W

ilk
s’

 L
am

bd
a 

= 
0.

51
0,

 F
 =

 3
.1

2,
 p

 =
 0

.0
13

). 
Th

is
 ta

bl
e 

sh
ow

s t
he

 p
os

t h
oc

 t-
te

st
s f

or
 e

ac
h 

br
ai

n 
re

gi
on

 in
 m

al
e 

ge
ne

 c
ar

rie
rs

 (I
R

O
N

+)
 v

er
su

s n
on

-c
ar

rie
rs

 (I
R

O
N
−

) (
df

=3
3)

.

C
 =

 c
au

da
te

 n
uc

le
us

; G
 =

 g
lo

bu
s p

al
lid

us
; P

 =
 p

ut
am

en
; T

 =
 th

al
am

us
; F

w
m

 =
 fr

on
ta

l l
ob

e 
w

hi
te

 m
at

te
r; 

G
w

m
 =

 g
en

u 
of

 th
e 

co
rp

us
 c

al
lo

su
m

; S
w

m
 =

 sp
le

ni
um

 o
f t

he
 c

or
pu

s c
al

lo
su

m
; H

ip
 =

 h
ip

po
ca

m
pu

s.

J Alzheimers Dis. Author manuscript; available in PMC 2011 June 20.


