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Abstract. Fueled by aging populations and continued environmental contamination, the global burden of Parkinson’s disease
(PD) is increasing. The disease, or more appropriately diseases, have multiple environmental and genetic influences but
no approved disease modifying therapy. Additionally, efforts to prevent this debilitating disease have been limited. As
numerous environmental contaminants (e.g., pesticides, metals, industrial chemicals) are implicated in PD, disease prevention
is possible. To reduce the burden of PD, we have compiled preclinical and clinical research priorities that highlight both
disease prediction and primary prevention. Though not exhaustive, the “PD prevention agenda” builds upon many years of
research by our colleagues and proposes next steps through the lens of modifiable risk factors. The agenda identifies ten
specific areas of further inquiry and considers the funding and policy changes that will be necessary to help prevent the
world’s fastest growing brain disease.
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PREFACE

In 1992, Charlotte Haley, a 68-year-old woman was
frustrated at the lack of scientific progress against
breast cancer. The disease had affected both her sis-
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ter and daughter, and she saw little progress. So in
her dining room in a sprawling suburb of Los Ange-
les, Haley took action. She began making small loops
out of peach-colored ribbons. She created packages
of five and included a note that read, “The National
Cancer Institute’s annual budget is $1.8 billion, only
5% goes for cancer prevention. Help us wake up leg-
islators and America by wearing this ribbon.” She
mailed them to famous women across the country
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and handed them out to less famous women in the
parking lots of grocery stores. Thus began a grass-
roots campaign to prevent the second leading cause
of cancer deaths among women [1].

Against Ms. Haley’s wishes, the peach ribbons
were commercialized by a cosmetics company,
changed to pink, and in the process, the message
about prevention was subsumed by a focus on early
diagnosis, treatment, and “survivors” [1]. Survival
indeed increased, but the incidence of breast cancer
has continued to rise [2].

We face the same situation for Parkinson’s dis-
ease. For decades, many public and private funders
have devoted their resources toward seeking a cure for
Parkinson’s disease, which has resulted in incremen-
tal therapeutic advances for those with the disease.
The Michael J. Fox Foundation alone has invested
more than a billion dollars in Parkinson’s disease
research this century [3]. However, the number of
Americans with the disease has increased 35% in the
last decade [4]. The U.S. is far from alone. The rates
of Parkinson’s disease, adjusted for age, continue to
rise in almost every part of the world [5]. We need to
stop and ask why.

THE ROLE OF THE ENVIRONMENT IN
PARKINSON’S DISEASE

Parkinson’s disease (PD), once considered rare, is
now the world’s fastest growing neurological disease
and comes at a heavy societal and economic cost [6].
The estimated number of people with PD in 1990
was 2.5 million, which more than doubled to 6.2 mil-
lion by 2015 [7]. Aging within populations alone is
expected to double that number again to 12.9 million
by 2040 [8]. Other factors (e.g., pesticides, chemi-
cals, air pollution, decreased smoking) may drive that
number even higher, as PD incidence currently out-
paces the rate of aging and is disproportionately on
the rise in newly industrialized areas of the globe [7].

In parallel, years of research focused on biology
have deciphered crucial protein functions and cellular
pathways involved in the primary PD pathology—the
degeneration of dopaminergic neurons from the sub-
stantia nigra and their axonal projections to the
striatum [9, 10]. In addition, molecular mechanisms
relating to mitochondrial function, protein accumu-
lation, or neuroinflammation show numerous critical
pathways contribute to PD-related pathology, such
as �-synuclein aggregation or lysosomal dysfunc-
tion [11]. Interest in linking genetic mutations to PD

risk has been a strong focus of PD research, leading
to the discovery of genes involved in both inherited
and idiopathic PD, such as LRRK2 [12] and gluco-
cerebrosidase (GBA) [13]. However, even the most
liberal estimates place the narrow-sense heritability
of PD around 27% [14], suggesting that PD risk is
still largely influenced by exogenous factors. These
non-genetic factors continue to be underappreciated
and understudied.

