Preventing Frame Fingerprinting in Controller Area
Network Through Traffic Mutation

Alessio Buscemi*, Ton Turcanuf, German Castignani* and Thomas Engel*
*Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg
TLuxemburg Institute of Science and Technology (LIST), Luxembourg
{alessio.buscemi, thomas.engel}@uni.lu

ion.turcanu@list.lu

Abstract— The continuous increase of connectivity in
commercial vehicles is leading to a higher number of remote
access points to the Controller Area Network (CAN) — the most
popular in-vehicle network system. This factor, coupled with
the absence of encryption in the communication protocol, poses
serious threats to the security of the CAN bus. Recently, it has
been demonstrated that CAN data can be reverse engineered
via frame fingerprinting, i.e., identification of frames based on
statistical traffic analysis. Such a methodology allows fully remote
decoding of in-vehicle data and paves the way for remote pre-
compiled vehicle-agnostic attacks. In this work, we propose a first
solution against CAN frame fingerprinting based on mutating the
traffic without applying modifications to the CAN protocol. The
results show that the proposed methodology halves the accuracy
of CAN frame fingerprinting.

Index Terms—Connected Vehicles Security, CAN Bus Reverse
Engineering, Fingerprinting, Morphing, Machine Learning

I. INTRODUCTION

Controller Area Network (CAN) is a peer-to-peer message-
based network, which is considered the world standard for
in-vehicle communication. Despite its popularity, the protocol
is not equipped with data encryption nor secure authentication
for the Electronic Control Units (ECUs) attached to it [1]. The
lack of security was not initially an issue due to the limitation
for potential attackers to access the CAN bus physically.
However, the recent rapid digitalization of the car sector and
the introduction of remote services has consistently augmented
the number of wireless access points in the vehicles. In recent
years, a number of remote attacks against the CAN bus have
been successfully demonstrated [2]-[4].

In spite of the lack of traffic encryption, the interpretation
of the data sent and received on the CAN bus by the
ECUs is difficult. Every Original Equipment Manufacturer
(OEM) encodes the CAN data according to its proprietary
specifications and hides the format from the general public.
In fact, even if an attacker would gain access to a vehicle’s
ECU (e.g., by hacking into it), they would still need to decode
the format of the CAN frames sent on the bus in order to
successfully perform targeted attacks. This drove a number of
companies and researchers to specialize in performing manual
[5] and semi-automated reverse engineering on it [6]—[9].
Both approaches typically involve a human operator trained to
perform specific actions in the vehicle at data collection time.

german.castignani@ext.uni.lu

In one of our recent studies [10], we propose an approach for
fully automated CAN bus engineering, which, differently from
related work, is context-agnostic, i.e., it does not require any
ground truth about the data collection scenario. This solution
is based on matching the frames of the target vehicle with
the frames of a set of vehicles whose CAN specifications are
already known (e.g. through manual reverse engineering). This
is possible due to the fact that the ID and content of a frame sent
by the same ECU mounted on different vehicles is the same.
Such a solution, despite being an optimal tool for researchers
and companies working with CAN data, raises further concerns
about CAN bus security. Assuming wireless access to the CAN
bus (e.g., via a compromised ECU), such reverse engineering
can be carried out remotely and without prior knowledge
regarding the target vehicle model. This possibility can save
a significant amount of time and effort to potential attackers
and lead to remote pre-compiled vehicle-agnostic attacking
scenarios.

To address these concerns, in a subsequent work [11] we
consider the scenario in which a new set of frame IDs is
attributed to each newly released vehicle model. In other
words, the IDs of frames transporting the same information
and sent by the same ECU models present in any two different
vehicle models are distinct. This simple countermeasure meets
the needs of manufacturers, who are reluctant about adding
encryption to the CAN protocol, as it would imply enormous
changes in the supply chains. We investigate whether this
solution is sufficient to effectively prevent frame matching-
based CAN bus reverse engineering. The results show that
Machine Learning (ML) classifiers trained to fingerprint frames
according to the patterns that emerge from their time series
can still identify the frame in a target vehicle with an accuracy
up to almost 70 %.

