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Abstract—The increasing trend of embedding positioning capabilities (for example, GPS) in mobile devices facilitates the widespread

use of Location-Based Services. For such applications to succeed, privacy and confidentiality are essential. Existing privacy-

enhancing techniques rely on encryption to safeguard communication channels, and on pseudonyms to protect user identities.

Nevertheless, the query contents may disclose the physical location of the user. In this paper, we present a framework for preventing

location-based identity inference of users who issue spatial queries to Location-Based Services. We propose transformations based on

the well-established K-anonymity concept to compute exact answers for range and nearest neighbor search, without revealing the

query source. Our methods optimize the entire process of anonymizing the requests and processing the transformed spatial queries.

Extensive experimental studies suggest that the proposed techniques are applicable to real-life scenarios with numerous mobile users.

Index Terms—Privacy, anonymity, Location-Based Services, spatial databases, mobile systems.
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1 INTRODUCTION

IN recent years, positioning devices (for example, GPS)
have gained tremendous popularity. Navigation systems

are already widespread in the automobile industry and,
together with wireless communications, facilitate exciting
new applications. General Motors’ OnStar system, for
example, supports online rerouting to avoid traffic jams
and automatically alerts the authorities in case of an
accident. More applications based on the users’ location
are expected to emerge with the arrival of the latest gadgets
(for example, iPAQ hw6515 and Mio A701), which combine
the functionality of a mobile phone, PDA, and GPS receiver.
For such applications to succeed, the privacy and con-
fidentiality issues are of paramount importance.

Consider that Bob uses his GPS-enabled mobile phone to
find the nearest betting office. This query can be answered

by a Location-Based Service (LBS) in a publicly available
Web server (for example, Google Maps). Since Bob does not

want to disclose to Alice his gambling habits, instead of
directly sending the query to the LBS, he uses an

anonymizer, which is a trusted server (services for anon-
ymous Web surfing are commonly available nowadays). He

establishes a secure connection (for example, Secure Sockets
Layer (SSL)) with the anonymizer, which removes the user

ID from the query and forwards it to the LBS. The answer
from the LBS is also routed to Bob through the anonymizer.

Nevertheless, the query itself unintentionally reveals
sensitive information. In our example, the LBS requires the
coordinates of the user in order to process the nearest
neighbor (NN) query. Since the LBS is not trusted, Alice can
collaborate with the LBS and acquire the location of Bob and
his query result (that is, the betting office). The next step is
to relate the coordinates to a specific user. Alice may choose
from a variety of techniques such as physical observation of
Bob, triangulating his mobile phone’s signal,1 or consulting
publicly available databases. If, for instance, Bob uses his
phone within his residence, Alice can easily convert the
coordinates to a street address (most online maps provide
this service) and relate the address to Bob by accessing an
online white pages service.

For a broad discussion on the risks of revealing sensitive
information in LBSs, see [7]. In practice, users would be
reluctant to access a service that may disclose their
political/religious affiliations or alternative lifestyles.
Furthermore, given that the LBS is not trusted, users might
be hesitant to ask innocuous queries such as “find the
closest gas station” or “which are the restaurants in my
vicinity,” since once their identity is revealed, they may face
unsolicited advertisements, e-coupons, and so forth. Moti-
vated by this fact, we develop methods for protecting the
privacy of users issuing spatial queries against location-
based attacks. Specifically, we prevent an attacker from
inferring the identity of the query source by adapting the
well-established K-anonymity technique to the spatial
domain.

K-anonymity [25], [27] has been used for publishing
microdata such as census, medical, and voting registration
data. A data set is said to be K-anonymized if each record is
indistinguishable from at least K � 1 other records with
respect to certain identifying attributes. In the context of
LBSs, the K-anonymity concept translates as follows: Given
a query, guarantee that an attack based on the query
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1. Phone companies can estimate the location of the user within 50-
300 meters, as required by the US authorities (E911).
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location cannot identify the query source with probability
larger than 1=K among other K � 1 users. Most of the
existing work adopts the framework in Fig. 1a. In this
framework, a user sends his location and query to the
anonymizer through a secure connection. The anonymizer
removes the ID of the user and transforms his location
through a technique called cloaking. Cloaking hides the
actual location by a K-anonymizing spatial region (K-ASR or
ASR), which is an area that encloses the client that issued
the query, and at least K � 1 other users. The anonymizer
then sends the ASR to the LBS, which returns to the
anonymizer a set of candidate results that satisfy the query
condition for any possible point in the ASR. The LBS may be
compromised; that is, an adversary may have complete
knowledge of all queries received by the LBS.

Fig. 1b illustrates this process in detail by continuing the
running example. Bob forwards his request to the anonymi-
zer, together with his anonymity requirement K. Assuming
that K ¼ 3, the anonymizer generates a 3-ASR (shaded
rectangle) that contains Bob and two other users U1 and U2

(the anonymizer knows the exact locations of all users).
Then, it sends this 3-ASR to the LBS, which finds all betting
offices that can be the NN of any point in the 3-ASR (recall
that the LBS does not knowwhere Bob is). This candidate set
(that is, p1, p2, p3, and p4) is returned to the anonymizer,
which filters the false hits and forwards the actual NN (in
this case, p2) to Bob. Even if Alice knows the location of Bob
and the other users, she can only ascertain that the query
originated from Bob with a probability of 1/3.

Existing methods for spatial K-anonymity (reviewed in
Section 2) have at least one of the following shortcomings:

1. They compromise the query issuer’s identity for
certain user location distributions.

2. They sacrifice quality of service (QoS); that is, some
queries must be delayed or dropped.

3. They are inefficient; that is, they generate large
ASRs.

4. They focus exclusively on cloaking mechanisms and
lack algorithms for query processing at the LBS.

In this paper, we aim at solving these problems through a
comprehensive set of techniques. Specifically, we propose
two cloaking algorithms: Nearest Neighbor Cloak (NNC),
which significantly outperforms the existing techniques in
terms of efficiency but has similar anonymity problems for
some distributions, and Hilbert Cloak (HC), which never

reveals the query source, independent of the user location
distribution. Moreover, we address the issue of anonymized
query processing at the LBS. Specifically, we adopt an
existing algorithm for computing the k nearest neighbors2

ðkNNÞ of rectangular regions, as opposed to points, and
develop a novel algorithm for computing the kNN of
circular regions, which reduces the number of redundant
results, hence, the communication cost between the anon-
ymizer and the LBS.

The rest of this paper is organized as follows: Section 2
presents the related work. Next, Section 3 deals with the
construction of the K-ASR at the anonymizer, followed by
Section 4, where we describe the query processing algo-
rithms at the LBS. The results of our experiments are
illustrated in Section 5. Finally, Section 6 concludes the
paper and presents directions for future work.

2 RELATED WORK

Section 2.1 discusses K-anonymity in relational databases,
and Section 2.2 presents privacy-preserving methods for
LBSs. Section 2.3 overviews related spatial query processing
techniques.