Elucidating these factors is enormously difficult.
The term “environment” encompasses any non-
endogenous factor, such as pathogenic infection, head
trauma, diet, pharmaceutical, supplement, drug use,
other physiological stressors (e.g., PTSD), and of
course, chemical toxicants that pollute our water,
air, and soil. Some are clearly evident. For exam-
ple, strong evidence shows that agricultural pesticide
applicators are at increased PD risk [15]. Oth-
ers represent a combination of insidious, variable
exposures that extend over decades, such as pesti-
cides, organic solvents [16], and metals [17], and
air pollution. The relationship between exposure and
disease is variable, implying that gene-environment
and environment-environment interactions and other
exposure dynamics contribute to disease phenotype
[18–20]. Additionally, PD is extremely complex
and still not fully understood, with a long prodro-
mal period occurring over decades when exposures
may influence phenotype and progression at mul-
tiple points within a lifespan. Because of this,
predicting environmental risk for PD is often
difficult and requires a circuitous process of evalu-
ating contaminant exposure levels, animal and cell
toxicity studies, biological markers, and epidemio-
logical research. Despite these inherent challenges,
understanding environmental contribution to PD is
critical, as it may help prevent an incurable dis-
ease. We can change much of our environment. Even
with gene-editing technology, our ability to mod-
ify human genes at a large scale remains science
fiction.

To this end, we have outlined a research agenda
to prevent PD that is anchored in the modification
of environmental factors. In doing so, we recognize
the remarkable work of our colleagues who have
established links between environmental exposures
and neurodegeneration and continue to strengthen
this evidence today. In addition, we appreciate that
no single approach is sufficient or all encompass-
ing and that multiple interdisciplinary measures
will be required to advance changes aimed at
preventing PD.
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Fig. 1. Parkinson’s disease Prevention Agenda. Preclinical and clinical research areas of focus to better characterize environmental influence
and prevent Parkinson’s disease.

AN ENVIRONMENTAL RESEARCH
AGENDA FOR PREVENTING PD

To prevent PD, our basic and clinical research
activities must expand substantially. We present 10
key areas that could help accelerate disease preven-
tion (Fig. 1).

PRE-CLINICAL AND BASIC RESEARCH:
FROM MOLECULAR BIOLOGY TO
ANIMAL MODELS

Many key contributions to our understanding of
environmental risk for PD in human populations have
originated at the lab bench. After the curious obser-
vation of parkinsonism in heroin addicts reported by
Langston and colleagues, scientists turned to the lab-
oratory to study a range of environmental toxicants
[21, 22]. The earliest exogenous toxicant models of
PD, such as MPTP in mice and primates [23], ush-
ered in a new era of pre-clinical research, providing
a platform for biological mechanisms and experi-
mental therapeutics development. Toxicant models
also served as proof-of-principal concept that exoge-
nous substances can produce selective degeneration

of dopaminergic neurons from the substantia nigra
(SN), thus generating evidence that other structurally
or biochemically similar environmental contaminants
may do the same. This was confirmed with rotenone
and paraquat treatment in rodents, which when
administered systemically, caused selective degener-
ation of dopaminergic neurons and other hallmark PD
pathology [18, 24–28]. In parallel, epidemiological
data linking rotenone or paraquat exposure to PD risk
was published, providing complementary, empirical
evidence for environmental risk related to these pesti-
cides [15, 29, 30]. Multi-pronged approaches such as
these are necessary to uncover both the risk and mech-
anisms associated with environmental factors for PD;
however, as the link with pesticides such as paraquat
remain strong, we need to expand this approach to
numerous other toxicants implicated in the disease.
In addition, a focus on improving translation of basic
research will be required, which we discuss below.

Examine environmentally relevant
concentrations and routes of exposure

In vivo toxicant models of PD historically fall
into two categories: 1) models of neurodegenera-
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Table 1
Pesticide exposure dose extrapolated from human to rodent (mouse and rat)

Risk Factor Primary Route Exposure Extrapolated Extrapolated
of Exposure Limit/Maximum Daily Dose Daily Dose

Contaminat Level in Mice in Rats

Paraquat Inhalation 0.1 mg/m3† 1.22 mg/m3 0.6 mg/m3

Drinking Water 20 ppb 245 �g/kg 123 �g/kg

†Time Weighted Average: 8-hour total weight average, particulate size dependent.
Inhalation dose calculated using the fixed allometric exponent: Xh = Xa (Ma/Mh)1−.67 without
Uncertainty Factors [47], however dosage is dependent on particulate size and duration of
exposure. Oral dose calculated using the U.S. FDA conversion guidelines, Human Equivalent
Dose = animal dose in mg/kg x (animal weight in kg / human weight in kg)0.33 [46].

tion or 2) models of exposure. The former have
been a major focus of basic PD research for the
last several decades, where the significant loss of
dopaminergic neurons from the SN and motor behav-
ioral deficits are standard outcomes. For example, the
toxin 6-hydroxydopamine (6-OHDA) causes severe
dopaminergic cell death, which is ideal for unilat-
eral lesioning of the SN or its projections to striatum
[31–34]. Similarly, differential dosing with MPTP
can cause acute dopaminergic neurodegeneration or
can be administered repeatedly to produce a progres-
sive SN lesion in rodents and non-human primates
[35–37]. These models have been useful. Surgical
treatments, such as deep brain stimulation (DBS),
were developed based on animal models of PD [38],
but this same success has not yet occurred for phar-
macological treatments.