In this work, we study whether it is possible to make CAN
frames less identifiable through traffic mutations, i.e., altering
the traffic in such a way that the resultant distribution of values
over certain properties of the frames becomes more similar
among different frames. The goal of such operations on the
CAN traffic is to reduce the recognizability of frames, thus
making the ID randomization an effective defense against
frame matching-based fingerprinting. The contribution of this
work can be summarized as follows:

o We present a methodology to prevent the CAN frames

© 2022 |IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

IEEE International Conference on Communications (ICC 2022)




fingerprinting based on statistical traffic patterns. In this
scope, to the best of our knowledge, we are the first
to adapt well known concepts, such as padding and
morphing, to the CAN traffic.

« We conduct an extensive evaluation of the presented
methodology and discuss the implications that it has on
the data transmission performance of the CAN bus.

II. BACKGROUND AND RELATED WORK

CAN bus is a master-less network in which the communica-
tion among nodes (ECUs), is based on messages, also called
frames. The frames are composed of several fields, the most
relevant for this work being the ID, Data Length Code (DLC),
and payload. The ID uniquely identifies a frame and its priority.
The DLC reports the length of the frame payload. In the CAN
standard version, the payload is between 0—8 Byte long and
typically contains one or multiple signals, which encapsulate
the actual vehicle functions. An ECU can send multiple frames
with different IDs, but frames with the same ID cannot be sent
by different ECUs. All frames associated with the same ID
contain the same signals in the same position. We refer to the
sequence of frames associated to the same ID as frame series.
The frames in a frame series are sent periodically according
to the frequency set by the source ECU.

The goal of CAN bus reverse engineering is to identify the
boundaries of signals within a frame payload and decode
their semantic meaning and format. It typically involves
human operators activating sensors to trigger events in the
vehicle during data collection, injection of diagnostic messages
through the On-Board Diagnostics (OBD-II) port and finding
correlations between the CAN traffic and the ground truth
offered by external sensors [5]-[7], [9]. Recently, it was
demonstrated that fully automated reverse engineering can
be achieved by finding a correspondence between the frames
of a target vehicle and the ground truth of previously reverse
engineered vehicles. The match can be found based on the
ID of frames (if it has been preserved in the target vehicle
[10]), or through ML fingerprinting (if the ID has been
changed/anonymized [11]).

In this work, we study a defense against fully automated
reverse engineering based on traffic mutation techniques. The
goal of traffic mutation algorithms is to conceal the patterns
that emerge from traffic features, which ML models can learn
and exploit to recognize sensitive information. The two main
techniques adopted in the scope of fingerprinting prevention
are padding and morphing. Padding consists in augmenting
the length of packets in a communication stream to a pre-
defined target size. It was introduced in [12] in response to
websites fingerprinting attacks over encrypted traffic based
on the size of transmitted packets. The goal of morphing,
instead, is to make a set of source processes that need to be
protected from fingerprinting resemble another target process,
hindering the predictive capability of ML classifiers. In its
original implementation [13], morphing matrices are generated
offline with convex optimization methods to define how the
packets of the source processes should be padded or split.

Traffic mutation approaches have been used as a defense
in a multitude of fingerprinting attack scenarios, such as web
encrypted traffic [12]-[14], mobile devices and apps [15], VoIP
data [16], and Internet of Things (IoT) devices [17]. Among
those, it is worth mentioning the adoption by The Onion Router
(Tor) of traffic padding between the client and network entry
guard as a countermeasure against website fingerprinting [14].