2.1 K-Anonymity in Relational Databases

Anonymity was first discussed in relational databases,
where published data (for example, census or medical)
should not be linked to specific persons. Adam and
Wortmann [1] survey methods for computing aggregate
functions (for example, sum and count), under the
condition that the results do not reveal any specific
record. Agrawal and Srikant [3] compute value distribu-
tions, which are suitable for data mining, in confidential
fields. Recent work has focused on K-anonymity, as
defined in [25], [27]: A relation satisfies K-anonymity if
every tuple is indistinguishable from at least K � 1 other
tuples with respect to a set of quasi-identifier attributes.
Quasi-identifiers are attributes (for example, date of birth,
gender, and zip code) that can be linked to publicly
available data to identify individuals. Records with
identical quasi-identifiers form an anonymized group.
Two techniques are used for transforming a relation to a
K-anonymized one: suppression, where some of the
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Fig. 1. Framework and example for spatial K-anonymity. (a) General framework. (b) Example of NN query.

2. Note that k, which is the number of NNs, is different from K, which is
the degree of anonymity.



attributes or tuples are removed, and generalization, which
involves replacing specific values (for example, the phone
number) with more general ones (for example, only the
area code). Both methods lead to information loss.
Algorithms for anonymizing an entire relation while
preserving as much information as possible are discussed
in [4], [19]. Xiao and Tao [31] consider the case where
each individual requires a different degree of anonymity,
whereas Aggarwal [2] shows that anonymizing a high-
dimensional relation leads to unacceptable loss of infor-
mation due to the dimensionality curse. Machanavajjhala
et al. [20] propose ‘-diversity, which is an anonymization
method that prevents sensitive attribute disclosure by
providing diversity among the sensitive attribute values of
each anonymized group. Finally, Ghinita et al. [14]
employ multidimensional to one-dimensional (1D) trans-
formations to solve efficiently the K-anonymity and
‘-diversity problems.

2.2 K-Anonymity in Location-Based Services

Most previous work on LBSs adopts the concept of
K-anonymity by using the framework in Fig. 1: A user
sends his position, query, and K to the anonymizer, which
removes the ID of the user and transforms his location
through cloaking. The generatedK-ASR is forwarded to the
LBS, which processes it and returns a set of candidates,
containing the actual results and false hits. The first
cloaking3 technique, called Interval Cloak (IC) [15], is based
on quadtrees. A quadtree [26] recursively partitions the
space into quadrants until the points in each quadrant fit in
a page/node. Fig. 2 shows the space partitioning and a
simple quadtree, assuming that a node contains a single
point. The anonymizer maintains a quadtree with the
locations of all users. Once it receives a query from a
user U , it traverses the quadtree (top down) until it finds the
quadrant that contains U and fewer than K � 1 users. Then,
it selects the parent of that quadrant as the K-ASR and
forwards it to LBS.

Assume that in Fig. 2, U1 issues a query, with K ¼ 2.
Quadrant4 hð0; 2Þ; ð1; 3Þi contains only U1, so its parent
hð0; 2Þ; ð2; 4Þi becomes the 2-ASR. Note that the ASR may
contain more users than necessary. In this example, it
includes U1, U2, and U3, although two users would suffice

for the privacy requirements. A large ASR burdens the
query processing cost at the LBS and the network overhead
for transferring a large number of candidate results from
the LBS to the anonymizer. In order to overcome this
problem, Gruteser and Grunwald [15] combine temporal
cloaking with spatial cloaking; that is, the query may wait
until K (or more) objects fall in the user’s quadrant. In our
example, the query of U1 will be executed when a second
user enters hð0; 2Þ; ð1; 3Þi, in which case hð0; 2Þ; ð1; 3Þi is the
2-ASR sent to the LBS.

Similar to IC, Casper [23] is based on quadtrees. The
anonymizer uses a hash table on the user ID pointing to the
lowest level quadrant, where the user lies. Thus, each user
is located directly, without having to access the quadtree
top down. Furthermore, the quadtree can be adaptive, that
is, contain the minimum number of levels that satisfies the
privacy requirements. In Fig. 2, for instance, the second
level for quadrant hð0; 2Þ; ð2; 4Þi is never used for K � 2 and
can be omitted. The only difference in the cloaking
algorithms of Casper and IC is that Casper (before using
the parent node as the K-ASR) also considers the neighbor-
ing quadrants at the same level of the tree. Assume again
that in Fig. 2, U1 issues a query, and K ¼ 2. Casper checks
the content of quadrants hð1; 2Þ; ð2; 3Þi and hð0; 3Þ; ð1; 4Þi.
Since the first one contains user U3, the 2-ASR is set to
hð0; 2Þ; ð2; 3Þi, which is half the size of the 2-ASR computed
by IC (that is, hð0; 2Þ; ð2; 4Þi).

In Clique Cloak [11], each query defines an axis-parallel
rectangle whose centroid lies at the user location and whose
extents are �x, �y. Fig. 3 illustrates the rectangles of three
queries located at U1, U2, and U3, assuming that they all
have the same �x and �y. The anonymizer generates a
graph, where a vertex represents a query: Two queries are
connected if the corresponding users fall in the rectangles of
each other. Then, the graph is searched for cliques of
K vertices, and the minimum bounding rectangle (MBR) of
the corresponding rectangles forms the ASR sent to the LBS.
Continuing the example in Fig. 3, ifK ¼ 2, U1 and U2 form a
2-clique, and the MBR of their respective rectangles is
forwarded so that both queries are processed together. On
the other hand, U3 cannot be processed immediately, but it
has to wait until a new query (generating a 2-clique with U3)
arrives. Clique Cloak allows users to specify a temporal
interval �t such that if a clique cannot be found within �t,
the query is rejected. The selection of appropriate values for
�x, �y, and �t is not discussed in [11].

Probabilistic Cloaking [8] preserves the privacy of loca-
tions without applying spatial K-anonymity. Instead 1) the
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3. Beresford and Stajano [6] introduce the concept of mix zone, which is
similar to the K-ASR, but they do not provide concrete algorithms for
spatial cloaking.

4. We use the coordinates of the lower left and upper right points to
denote a quadrant.

Fig. 2. Example of IC and Casper. Fig. 3. Example of Clique Cloak.



ASR is a closed region around the query point, which is
independent of the number of users inside, and 2) the
location of the query is uniformly distributed in the ASR.
Given an ASR, the LBS returns the probability that each
candidate result satisfies the query based on its location
with respect to the ASR. Finally, location anonymity has
also been studied in the context of related problems. Kamat
et al. [18] propose a model for sensor networks and examine
the privacy characteristics of different sensor routing
protocols. Hoh and Gruteser [16] describe techniques for
hiding the trajectory of users in applications that continu-
ously collect location samples. Ghinita et al. [12], [13] and
Chow et al. [10] study spatial cloaking in peer-to-peer
systems.