There is also room for improvement in mod-
els of exposure. Pesticide models of PD, such as
rotenone and paraquat, emulate a relevant environ-
mental risk, but often at much higher concentrations
than encountered in environmental or even occupa-
tional settings. The reason for this is valid; paraquat or
rotenone are used as tools to model systemic exposure
that results in selective dopaminergic neurodegener-
ation or neuropathology in animals with a fraction
of a human lifespan [24, 26, 39, 40]. And remark-
ably, pesticide models recapitulate features of PD
in ways that are still poorly understood, such as
endolysosomal impairment, disruptions to vesicular
trafficking, calcium dysregulation, iron accumula-
tion, and gastrointestinal dysfunction [25, 41, 42].
However, inferring risk from exposure via rodent
models of PD is not equivalent to modeling environ-
mental exposure, such as is commonly practiced to
assess cancer risks. To do this, we must also include
chronic, environmentally relevant concentrations via
routes of exposure most applicable to putative risk
factors. Dose or exposure extrapolation from human

to animal is non-exact, however, the U.S. Food and
Drug Administration (FDA) provides guidance for
Human Equivalent Dose conversion based on body
surface area using the equation: Human Equivalent
Dose = animal dose in mg/kg x (animal weight in
kg / human weight in kg)0.33 [43, 44]. An example
for paraquat is provided in Table 1; however, such
limits should be considered in context of the environ-
ment under investigation. In addition, age at exposure
is key; developmental exposure (as discussed in
the Clinical Agenda below) versus adult or aged
adult exposure results in different neurotoxic, neu-
robehavioral, and neurodegenerative sequelae [45].
Lastly, the duration of exposure requires careful
consideration for animal to human translation as
environmental exposures associated with neurode-
generative disease often occur over a chronic time
period. Mouse to human age conversion estimates
suggest one mouse day is roughly equivalent to 30
human days, making one human year approximately
12 mouse days [46]. High doses of neurotoxicant
treatment in rodents for a very short time period, even
when accounting for age conversion, should be care-
fully considered as it may limit relevance to human
exposure.

Model combined environmental exposures

Environmental contaminants are rarely, if ever,
encountered in isolation. Toward this end, modeling
combined exposures is critical for assessing PD risk
in a basic research setting. Such an approach should
also consider lifestyle factors, much the way epidemi-
ology studies stratify PD risk based on smoking [48,
49]. This is a difficult task; regulatory agencies have
struggled with how to deal with chemical mixtures.
Besides the challenges of interpreting the scientific
findings, the regulations are not designed to address
mixtures. However, from a scientific perspective we
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must try to study the real-life norm of combined
exposures.

An example of this strategy was employed to
measure the combined toxicity of trichloroethylene
(TCE) with traumatic brain injury (TBI), both of
which are independently implicated in PD risk,
on mitochondrial function in the nigrostriatial tract
[50–53]. In an acute treatment model in male Fisher
344 rats, neither TCE nor TBI alone caused signif-
icant reduction in striatal mitochondrial complex I
activity, but together produced approximately a 50%
reduction in this brain region [54]. As TCE was heav-
ily used by the military until 2007 [55], exposure to
the organic solvent plus combat or training injury
(e.g., concussion) are realistic combined exposures
that may contribute to PD risk in military personnel
[20, 56]. In addition, TCE is substantially metabo-
lized in the body resulting in numerous byproducts
that may contribute to toxicity of combined phyio-
logical stressors [57].