The specifications of the CAN protocol, as well as the
constraints that it is subject to, make the data transiting
within vehicles differ consistently from the traffic on which
mutations techniques have been designed in literature. Namely,
the CAN traffic is not encrypted and frames series bring
sequential information. In addition, the frame length and
sending frequency in a frame series are pre-defined and do not
change over time. As a consequence, existing traffic mutation
approaches cannot be directly applied to the CAN traffic. In
this paper, we present novel padding and morphing techniques
that fit the unique characteristics of the CAN bus.

III. METHODOLOGY

The frame fingerprinting approach presented in [11] revolves
around four distinctive aspects of the CAN traffic: the payload
length, the dynamic behavior of the payload bits, the sending
frequency, and the frame priority. The approach in [11] makes
the following assumption regarding the frame priority: the
attribution of new sets of frame IDs in newly released vehicle
models should preserve their priority. This leaves no space for
manipulation against frame fingerprinting. Therefore, in this
work, we operate on the three remaining aspects: (i) padding of
the frame payload length, (ii) morphing of the frame sending
frequency, and (iii) morphing of the dynamic behavior of the
payload bits.

A. Payload Length Padding

The frame length, expressed by the DLC field, is a feature
that can be used to fingerprint frames whose payload is shorter
than 8 Byte — the maximum frame length. Hereafter, we refer to
this set of frames as short and to those whose length is 8 Byte
as long. In this work, we make the following assumptions:

o The length of the payload can only be increased, as a
reduction would cause a loss of information.

o The extra padding bits should be appended at the end
of the frame to preserve the original location of signals
within the payload. This allows the receiving ECU to
correctly interpret the actual signals contained in the
payload and discard the rest of the bits.

Based on the assumptions, we study two solutions:

(a) All payloads are padded to the maximum length of 8 Byte.
This is the most straightforward solution, but which also
adds the most overhead.

(b) Short payloads, whose length is inferior to a certain
threshold 7 are padded to 7, while those whose length
is superior than 7 are padded to 8 Byte length, where
7 < 8Byte. The parameter 7 should be chosen to be
an optimal trade-off between reduction of fingerprinting
accuracy and added overhead.



Since each vehicle has a different distribution of long and
short frames — as well as different distribution of payload
length among the short frames — we argue that an optimal
universal threshold 7 cannot be identified. On the contrary, it is
reasonable to define 7 for each vehicle based on the distribution
of the frames lengths. For this purpose, the algorithm calculates
the quartiles @; of payload lengths of all frame series and
assigns 7 based on the value of a chosen quartile ();.

To designate the content of the padded bits, multiple
approaches can be followed:

1) Set all bits to a constant value, i.e. always 0 or 1;
2) Define the status of each bit randomly, for each frame;
3) Adopt a particular heuristic to set the bit values.

We argue that approach (1) allows to easily identify how many
bits have been padded for each frame, thus nullifying the
benefits of the padding. As a consequence, in this work we
evaluate approaches (2) and (3). In particular, regarding (3),
we follow the algorithm presented in Section III-C.

B. Sending Period Morphing

Frames having the same ID and that carry periodic signals
are typically being sent according to a pre-defined period.
However, due to hardware imprecision of clocks embedded
within ECUs, the frames deviate from the target sending
frequency. On the one hand, this deviation (or offset) from the
defined sending frequency can be used as an intrusion detection
mechanism [18]. On the other hand, the frame sending period
and the corresponding offset can be exploited as a feature for
frame fingerprinting, as demonstrated in [11].

In this work, we make the following assumptions:

1) The sending period of the frames can only be reduced (i.e.
the sending frequency is increased). In fact, incrementing
the sending period of frames carrying critical information
about the vehicle status would cause ECUs reacting less
promptly, thus threatening the vehicle’s safety.

2) The car manufacturer can synchronize all ECUs according
to the new set of sending frequencies of all frames.