2.3 Related Spatial Query Processing Techniques

The LBS maintains the locations of points of interest and
answers cloaked queries. The most common spatial queries
(and the focus of the existing systems) are ranges and NNs.
Although the cloaking mechanism at the anonymizer is
independent of the query type, query processing at the LBS
depends on the query. Range queries are usually straight-
forward. Assume that a user U wants to retrieve the data
objects within distance d from his current location. Instead
of the position of U , the LBS receives (from the anonymizer)
an ASR that contains U (as well as several other users) and
d. In order to compute the candidate results, the LBS
extends the ASR by d on all dimensions and searches for all
objects in the extended ASR. The set of candidates is
returned to the anonymizer, which filters out false hits and
returns the actual result to U .

The processing of NN queries is more complicated. If the
ASR is an axis-parallel rectangle (as in IC, Casper, and Clique
Cloak), then the candidate results can be retrieved by using
range NN search [17], which finds the NN of any point
inside a rectangular range. Assume the running example in
Fig. 1b, where the ASR is the shaded rectangle. The LBS
must return the NN of every possible location in the ASR.
Such candidate data points lie inside (for example, p1 and
p2) or outside the ASR (for example, p3 and p4). For instance,
p3 would be the NN for a user at the lower right corner of
the ASR.

Fig. 4 shows the application of the range NN search in
the above example. The initial set of candidates contains all
points ðp1; p2Þ inside the input range (that is, the ASR).
Then, four continuous NN (CNN) queries [29], one for each
side of the ASR, retrieve the remaining candidates.
Consider, for instance, the CNN query for the bottom side
se. The initial candidates split se into two intervals—ss1 and
s1e—where s1 is the point where the perpendicular bisector
of p1p2 intersects se. Currently, the NN of every point in ss1
is p1, whereas the NN of every point in s1e is p2. The three
vicinity circles in Fig. 4a are centered at s, s1, and e, and their
radii equal the distances between s and p1, s1 and p1 (or p2),
and e and p2, respectively. The only data points that can be
closer to se (than p1 and p2) must fall inside some vicinity
circle.

Continuing the example, p3 falls inside the last two
vicinity circles and updates the result, as shown in Fig. 4b.
Specifically, s01 is the point where the perpendicular bisector
of p1p3 intersects se. p1 becomes the NN of every point in

ss01, and p3 is the NN of every point in s01e. Note that the
vicinity circles shrink as new data points are discovered.
The process terminates when no more points are found
within the vicinity circles. It can be shown [17] that four
CNN queries for the four sides of the ASR find all candidate
objects. A similar technique (also for rectangular ranges) is
presented for Casper in [23]. In Section 4, we develop a
method that is capable of processing circular ranges. Next,
we proceed with cloaking techniques at the anonymizer.

3 THE ANONYMIZER

Section 3.1 presents the basic assumptions and goals of our
techniques. Sections 3.2 and 3.3 propose two novel cloaking
techniques, NNC and HC, respectively.

3.1 Assumptions and Goals of Spatial
Anonymization

The anonymizer is a trusted server, which collects the
current location of users and anonymizes their queries.
Each query has a required degree of anonymity K, which
ranges between 1 (no privacy requirements) and the user
cardinality (maximum privacy). We assume that an attacker
has complete knowledge of 1) all the ASRs ever received at
the LBS, 2) the cloaking algorithm used by the anonymizer,
and 3) the locations of all users. The first assumption states
that either the LBS is not trusted (for example, a commercial
service that collects unauthorized information about its
clients for unsolicited advertisements), or the communica-
tion channel between the anonymizer and the LBS is not
secure. The second assumption is common in the security
literature, since the data privacy algorithms are usually
public.

The third assumption is motivated by the fact that users
may often (or always) issue queries from the same locations
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Fig. 4. Example of CNN search. (a) Before the discovery of p3. (b) After

the discovery of p3.



(at home or in the office), which may be easily identified
through public databases, telephone directories, and so
forth. Furthermore, they may reveal their locations by
issuing queries without privacy requirements. In scenarios
with highly mobile users, the attacker may not be able to
learn exact user locations. However, one can argue that in
these cases, spatial K-anonymity is not important because
1) the user IDs are removed by the anonymizer anyway and
2) a query at a random position does not necessarily reveal
information about the identity of the corresponding user.
However, in practice, a determined attacker may be able to
acquire (through triangulation, public databases, physical
observation, and so forth) the locations of at least a few
users in the vicinity of the targeted victim.

Similar to existing work on LBS query privacy [10], [15],
[23], we focus on snapshot queries, where the attacker uses
current data, but not historical information, about move-
ment and behavior patterns of particular clients (for
example, a user who is often asking a particular query at
a certain location or time). This assumption is reasonable in
practice because if a client obtains the items of interest (for
example, the closest restaurant), it is unlikely to ask the
same query from the same location again in the future. We
also assume that the attacker does not have a priori
knowledge of the user query frequencies (that is, a query
may originate in any user with equal probability). Further-
more, the value of K is not subject to attacks, since it is
transferred from the client to the anonymizer through a
secure channel.

Given a query, the anonymizer removes the user ID,
applies cloaking to hide the user’s location through an ASR,
and forwards the ASR to the LBS. The cloaking algorithm is
said to preserve spatial K-anonymity if the probability of
the attacker pinpointing the query source under the above
assumptions does not exceed 1=K.

Note that simply generating an ASR that includes
K users is not sufficient for spatial K-anonymity. Consider,
for instance, a naive algorithm, called Center Cloak (CC) in
the sequel, which, given a query from U , finds his
K � 1 closest users and sets the ASR as the MBR or
minimum bounding circle (MBC) that encloses them. In
fact, a similar technique is proposed in [10] for anonymiza-
tion in peer-to-peer systems; that is, the K-ASR contains the
query-issuing peer and its K � 1 nearest nodes. CC is likely
to disclose the location of U under the center-of-ASR attack.
Specifically, let indexU be the position of U in the sequence
of users enclosed by the K-ASR, sorted in ascending order
of their distance from the center of theK-ASR. For example,
if indexU ¼ 1, then U is the closest user to the center. The
center-of-ASR attack is successful if P ½indexU ¼ 1� > 1=K,
that is, if the probability of U being the closest user to the
center exceeds 1=K.

Fig. 5 shows the distribution of the positions of U inside
an MBR enclosing its nine NNs (for details of the experi-
mental setting, see Section 5). In most cases, U is close to the
center of the 10-ASR (that is, P ½indexU ¼ 1� > 1=10). Hence,
an attacker with knowledge of the cloaking algorithm
(Assumption 2) may easily pinpoint U as the query source.
Note that, since the MBR may enclose more than 10 users, it
is possible to get P ½indexU ¼ i� > 0 for i > 10. The dashed

line in the graph corresponds to the “flat” index distribution
obtained by an ideal anonymization technique, which would
always generate 10-ASRs with exactly 10 users.