Based on these assumptions, we design Algorithm 1 to
morph the sending frequency of all frames. The algorithm
takes in input a reference CAN log R and an integer P. R is
a sample of the original traffic of the vehicle with no mutation
applied. P defines the number of target sending periods to

Algorithm 1 Send Frequency Morphing
Input: Ref. Trace R, # of Target Sending Periods P
Output: Send Period-Morphed Frames

1: periods < get_periods(R)

2: offsets < extract_offsets(R, periods)

3: target_periods < quantiles(periods, P)

4: target_offsets < assign(R.frame_ids, target_periods)

5: target_K < compute_K(new_periods, target_offsets)

6: for frame in CAN_traffic do

7. morph_frame < morph(frame, target_offsets, target_K)
8: end for

which the frames series will be morphed. If we assume P,
is the number of discrete sending periods extracted from the
original trace R, then we must have P < P,.

R allows OEMs to preliminarily collect sending periods and
calculate the mean standard deviation of the sending periods
of all frames (lines 1-2). Then, the set of sending periods of
R is ordered and divided in P quantiles. The ECUs are set
to send the frames according to the target periods, which are
computed based on these quantiles (line 3). In particular, each
frame ID must be associated with a target period such that (i)
the target period is inferior to its original period, and (ii) the
difference between the target period and the original period is
minimal in order to reduce the traffic overhead.

But since we know that each ECU introduces an additional
distinct offset that can help fingerprinting its frames, an
additional defense mechanism is needed. Specifically, for each
target period the highest standard deviation among all frame
series associated to that period is chosen as a target mean offset
(line 4). Let 0. be the standard deviation of a frame series
F, 7 its target period, and o, its target standard deviation. To
morph F' to have overall sending frequency standard deviation
equal to o; while keeping its sending period ~ 7, the ECU
must aim at sending each frame every m £ r, where r is
randomly generated following a uniform distribution between
[-K, K]. K is calculated (line 5) as follows:

K =/3(c2 = of) €]

C. Bit Flip Rate Morphing

Given a frame series F’, the Bit Flip Count (BFC) of a
payload bit b indicates how many times b flips (changes its
status from O to 1 or vice versa) throughout F'. The Bit Flip
Rate (BFR) is then calculated as BFC/(f — 1), where f is the
length of F' [6]. The work in [11] demonstrates that the number
of bits that flip at least once during the trace and the mean
BFR constitute valuable features to fingerprint the frames. In
the current work, we perform morphing on the payload bits
to hide the patterns associated to the BFR.

Every bit within a signal is relevant to the interpretation to
information contained in the signal. On the contrary, unused
bits — as defined in [6], [7] — are bits that do not belong to
any signal and never flip. Since we do not want to alter the
actual information carried by the payload, the unused bits are
the only ones on which we can operate. In this work, we
make unused bits flip in such a way that it makes the overall
dynamicity of the frames series to resemble among each other.
To be noted that, if payload padding is applied too, the added
bits are considered unused and, therefore, can be employed
for the morphing.

The pseudocode related to the morphing of BFR is presented
in Algorithm 2. The algorithm gets in input a reference trace
R, the list of signals S, and an integer B. Similarly to the
sending frequency morphing (see Section III-B), R is a sample
of the original traffic of the vehicle. S is the list of signals
that can be found in R, as reported in the specifications owned



by the OEM. B defines the number of target mean BFRs to
which the frames series will be morphed.

The frames in a series can only be mutated in such a way
that the overall mean BFR is higher than the original one. In
fact, trying to decrease the BFR would necessarily imply a
manipulation of the bits of the signals, thus causing a loss of
information. As a consequence, R should be dynamic enough
to ensure that the original mean BFR of the frame series in
the CAN traffic can be morphed to the B targets.

The mean BFR of all frames series are initially calculated
on R (line 1). The set of all mean BFRs of R is ordered
and divided in B quantiles. The target mean BFRs are then
extracted according to the quantiles (line 2). Subsequently, for
each frame series, the unused bits are extracted based on the
ground truth (line 3). Finally, the BFR of each frame series in
the CAN traffic can be then morphed to its target (lines 5-11).