In addition to the preservation of spatial K-anonymity,
we define the following objectives of cloaking:

1. The generated ASR should be as small as possible.
2. The cloaking algorithm should not compromise

the QoS.
3. The ASR should not reveal the exact location of any

user.

Goal 1 is induced by the fact that a large ASR incurs higher
processing overhead (at the LBS) and network cost (for
transferring a large number of candidate results from the
LBS to the anonymizer). In real-world services, users may
be charged, depending on the overhead that the anonymi-
zation requirements impose on the system. Note that as
long as the anonymity requirements of the user are
satisfied, the size of the ASR is irrelevant in terms of
K-anonymity. Goal 2 states that systems that delay or reject
service requests, such as Clique Cloak [11], are unacceptable.
In general, since temporal cloaking compromises QoS, we
focus our attention on spatial cloaking. Goal 3 ensures that
the anonymizer does not help the attacker obtain the
locations of users through the cloaking algorithm (although,
as discussed before, he may obtain them through other
means). The disclosure of exact locations by a service is
undesirable to most users (independent of their queries)
and, in some cases, forbidden by law. As an example,
consider that the anonymizer picks K � 1 random users
and sends K independent queries (including the real one)
to the LBS. This method achieves spatial K-anonymity but
reveals the exact locations of K users. Furthermore, it has
several efficiency problems: 1) depending on the value ofK,
a potentially large number of locations are transmitted to
the LBS and 2) the LBS has to process K independent
queries and send back all their results.

Let U be the user issuing a query. The proposed cloaking
algorithms first generate an anonymizing set (AS) that
contains U and at least K � 1 users in his vicinity. The
ASR is an area that encloses all users in AS. Although the
ASR can have arbitrary shape, we use MBRs or MBCs
because they incur small network overhead (when trans-
mitted to the LBS) and facilitate query processing. Note that
in addition to AS, the ASR may enclose some additional
users that fall in the corresponding MBR or MBC.
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3.2 Nearest Neighbor Cloak (NNC)

NNC is a randomized variant of CC and is not vulnerable to
center-of-ASR attacks. Given a query from U , NNC first
determines the set S0 containing U and his K � 1 nearest
users. Then, it selects a random user Ui from S0 (the
probability of selecting the initial user U is 1=K) and
computes the set S1, which includes Ui and his K � 1 NNs.
Finally, NNC obtains S2 ¼ S1 [ U ; that is, S2 corresponds to
the AS. This step is essential, since U is not necessarily
among the NNs of Ui. The K-ASR is the MBR or MBC
enclosing all users in S2.

Fig. 6 shows an example of NNC, where U1 issues a
query, with K ¼ 3. The two NNs of U1 are U2 and U3, and
S0 ¼ fU1; U2; U3g. NNC randomly chooses U3 and issues a
2-NN query, forming S1 ¼ fU3; U4; U5g. The 3-ASR is the
MBR enclosing S2 ¼ fU1; U3; U4; U5g. NNC can be used with
variable values ofK. It is not vulnerable to the center-of-ASR
attack, since the probability of U being near the center of the
K-ASR is at most 1=K (due to the random choice).
Furthermore, as we show in the experimental evaluation,
the ASR is much smaller than that of IC and Casper.

However, NNC, as well as IC and Casper, may compro-
mise location anonymity in the presence of outliers.
Consider that in Fig. 6, an adversary knows the locations
of the users and the value of K. Then, he can be sure that
the query originated in U1 because if it were issued by any
other user U3, U4, or U5 in the 3-ASR, the ASR would not
contain U1. For IC and Casper, we use the example in Fig. 2,
assuming that K ¼ 2. If a query originates in U1, U2, or U3,
the 2-ASR of IC is quadrant hð0; 2Þ; ð2; 4Þi. Similarly, the
2-ASR of Casper is the concatenation of two sibling
quadrants at level 2 (for example, hð0; 2Þ; ð1; 3Þi and
hð1; 2Þ; ð2; 3Þi). On the other hand, if a query originates in
U4, the 2-ASR is the entire data space hð0; 0Þ; ð4; 4Þi) for both
IC and Casper. Thus, an attacker can identify U4 for all 2-
ASRs that cover the entire data space.

For illustration purposes, in the above examples, we
assumed that the attacker knows K, although, as discussed
in Section 3.1, K is not subject to attacks. Nevertheless, even
for variable and unknown K, the presence of outliers may
compromise spatial anonymity. We demonstrate the pro-
blem for IC and Casper in Fig. 7. There is a single user U1 in
quadrant hð0; 0Þ; ð1; 1Þi, and N � 1 users in hð1; 1Þ; ð2; 2Þi,
where N is the user cardinality. Quadrant hð1; 1Þ; ð2; 2Þimay
be subdivided further, but this is not important for our
discussion. Each user has equal probability to issue a query,
and the degree of anonymity required by different queries
distributes uniformly in the range ½1; N�. The term event

signifies the issuance of a query with anonymity degree K
at a random user U . Then, an ASR covering the entire data
space is generated by 1) a query originating in U1, and 2 �
K � N (that is, N � 1 events) or 2) a query originating from
another user, and K ¼ N (that is, N � 1 events). Thus, if the
attacker detects such an ASR and has knowledge of the user
distribution (Assumption 3 in Section 3.1), then he con-
cludes that it originated in U1, with probability 1/2. Thus,
the spatial anonymity of U1 is breached for all valuesK > 2.

In general, following a similar analysis, it can be shown
that if the two quadrants contain a different number of
users, the location anonymity is compromised (for all
values of K exceeding a threshold) in the quadrant
containing a smaller number. Analogous examples can be
constructed for NNC. Next, we propose an algorithm that
avoids this problem.

3.3 Hilbert Cloak (HC)

HC satisfies reciprocity, which is an important property that
is sufficient for spatial K-anonymity.

Definition 1 (Reciprocity). Consider a user U issuing a query
with anonymity degree K, associated AS, and ASR K-ASR.
AS satisfies the reciprocity property if 1) it contains U and at
least K � 1 additional users and 2) every user in AS also
generates the same AS for the given K. The second condition
implies that each user in AS lies in the K-ASRs of all other
users in AS.

In general, IC, Casper, and NNC do not satisfy reciprocity,
as they violate Condition 2. For instance, in the example in
Fig. 7, although users U2 . . .UN lie in the K-ASR of U1, U1 is
not in the K-ASR of U2 . . .UN for 2 � K < N . Similarly, for
NNC, although in Fig. 6, U3 . . .U5 are in the 3-ASR of U1, U1

is not in the 3-ASR of U3 . . .U5.

Theorem 1. A spatial cloaking algorithm guarantees spatial
K-anonymity if every AS satisfies the reciprocity property.

Proof. Since every AS satisfies reciprocity, a K-ASR may
have originated in every user in the corresponding AS
with equal probability 1=jASj, where jASj is the
cardinality of AS. Because jASj � K, the probability of
identifying the query issuer does not exceed 1=K. tu

An optimal cloaking algorithm would partition the user
population into ASs that yield minimal ASRs and obey the
reciprocity property. However, calculating such an optimal
partitioning is NP-hard [21] and would require a fixedK by
all queries. HC overcomes these problems by utilizing the
Hilbert space-filling curve [22] to generate small (but not
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Fig. 6. Example of NNC. Fig. 7. Location anonymity compromise in the presence of outliers.



necessarily optimal) ASRs for variable values of K. The
Hilbert space-filling curve transforms the 2D coordinates of
each user into a 1D value HðUÞ. Fig. 8 illustrates the Hilbert
curves for a 2D space by using a 4 � 4 and 8 � 8 space
partitioning. With high probability [24], if two points are in
close proximity in the 2D space, they will also be close in the
1D transformation. A major benefit of Hilbert (and similar)
curves is that they permit the indexing of multidimensional
objects through 1D structures (for example, B-trees).

Given a query from user U with anonymity require-
ment K, HC sorts the Hilbert values and splits them into
K-buckets. Each K-bucket has exactly K users, except for
the last one, which may contain up to 2 �K � 1 users. Let
HðUÞ be the Hilbert value of U , and rankU be the
position of HðUÞ in the sorted sequence of all locations.
HC identifies the K-bucket containing rankU . The users in
that K-bucket constitute the corresponding AS. Fig. 9
illustrates an example, where the user IDs indicate their
Hilbert order. For K ¼ 3, the users are grouped into three
buckets (the last one contains four users). When any of
U1, U2, or U3 issues a query, HC returns the first bucket
(shown shaded) as the AS, and the MBR (or MBC) of that
bucket becomes the 3-ASR.

HC is reciprocal because all users in the same bucket
share the same K-ASR; therefore, it guarantees spatial
anonymity according to Theorem 1. Furthermore, it can
deal with variable values of K by not physically storing the
K-buckets. Instead, it maintains a balanced binary sorting
tree, which indexes the Hilbert values. When a user U
initiates a query with anonymity degree K, HC performs a
search for HðUÞ in the index and computes rankU . From
rankU , we calculate the start and end positions defining the
K-bucket that includes HðUÞ as follows:

start ¼ rankU � ðrankU � 1Þ mod K; end ¼ startþK � 1:

The complexity of the in-order tree traversal is OðNÞ,
where N is the number of indexed users. To compute rankU
efficiently, we use an aggregate tree [28], where each node w
stores the number wcount of nodes in its left subtree
(including itself). Using this data structure, rankU is
calculated in OðlogNÞ as follows: We initialize rankU to
zero and perform a normal lookup for HðUÞ. For every
node w that we visit, we add wcount to rankU only if we
follow a right branch. The complexity of maintaining the
aggregate information is OðlogNÞ because changes are
propagated from the leaves to the root. Since the complexity
of constructing the K-ASR is OðlogN þKÞ, whereas search,
insert, and delete cost OðlogNÞ, the data structure is

scalable. Therefore, HC is applicable to a large number of
mobile users who update their location frequently and have
varying requirements for the degree of anonymity. Note
that, although our description assumes a main-memory
index, the technique can be easily extended to secondary
memory by using Bþ-trees.

4 LOCATION-BASED SERVICE (LBS)

The LBS receives the query from the anonymizer, processes
it, and sends the results back to the anonymizer. In our
implementation, the data in the LBS are indexed by an
R�-Tree [5]. Our methods, however, are independent of the
index structure. We support two types of queries:

1. Range queries. The LBS receives the query range,
which is either an axis-parallel rectangle R or a
circle C. The processing is straightforward: the R-tree
is traversed from the root to the leaves, and any
object inside R (or C) is returned.

2. kNN queries. This case is more complex, since the LBS
must find the k NNs of the entire range. For
rectangular ranges, we adopt the range NN
ðRkNNÞ algorithm [17] (see Section 2.3 for details).
The rest of this section describes our CkNN algo-
rithm, which computes the kNNs of circular ranges.

4.1 CkNN—Circular Range kNN

Similar to rectangular ranges [17], the set of kNNs of a
circular range C also consists of two subsets of objects: 1) all
the objects inside C and 2) the kNNs of the circumference of
C. The objects in 1) are retrieved by a range query. In the rest
of this section, we present the novel CkNN-Circ algorithm,
which computes the kNNs of the circumference of C.
Intuitively, CkNN-Circ is similar to CNN (see Section 2.3).
However, some of the properties of 1D shapes, which are
used in CNN (for example, continuity by the definition of
[29]), do not hold for 2D shapes, rendering the problem
more complex.

Conceptually, CkNN-Circ partitions the circumference of
C into disjoint arcs and associates to each arc the data objects
nearest to it. Consider the example in Fig. 10, where p1, p2,
and p3 are the data objects. Let s0 and s1 be the intersection
points of the perpendicular bisector of p1p2 (denoted by
? p1p2), with C; that is, jp1s0j ¼ js0p2j and jp1s1j ¼ js1p2j.
Assuming that the center c of C is the origin of the
coordinate system, the polar coordinates of s0 are ðr; ŝ0Þ,
where r is the radius of C, and ŝ0 is the (counterclockwise)
angle between the x-axis and the vector ~cs0. Similarly, the
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Fig. 8. Hilbert curve. (a) 4 � 4. (b) 8 � 8.
Fig. 9. Example of Hilbert Cloak.



polar coordinates of s1 are ðr; ŝ1Þ. The NN of every point in
the arc ½ŝ0; ŝ1� is p1. We denote this as ½ŝ0; ŝ1� ! p1. Likewise,
½ŝ1; ŝ0� ! p2, since any point in the arc ½ŝ1; ŝ0� is closer to p2
than to any other object. Therefore, the set of NNs of C is
fp1; p2g. Note that p3 is not in this set, even though it is
closer to C than p2, because p1 is closer than p3 to any point
on C. We say that p1 covers p3.

Let D ¼ fp1; p2; . . . ; png be the set of all data objects.
CkNN-Circmaintains a list SL of mappings ½a; b� ! pi, where
a and b are angles defining an arc on C, 0 � a < b � 2�, and
pi 2 D is the object that is closest to every point of arc ½a; b�
than any other object pj 2 D. The CkNN-Circ pseudocode is
shown in Fig. 13.

In the example in Fig. 11a, let p1 2 D be the first object
encountered by the algorithm. Since SL is initially empty,
p1 is closest to the entire C. Without loss of generality, we
pick two points s0; s

0
0 2 C, where ŝ0 ¼ 0, and ŝ00 ¼ 2� (that

is, they are the same point), and insert the mapping
½ŝ0; ŝ00� ! p1 into SL (line 2 of the pseudocode). For each
subsequent point p 2 D, the algorithm traverses SL (line 4)
and examines all existing mappings ½a; b� ! q. There are
three possible cases:

Case 1. ? pq \ C ¼ ; or ? pq is tangent to C (lines 5 and
6). This case is exemplified5 in Fig. 11b. The only existing
mapping is ½ŝ0; ŝ00� ! p1, and p2 is processed next. Any point
on the right-hand side of ? p1p2 is closer to p1. Therefore,
the entire C is closer to p1 than to p2. Since the mapping to p1
already exists, there is no change in SL. Furthermore, even
if there were more mappings inside SL, it would not be
necessary to compare with p2, since p1 covers p2. On the
other hand, if p2 was at the right-hand side (and p1 on the
left), then p2 would be closer to C than p1. In this case, the
algorithm would remove the ½ŝ0; ŝ00� ! p1 mapping from SL
and add a new one ½ŝ0; ŝ00� ! p2 (line 6).