To morph a frame series F' to have a mean BFR equal to
a target mean BFR 7', a number of unused bits n must flip
for each frame in F'. Prior to sending a frame F;, the ECU
defines n by taking into consideration the BFR achieved until
F;_1 and the information encapsulated in F; (line 6). Once
n is calculated, a subset S of the unused bits in the frame is
selected, such that |S| < n (line 7). All the bits indicated by
S are then flipped and the so altered frame is sent (line 8).

IV. PERFORMANCE EVALUATION

In this section, we evaluate the efficacy that each of the
techniques presented in Section III have against frame finger-
printing singularly and combined. To validate our approach, we
employ a set composed of 10s CAN logs from 427 different
vehicle models produced by 28 distinct automotive makers.
The traces have been collected with a PCAN-USB FD in a
static context, i.e. parked vehicles, with no action performed
by a human operator. Due to the data collection conditions,
some signals are never triggered, thus not making any of their
bits to flip. We refer to the frames series whose payload bits
never flip as inactive. Since the presence of inactive frames in
our dataset impacts the fingerprinting performance evaluation
— namely, the classifier cannot exploit the features based on
the payload dynamicity — we present the results achieved on
active and inactive frames separately.

Algorithm 2 BFR morphing
Input: Ref. Trace R, Signals S, # of Target Mean BFR B
Output: BFR-Morphed Frames
: BFRs < get_mean_bfr(R)
target_BFRs < quantiles(BFRs, B)
unused_bits <+ extract_unused_bits(R, S)
: for frame in CAN_traffic do
curr_frame_series < CAN_traffic[frame.id]
curr_BFR < bfr(curr_frame_series)
n < n_bits_to_flip(frame, curr_BFR, target_BFRs)
S « bits_to_{flip(n, unused_bits)
morph_frame <— morph(frame, S)
end for

R A A i

_
=4

L —  ———  —
R T —— O q
230%
20% active w/o defense —4— active
10%] —-— inactive w/o defense —¢— inactive
0,
"1 Q2 Q3 Q4

Threshold quartile

Figure 1. Comparison between the fingerprinting accuracy on the original
traffic and payload-padded traffic for different quartile values chosen to set 7.

The traces contain a total of 33034 frame IDs. However,
ground truth information is not available for all of them. In
fact, the ground truth has been extracted through manual
reverse engineering and it is partial, i.e. it does not contain
all the signals that can be actually found in the vehicles.
For the validation, we follow a leave-one-out-cross-validation
approach, i.e. the classifier is iteratively trained on all vehicles
in the test set except one, which is used as a target for the
fingerprinting. In addition, for all the presented results we
report the confidence interval at 95 %.

To assess the fingerprinting performance, we choose the
accuracy metric, which corresponds to the percentage of correct
predictions over the total number of test samples. It is to
be noted that our fingerprinting problem is under Open Set
Recognition (OSR) assumptions, since not all the frames that
are found in a target vehicle can be associated to a known
class by the classifier [19]. This reflects the possibility for an
attacker to target a vehicle mounting ECUs not yet encountered
(i.e., sending unknown frames). In this paper, the accuracy
refers solely to the frames that have been matched with a
known label/class.

To fingerprint the frames, we feed a Random Forest (RF)
classifier with a depth of 200 with the same set of features
described in [11]. This classifier was proven to achieve
the highest accuracy in the scope of frame fingerprinting
among a set of selected classifiers, such as Extreme Value
Machine (EVM), PI-Support Vector Machine (SVM), and Fully
Connected Neural Network (FCNN) [11]. Given the presence
of unknown samples, the classifier is set with a rejection
threshold = 0.2, i.e., all predictions with a confidence score
inferior to 20 % are discarded.