Case 2. ? pq \ C ¼ fs0; s1g, and either ŝ0 2 ½a; b� or ŝ1 2
½a; b� (lines 12–14). This case is illustrated in Fig. 12a. Both p1
and p2 have already been processed, and there are two

mappings in SL : ½ŝ1; ŝ01� ! p1 and ½ŝ01; ŝ1� ! p2. Let p3 be the

next object to be processed. p3 is compared against the

existing mappings. For the first one (that is, ½ŝ1; ŝ01� ! p1),

? p1p3 intersects C at s2 and s02. Note that ŝ02 62 ½ŝ1; ŝ01�, so it is

not considered further. On the other hand, ŝ2 2 ½ŝ1; ŝ01�, and
p3 is closer to s1 than p1. Therefore (line 13), the arc is split

into two parts—½ŝ1; ŝ2� and ½ŝ2; ŝ01�—which are assigned to p3
and p1, respectively. Similarly, for the second mapping (that

is, ½ŝ01; ŝ1� ! p2),? p2p3 intersects C at s3; s
0
3. Only ŝ3 2 ½ŝ01; ŝ1�,

so the arc is split into ½ŝ01; ŝ3� and ½ŝ3; ŝ1�, which are assigned

to p2 and p3, respectively. After updating,

SL ¼ f½ŝ2; ŝ01� ! p1; ½ŝ01; ŝ3� ! p2; ½ŝ3; ŝ1� ! p3; ½ŝ1; ŝ2� ! p3g:
The last two mappings can be combined (that is,
½ŝ3; ŝ2� ! p3), since they are consecutive and are mapped
to the same object.

Case 3.? pq \ C ¼ fs0; s1g, and both ŝ0; ŝ1 2 ½a; b� (lines 9–
11). This case is illustrated in Fig. 12b. Again, both p1 and p2
have already been processed, and

SL ¼ f½ŝ01; ŝ1� ! p1; ½ŝ1; ŝ01� ! p2g:
Next, p3 is compared to the first mapping of SL. Note that
? p1p3 intersects C at s02, s2, and both ŝ02; ŝ2 2 ½ŝ01; ŝ1�.
Therefore (line 10), the arc is split into three parts, and
since p3 is closer to s01 than p1, the corresponding mappings
are ½ŝ01; ŝ02� ! p3; ½ŝ02; ŝ2� ! p1; ½ŝ2; ŝ1� ! p3. Similarly, after
considering ? p2p3, ½ŝ1; ŝ01� is also split into three parts.
Finally, after combining the consecutive mappings,
SL ¼ f½ŝ02; ŝ2� ! p1; ½ŝ2; ŝ3� ! p3; ½ŝ3; ŝ03� ! p2; ½ŝ03; ŝ02� ! p3g.

For simplicity, the pseudocode in Fig. 13 computes only
the 1-NNs. To compute the kNNs, instead of a single object,
the arcs in our implementation are mapped to an ordered
list of k objects: ½a; b� ! ðp1; . . . ; pkÞ, where p1 is the NN of
arc ½a; b�, p2 is the second NN of arc ½a; b�, and so forth. The
procedure is called for each position i ð1 � i � kÞ of the
ordered list. In the ith call, if an object p 2 D already exists
in position j ð1 � j � i� 1Þ, then p is not considered for that
mapping. Also, if an arc is split, the objects in positions
1 . . . i� 1 (that is, the i� 1 NNs found already) are not
altered. The worst-case complexity of CkNN is OðjDjkÞ, since
any object may cause an arc split. In practice, however, the
algorithm is faster because the objects that are far away
from C do not cause splits.

4.2 R-Trees and CkNN

In order to use the CkNN algorithm with an R-tree, we
employ a branch-and-bound heuristic. Starting from the
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5. For simplicity, all objects are shown outside C. However, the algorithm
also works for objects inside C.

Fig. 10. The 1-NNs of C are p1 and p2.

Fig. 11. CkNN example: The perpendicular bisector does not intersect C.

Fig. 12. The perpendicular bisector intersects C.



root, the R-tree is traversed either in Depth-First or in Best-
First [29] manner. When a leaf entry (that is, object) p is
encountered, the CkNN algorithm is used for checking
whether p is closer to C than any of the objects in the current
mappings (that is, p is a qualifying object) and updates SL
accordingly. For an intermediate entry E, we avoid visiting
its subtree if it is impossible to contain any qualifying object.

Fig. 14 presents an example, where p1 and p2 are the

current 1-NNs of C. Next, an entry E from an intermediate
node of the R-tree is encountered. We observe the
following:

Lemma 1. Let MBRE be an axis-parallel MBR and let st be the
side that is closest to circle C. If st does not contain any of the
kNNs of C, then MBRE cannot contain any kNN.

The proof is straightforward, since any point in the MBR
will be further away from C than the closest point on st. In
our example, the right side st of E is closer to C. Assume

that there is a point d on st such that the perpendicular
bisector ? dp1 is tangent to C and let e 	? dp1 \ C. Then, we
get the following system of equations6:

jcej ¼ r;
jp1ej ¼ jdej;
jp1ej2 � jp1f j2 ¼ jcf j2 � r2:

8

<

:

ð1Þ

The first equation is derived from the fact that e 2 C,
whereas the second one is because the distance from any

point on ? dp1 to d and p1 is equal. The third equation

results from the application of the Pythagorean theorem on

the orthogonal triangles p1fe and fec, which have a

common side ef . After substituting the points with their

Cartesian coordinates, we get the following system (note

that xf ¼ xdþxp1
2

, and yf ¼ ydþyp1
2

, since f is the middle of dp1):

ðxe � xcÞ2 þ ðye � ycÞ2 ¼ r2;
ðxd � xeÞ2 þ ðyd � yeÞ2 ¼ ðxp1 � xeÞ2 þ ðyp1 � yeÞ2;
ðxp1 � xeÞ2 þ ðyp1 � yeÞ2 � ðxd�xp1Þ2þðyd�yp1Þ2

4
¼

¼ xdþxp1
2

� xc

� �2þ ydþyp1
2

� yc
� �2�r2:

8

>

>

>

<

>

>

>

:

There are three equations and three unknowns: xe, ye,

and yd. If there is a real solution to this system, under the

condition that ðxd; ydÞ 2 st, then there may be a qualifying

object inside the subtree of E. Else, all objects in E are

further away from C than the current objects in SL, so the

subtree under E can be pruned.

Solving this system, however, is slow (in the order of

hundreds of milliseconds in an average computer). Given

that an entry E must be checked against many objects, the

runtime is prohibitively long. Therefore, in our implementa-

tion, we use the RkNN algorithm to traverse the R-tree and

employ the CkNN algorithm only for the objects at the leaf

level. Our strategy is based on the following observation:

Lemma 2. Let C be a circle, MER the maximum enclosed axis-
parallel rectangle of C, and S the set of kNNs of MER’s
perimeter. Let pi be an object such that pi is inside MER, and
pi 62 S. Then, pi cannot be a kNN for any point of C.

Proof. Assume that the lemma does not hold. Fig. 15 shows
an example, where p2 is inside MER, and p2 62 S.
Assume that p2 is the NN of point e 2 C. Let d be the
point where the line segment p2e intersects the perimeter
of MER, and p1 be the object that is the NN of d. It
follows from our hypothesis that jp2ej < jp1ej. Using the
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6. If a different side of E is closer to C, the equations are modified
accordingly.

Fig. 13. Find the 1-NNs of a circular range C.

Fig. 14. Check if E may contain qualifying objects.

Fig. 15. The MBR and the MER of C.



triangular inequality, we get jp2dj þ jdej < jp1dj þ
jdej ) jp2dj < jp1dj, which is a contradiction, since p1 is
the NN of d. Therefore, the lemma holds. tu

We construct the MBR7 and the Maximum Enclosed
Rectangle (MER) of C (the side length of MER is

ffiffiffi

2
p

r).
Conceptually, our implementation works in three steps:

1. Use theRkNN algorithm to find the set S1 of kNNs of
MBR (including all the objects inside MBR). Recall
that S1 is a superset of the kNNs of any point inside
MBR; therefore, it contains all the kNNs of C.

2. Use CNN (see Section 2.3) to find the set S2 of kNNs
of only the perimeter of MER. Use Lemma 2 and S2

to prune objects from S1.
3. Call the CkNN algorithm with the objects remaining

in S1.

In practice, these steps can be combined. In a single
traversal of the R-tree, steps 1 and 2 can be used at the
intermediate levels to prune the tree, and step 3 is applied
on the leaf-level objects.

5 EXPERIMENTAL EVALUATION

This section evaluates the proposed anonymization and
query processing algorithms. We implemented C++ pro-
totypes for both the anonymizer and the LBS. All
experiments were executed on an Intel Xeon 2.8-GHz
machine with 2.5 Gbytes of RAM and Linux OS. Our
workload for user positions and landmarks/points of
interest consists of the North America (NA) data set [30],
which contains 569,000 locations on the North American
continent (Fig. 16). Performance is measured in terms of
CPU time, I/O time, and communication cost. At the
anonymizer, we employed main-memory structures; there-
fore, we measured only the CPU time. At the LBS, we
used an R�-tree and measured the total time (that is, the
I/O and CPU time). In all experiments, we maintained a
cache with size equal to 10 percent of the corresponding
R�-tree. The communication cost was measured in terms of
the number of candidates sent from the LBS back to the
anonymizer.

In the following, Section 5.1 focuses on cloaking
algorithms at the anonymizer, whereas Section 5.2 evaluates
query processing at the LBS.

5.1 Anonymizer Evaluation

We compare the proposed NNC and HC against Casper and

IC. The first experiment measures the area of rectangular

K-ASRs. Recall that wewish tominimize the ASR area, since

it affects the processing time at the LBS and the commu-

nication cost between the LBS and the anonymizer. First, we

fix the number of users N ¼ 50; 000 and vary the degree of

anonymity K. The K-ASR area is expressed as a percentage

of the entire data space. We generated 1,000 queries

originating at random users. Fig. 17a shows the average

area per query. Clearly, IC is the worst algorithm, whereas

NNC is the best. HC and Casper exhibit similar behavior. All

algorithms scale linearly with K in terms of ASR area.

Fig. 17b shows the K-ASR area for K ¼ 80 and varying N .

Since the extent of the data space remains constant, an

increase in user population translates to higher user density,

hence a reduced K-ASR size for all methods. The relative

performance among the algorithms remains the same.

Observe that HC and Casper outperform IC and generate

ASRs with roughly twice the area of NNC.
Fig. 18 shows the average ASR generation time (in

milliseconds) for varying K and N . HC, IC, and Casper

behave similarly. NNC, on the other hand, has a signifi-

cantly larger generation time due to the more costly NN

search. Nevertheless, we will show in the following that

NNC is the best in terms of overhead at the LBS.
So far, we focused on rectangular K-ASRs. However,

depending on the user distribution, circular K-ASRs may

have smaller size. Here, we adopt a simple optimization.

First, we identify the set of users that belong to a K-ASR.

Then, we calculate the MBR R and the minimum enclosing

circle C of the K-ASR and select the shape with the smallest

area. We call this method SA. NNC is more suitable to be

combined with SA, since the NN search tends to identify

circular clusters of users. Figs. 19a and 19b compare the

rectangle-only approach against the SA optimization for

varying K and N , respectively. SA manages to reduce the

K-ASR area by up to 15 percent.
Finally, we measure the anonymity strength of the above-

mentioned algorithms against the center-of-ASR attack.8 We

consider a workload of 1,000 queries, originating at a set of

random users, with K ¼ 50. Fig. 20 shows the probability

P ½indexU ¼ i� (the experiment is similar to that in Sec-

tion 3.1). Recall that indexU ¼ 1 means that user U is the

closest to the center of the K-ASR. Furthermore, the dashed

line corresponds to the distribution of indexU for the ideal

anonymization technique. All studied algorithms preserve

privacy in the case of the center-of-ASR attack.NNC is close to

the ideal distribution, and there are few cases where the

K-ASR encloses more than K users, which explains the

relatively small ASR size observed in the previous experi-

ments. HC and Casper exhibit similar behavior but include a

larger number of redundant users inside the K-ASR, as

compared to NNC. This is why P ½indexU ¼ i� > 0 for i > K.

However, they are both better than IC.
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Fig. 16. North America (NA) data set.

7. For a set of users U1...n, the MBR of C is not the same as the
corresponding anonymizing rectangle R.

8. Although we formally proved that HC guarantees location anonymity,
we include this experiment for illustration purposes.



5.2 Location-Based Service Evaluation

For this experiment, we generate 1,000 queries originating
at random users. The corresponding K-ASRs are sent to the
LBS, and the queries are executed against the entire NA data
set, which is indexed by an R�-tree. For all K-ASR

generation techniques, we compare the average processing
time (that is, CPU plus I/O time) per query and the size of
the candidate set. The latter is a superset of the actual result,
and it reflects the communication cost between the LBS and
the anonymizer. First, we focus on kNN queries. Fig. 21

shows the performance for varying number of NNs k. NNC

generates a significantly lower number of candidates

compared to the other techniques. This is expected, since

the sizes of the corresponding K-ASRs are also smaller. HC

and Casper generate up to 50 percent more candidates than

NNC. However, they both outperform IC by a large margin.