A. Evaluation of payload length padding

We evaluate the impact that padding the payload of the
frames has on the fingerprinting accuracy of the RF classifier.
For this analysis, we set the algorithm to choose the content
of the padding bits randomly. Figure 1 compares the mean
accuracy obtained on the original traces (without defense)
with the results achieved by applying payload padding on all
the tested vehicles (with our proposed defense mechanism in
place). The figure shows how the performance varies based on
the choice of the quartile used to the determine the threshold
T (see Section III-A). It is to be noted that ()4 represents the
case in which all frames are padded to 8 Byte (solution (a),



45.0%

40.0%

35.0%

Overhead

30.0%

25.0%

Ql Q2 Q3 Q4
Threshold quartile

Figure 2. Communication overhead introduced by payload-padded traffic for
different quartile values chosen to set 7.

80%
70%
60%

é‘ 50%7_
§ 40%
< 30%

20% active w/o defense —$— active

10%7 —-— inactive w/o defense ~ —¢— inactive

0,
0% 20 40 60 80 100
P

Figure 3. Comparison between the fingerprinting accuracy on the original
traffic and sending period-morphed traffic for different values of P.

Section III-A). The figure highlights that, for both active and
inactive frames, the defense improves when the quartile to
determine the threshold is higher. It is worth noting that the
choice of 7 impacts more the fingerprinting on the inactive
frames (loss of accuracy of 4 % and 13 % for, respectively, Q1
and ()4) than on the active frames (loss of accuracy between
14 % and 18 %).

We also evaluate the impact that padding the payload of the
frames has on the transmission overhead. In particular, Figure 2
shows that the overhead increases from a minimum of 23.4 %
(Q1) to a maximum of 43.5 % when all payloads are padded
to 8 Byte. This means that slightly improving the defense
mechanism comes at a higher cost in terms of communication
overhead on the CAN bus.

B. Evaluation of sending period morphing

We evaluate the efficacy of morphing the frame sending pe-
riod against frame fingerprinting by comparing the results with
the performance obtained on the original non-morphed CAN
traffic. Figure 3 illustrates how the fingerprinting performance
varies according to the number of quantiles P used to select
the target periods (see Section III-B). The figure highlights that
the fingerprinting accuracy increases with P. The reason is that
the higher the number of target periods, the closer the sending
period of each frame is to its original value on average. The
fingerprinting performance on the active and inactive frames
is reduced by a maximum of, respectively, 9.5 % and 6.5 %
for P = 1, and it follows a similar trend when varying P.
As a matter of fact, this morphing technique does not alter
the content of the frames and, therefore, impacts similarly the
active and inactive frames.

1000% 1000%

100%

Added Offset
Overhead

100%
10%

20 40 60 80 100
P

Figure 4. Overhead and added deviation from the target sending period
according to the quartile chosen to set 7.

80%
70%

60% /

4

>
L 4
L 2

250% ==,
8 S Ol FEEE S SR TR R RS E e S ittt |
2 40%
<30%

20% active w/o defense —$— active

10%7] —-— inactive w/o defense ~ —¢— inactive

0,
0% 20 40 60 80 100
B

Figure 5. Comparison between the fingerprinting accuracy on the original
traffic and BFR-morphed traffic for different values of B.

Figure 4 shows how morphing the sending period of frames
impacts the performance of the CAN transmission in terms
of added overhead and the mean clock offset added. The
figure highlights that the number of reference sending periods
is inversely proportional to the overhead and to the added
deviation. In fact, the more reference periods, the inferior is
the difference with the original sending period on average, and
less frames are morphed to high offset targets.

C. Evaluation of BFR morphing

We evaluate the efficacy of BFR morphing against finger-
printing, by comparing the accuracy obtained by the classifier
on the morphed CAN traffic with the results achieved on the
original traffic at the varying of B. Given the incompleteness
of the ground truth, for this evaluation we consider as inactive
all frames that contain only bits that do not belong to known
signals and that never flip throughout the traces.