In terms of processing time, NNC is the fastest, with HC and

Casper considerably better than IC.
In Fig. 22, we fix the number of neighbors k ¼ 2 and vary

the degree of anonymity K. Again, NNC performs best,
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Fig. 17. Area of rectangular K-ASR. (a) Varying K, N ¼ 50; 000. (b) Varying N, K ¼ 80.

Fig. 18. K-ASR generation time. (a) Varying K, N ¼ 50; 000. (b) Varying N, K ¼ 80.

Fig. 19. Rectangular versus SA K-ASR, NNC. (a) Varying K, N ¼ 50; 000. (b) Varying N, K ¼ 80.



followed by HC and Casper. The difference is more
significant for larger K values, as the average size of the
K-ASR increases. Fig. 23 shows the number of candidates
and processing time for varying N . Note that more users
lead to higher density, thus smaller K-ASRs. Consequently,
the number of candidates and the average processing time
decrease with N .

We also evaluated the performance of the four techni-
ques for range queries. The results are presented in Fig. 24
for varying K and N ¼ 50; 000. Again, we observe a
significant advantage of NNC over the other techniques,
whereas HC and Casper outperform IC in terms of both

processing cost and candidate set size. The trends for
varying N are similar.

The previous results were obtained for rectangular
K-ASRs. We also investigated the effect of the SA optimiza-
tion on query processing. For a given K-ASR, if SA
generates a circular range C, we employ CkNN to execute
the corresponding kNN query. For our workload, SA
generated circular ranges for around 45 percent of the
K-ASRs when K was small, and up to 90 percent for large
values ofK. Fig. 25 compares SA against the rectangles-only
approach for k ¼ 2 neighbors and varyingK. SA reduces the
number of candidates by up to 18 percent, as compared to
the rectangular K-ASR. The trade-off is the increased
processing time. The same relative performance is observed
in Fig. 26, where we vary N .

5.3 Discussion

The experimental evaluation verifies the superiority of HC
and NNC, as compared to the existing approaches. Our
HC algorithm provides privacy guarantees under all user
and query distributions, and its overhead in terms of
ASR generation time, query processing time, and commu-
nication cost is similar to Casper, which is the most recent
and most efficient technique. On the other hand, NNC
clearly outperforms Casper in terms of overhead at the LBS
while offering similar anonymity strength.

The LBS is likely to maintain huge volumes of data and
disk-based data structures, whereas the anonymizer
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Fig. 20. Center-of-ASR attack, K ¼ 50.

Fig. 22. kNN queries, varying K, k ¼ 2 neighbors, and N ¼ 50; 000. (a) Number of candidates. (b) Average processing time (in seconds).

Fig. 21. kNN queries, varying number of neighbors, N ¼ 50; 000, and K ¼ 80. (a) Number of candidates. (b) Average processing time (in seconds).



typically uses memory-based data structures. For this
reason, the query overhead at the LBS is considerably
larger than at the anonymizer (observe that time is
measured in milliseconds in Fig. 18 instead of seconds,
as in Fig. 21b). Under these circumstances, the reduced
LBS processing cost offers NNC an important performance
advantage, despite its increased K-ASR generation time.

The choice between HC and NNC involves a clear trade-
off between privacy guarantees on one hand and processing
overhead on the other. If provable anonymity guarantees
are required, HC is the only option. Nevertheless, NNC also

achieves strong anonymity for most of the cases and may be
acceptable for applications where outliers do not constitute
an anonymity threat (for example, very frequent user
movement), and efficiency is crucial.

Finally, there is a trade-off between rectangular-only
K-ASRs and the SA optimization. The cost of CkNN at the
LBS is higher than RkNN. However, CkNN reduces the
number of candidates. Therefore, CkNN is preferable if the
communication cost is more important than the processing
cost at the LBS. In practice, this happens if a single
anonymizer sends queries to several LBSs. In this case,
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Fig. 23. kNN queries, varying N , k ¼ 2 neighbors, and K ¼ 80. (a) Number of candidates. (b) Average processing time (in seconds).

Fig. 24. Range queries, N ¼ 50; 000, and varying K. (a) Number of candidates. (b) Average processing time (in seconds).

Fig. 25. NNC, rectangular versus SA K-ASR, k ¼ 2 neighbors, N ¼ 50; 000, and varying K. (a) Number of candidates. (b) Average processing time

(in seconds).



the bandwidth of the single anonymizer is shared among all
connections. Thus, it is important to minimize the commu-
nication cost, whereas the processing cost is distributed
among the LBSs.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we have studied the preservation of query
anonymity in LBSs. The main idea is to conceal the user
coordinates by replacing them with a spatial region (either a
circle or a rectangle). This region covers the query initiator
and at least K � 1 other users. We proposed methods that
construct appropriate anonymizing regions and investi-
gated their trade-offs. We also designed algorithms that run
at untrustworthy LBSs and compute exact answers to
anonymized range and NN queries. Our work is the first
to provide a formal guarantee for the anonymization
strength. Moreover, the experimental evaluation showed
that our methods outperform the existing state of the art.

Our initial findings reveal interesting directions for
future research. A challenging problem is to ensure
anonymity for users issuing continuous spatial queries.
Intuitively, preserving anonymity is more difficult in this
case: Asking the same query from successive locations may
disclose the identity of the querying user, who will be
included in all ASRs. Our framework can be extended for
processing continuous queries as follows: A snapshot
technique (for example, NNC or HC) is first employed to
determine the set AS of users included in the ASR for the
initial snapshot of the query. This AS is “frozen” for the rest
of the query lifetime. The MBR of AS is then used as the
ASR at subsequent snapshots. However, as users move in
different directions, such an approach may yield large
ASRs. Another possibility would be to employ an entirely
different framework based on Private Information Retrieval
(PIR) [9]. Existing PIR methods, however, are impractical
due to huge network cost. Continuous queries involve
several complex issues and constitute a promising topic for
further work.

Another interesting aspect is preventing “background
knowledge” attacks when the attacker has additional
information about the preferences of certain users. For
instance, if Bob, who is a rugby fan, asks for the location of

the closest rugby club, and the associated ASR contains only

female users in addition to Bob, the attacker may infer Bob

as a query source with higher probability. A solution to this

problem would be to group users into partitions according

to their areas of interest (for example, users who query

frequently about restaurants, night clubs, and so forth).

Then, when a query is issued, the corresponding ASR is

generated with users from the same interest group as the

query source such that each user in the ASR has an equally

likely probability of having asked the query.
Finally, it would be interesting to investigate methods

that do not require an anonymizer. Assuming that the users

trust each other, the query initiators could collaborate with

peers in their vicinity to compute their anonymizing region.
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