Figure 5 highlights that, in the case of active frames, the
fingerprinting performance increases with B and, thus, efficacy
of the morphing decreases. In particular, for B = 1, the
accuracy is reduced by circa 11 %, while for B = 100, it is
decreased by ~ 3 %. In fact, the higher the number of mean
BFR values used as targets for the morphing, the less the
difference with the original dynamicity of the frames series.
On the contrary, the performance obtained by the classifier on
inactive frames remains stable. As a matter of fact, the features
based on BFR are irrelevant for the fingerprinting of inactive
frames. To be noted that, unlike the other two approaches,
BFR morphing does not introduce any additional overhead on
the communication channel.



100%

90%
0% 7= inactive w/o defense

70%

60%
50%

freq + len len + bfr all
Defense

I active
I inactive

active w/o defense

40%
30%
20%
10%

Accuracy

freq + bfr

Figure 6. Fingerprinting accuracy when different combinations of the proposed
defenses are applied.

D. Evaluation of combined approaches

After analyzing the impact that padding and morphing have
on the frame fingerprinting accuracy based on the different
characteristics of the CAN traffic, we evaluate the impact that
combinations of these approaches have overall. Following the
results shown in Sections IV-A, IV-B and IV-C, we select
T = Q1l, P = 40, and B = 1. We consider this as a fair
trade-off between the decrease in the fingerprinting accuracy
and the negative impact that such operations have on the
communication overhead.

Figure 6 compares the fingerprinting accuracy obtained for
different combinations of the three proposed approaches with
the accuracy achieved on the original traffic. To be noted
that when frame padding and BFR morphing are combined,
the content of the padded bits is chosen according to the
heuristic defined by the morphing. The results presented in the
figure confirm that combining multiple approach leads to lower
fingerprinting performance. The best result is obtained when
all the operations on the CAN traffic are applied. In particular,
the mean fingerprinting accuracy on active and inactive frames
shrinks, respectively, from 68.9 % to 36.6 % for active frames
and from 46.6 % to 31.2 % for inactive frames.

V. CONCLUSION

In this paper, we present a methodology to reduce the
efficacy of CAN frames fingerprinting performed by ML
classifiers without applying modifications to the protocol. Our
approach is based on mutating the CAN traffic by (i) padding
the length of frame payloads, (ii) morphing the frame sending
frequency, and (iii) morphing the dynamic behavior of the
payloads. The proposed methodology is validated on real
CAN logs from 427 different vehicle models. The performance
evaluation shows that our approach decreases the fingerprinting
accuracy of the classifiers from up to 70 % to less than 40 %.
While our method does not completely nullify the classifiers’
fingerprinting capability, the obtained results highlight that
traffic mutations are a promising study direction for the

prevention of CAN frame matching-based reverse engineering.

Future work should be conducted to further decrease the frame
fingerprinting accuracy, while also paying attention to the
overhead and offset in the frame sending frequency.

ACKNOWLEDGEMENT

We acknowledge support from the National Research Fund
(FNR) under grant number PRIDE15/10621687. We thank Xee
for the provided datasets we used to validate our solution.

REFERENCES

[11 W. Wu, R. Li, G. Xie, et al., “A survey of intrusion detection for
in-vehicle networks,” IEEE Transactions on Intelligent Transportation
Systems, vol. 21, no. 3, pp. 919-933, 2019.

[2] G. Brindescu. “DARPA Hacked a Chevy Impala Through Its OnStar
System.” (2015), [Online]. Available: https://www.autoevolution.com/
news/darpa-hacked-a-chevy-impala-through-its- onstar-system- video-
92194.html (visited on 04/02/2021).

[3] S. Woo, H. J. Jo, and D. H. Lee, “A Practical Wireless Attack on
the Connected Car and Security Protocol for In-Vehicle CAN,” IEEE
Transactions on Intelligent Transportation Systems, vol. 16, no. 2,
pp- 993-1006, 2015.

[4] C. Miller and C. Valasek, “Remote exploitation of an unaltered passenger
vehicle,” Black Hat USA, vol. 2015, no. S 91, 2015.

[5]1 C. Quigley, D. Charles, and R. McLaughlin, “CAN Bus Message
Electrical Signatures for Automotive Reverse Engineering, Bench
Marking and Rogue ECU Detection,” in SAE Technical Paper, SAE
International, Apr. 2019.

[6] M. Marchetti and D. Stabili, “READ: Reverse engineering of automotive
data frames,” IEEE Transactions on Information Forensics and Security,
vol. 14, no. 4, pp. 1083-1097, 2018.

[71 M. D. Pesé, T. Stacer, C. A. Campos, E. Newberry, D. Chen, and
K. G. Shin, “LibreCAN: Automated CAN Message Translator,” in
Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security (CCS), ACM, 2019, pp. 2283-2300.

[8] A.Buscemi, I. Turcanu, G. Castignani, R. Crunelle, and T. Engel, “Poster:
A Methodology for Semi-Automated CAN Bus Reverse Engineering,”
in 13th IEEE Vehicular Networking Conference (VNC 2021), IEEE, Nov.
2021, pp. 125-126.

[9] W. Choi, S. Lee, K. Joo, H. J. Jo, and D. H. Lee, “An Enhanced Method
for Reverse Engineering CAN Data Payload,” IEEE Transactions on
Vehicular Technology, vol. 70, no. 4, pp. 3371-3381, 2021.

[10] A. Buscemi, I. Turcanu, G. Castignani, R. Crunelle, and T. Engel,
“CANMatch: A Fully Automated Tool for CAN Bus Reverse Engineering
based on Frame Matching,” IEEE Transactions on Vehicular Technology,
vol. 70, no. 12, pp. 12358-12373, Nov. 2021.

[11] A. Buscemi, I. Turcanu, G. Castignani, and T. Engel, “On Frame
Fingerprinting and Controller Area Networks Security in Connected
Vehicles,” in IEEE Consumer Communications & Networking Conference
(CCNC), Virtual Conference: IEEE, Jan. 2022.

[12] M. Liberatore and B. N. Levine, “Inferring the Source of Encrypted
HTTP Connections,” ser. CCS ’06, Alexandria, Virginia, USA: Associa-
tion for Computing Machinery, 2006, pp. 255-263.

[13] C. V. Wright, S. E. Coull, and F. Monrose, “Traffic Morphing: An
Efficient Defense Against Statistical Traffic Analysis.,” in NDSS, Citeseer,
vol. 9, 2009.

[14] T. O. Router. “Tor 0.3.1.7.” (2017), [Online]. Available: https://blog.
torproject.org/tor-0317-now-released (visited on 10/18/2021).

[15] L. Chaddad, A. Chehab, I. H. Elhajj, and A. Kayssi, “App traffic
mutation: Toward defending against mobile statistical traffic analysis,” in
IEEE INFOCOM 2018-IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), IEEE, 2018, pp. 27-32.

[16] W. B. Moore, H. Tan, M. Sherr, and M. A. Maloof, “Multi-class
traffic morphing for encrypted voip communication,” in International
Conference on Financial Cryptography and Data Security, Springer,
2015, pp. 65-85.

[17] I. Hafeez, M. Antikainen, and S. Tarkoma, “Protecting IoT-environments
against traffic analysis attacks with traffic morphing,” in IEEE Inter-
national Conference on Pervasive Computing and Communications
Workshops (PerCom Workshops), 1EEE, 2019, pp. 196-201.

[18] K.-T. Cho and K. G. Shin, “Fingerprinting Electronic Control Units
for Vehicle Intrusion Detection,” in 25th USENIX Security Symposium
(USENIX Security 16), Aug. 2016, pp. 911-927.

[19] C. Geng, S. Huang, and S. Chen, “Recent Advances in Open Set
Recognition: A Survey,” CoRR, vol. abs/1811.08581, 2018.