Combined exposure to solvents, pesticides, metals,
and other industrial byproducts also must be con-
sidered, as additive or synergistic effects of these
compounds influence their individual toxicokinet-
ics, and ultimately their combined neurotoxicity.
This type of environment-environment interaction
better models real life risk assessment, requires care-
ful experimental design as mixtures are inherently
complicated (Box 1), and may result in pathology
specific to the type and complexity of the mix-
ture. For example, simple mixitures, such as the two
neurotoxicants manganese and copper, produced a
synergistic interaction with dopamine which mod-
ulated DNA oxidation in neurons [58]. Likewise,
a mixture designed to emulate Gulf War toxicant
exposure (pyridostigmine bromide, chlorpyrifos, and
N,N-diethyl-m-toluamide [DEET]) caused differen-
tial gene expression in the hippocampus of mice after
two weeks of treatment, profiling one type of pathol-
ogy underlying the many neurological symptoms of
Gulf War veterans [59]. In contrast, diesel exhaust, a
complex mixture and component of air pollution, dis-
rupted autophagy, caused protein accumulation, and

resulted in neurodegeneration in a zebrafish model
[60]. Characterizing mixtures, and their resultant neu-
rotoxicities, may help target intervention strategies
based on relative environmental burden, such as metal
exposure in drinking water, military service-related
exposures, and individuals who live in areas with high
air pollution.

Another exposure intersection that is poorly
understood, but highly relevant for PD, is the
interaction between environmental factors and phar-
maceutical treatments. Such interactions may both
increase risk of disease and influence the progression
of extant disease. For example, most individuals
with PD are eventually treated with levodopa
(L-dopa) or dopamine agonists, which significantly
impact metabolic pathways [61]. Increased cellular
dopamine concentrations and changes in metabolism
may readily modify toxicity from environmental
contaminants. In this context, in vitro experiments
with neuroblastoma cells exposed to arsenic showed
synergistic toxicity when treated in combination with
exogenous dopamine [62]. Thus, though minimally
studied, the impact of environmental exposure
combined with pharmaceutical use requires more
focused attention, as pharmaceutical-environment
interactions may modulate disease risk and
progression [63].

Consider sex as a biological variable in toxicant
exposure

Just as all biomedical research requires an equi-
table inclusion of women, measuring environmental
risk for PD must also consider sex as a biological vari-
able. While PD appears to be more prevalent in men
(approximately 1.5 : 1), sexual dimorphisms are also
apparent in PD symptoms [64]. An initial hypoth-
esis that men were more likely to be employed in
occupations that elevated exposure risk, such as pes-
ticide applicators and factory workers, potentially
explains some, but not all of the gender disparity in
PD. In fact, sex differences in PD prevalence may
be geographically or culturally specific. One study

Box 1: Types of Mixtures to Consider in Neurodegenerative Research Models
Simple Mixture: Small number of chemicals (less than 10) with known composition.

Examples: pesticide cocktail (paraquat + maneb), metals in drinking water (lead + copper + nickel),
pharmaceutical treatments. The composition could be based on known human exposures but should also consider
related compounds in the same chemical class.

Complex Mixture: More than 10 (could be hundreds or thousands) of chemicals with unknown composition.
Examples: air pollution, welding fumes, oil spills, contaminated drinking water. The composition could be
equimolar or derived from human population data.
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from Japan found that PD prevalence in women was
significantly higher than men [65]; however, it is
unclear whether this increased female-to-male PD
ratio is due specifically to the environment. In Japan,
women historically outnumbered men as farmers [66]
suggesting exposure to agricultural pesticides could
underlie this observation.

In the preclinical research setting, in vivo mod-
els using both male and female animals are the
most direct way to assess sexual dimorphism in
neurotoxicity, as they include both genetic and hor-
monal, primary and secondary sex characteristics
of mammalian development [67]. This was recently
demonstrated in mice exposed developmentally to the
organochlorine pesticide dieldrin followed by stereo-
taxic �-synuclein fibril injection at twelve weeks
of age, which produced male-specific behavioral
deficits and increased dopamine turnover in the stria-
tum [68]. Other studies support elevated sensitivity
of the dopaminergic system to the pesticides paraquat
and rotenone in male rodents [69, 70]. Underlining
the value of modeling exposures in vivo, a similar
observation was uncovered in previously collected
(but unanalyzed) human epidemiological data, sug-
gesting that women may indeed be less susceptible
the neurotoxicity of rotenone [71].

Translation from combined studies such as these
will help define the degree to which sexual dimor-
phism in PD is driven by environmental exposures,
but they are not without challenges. Incorporating the
stage of estrus into in vivo studies is key, as fluctu-
ations in brain chemistry change during the estrus
cycle, such as neuromodulatory signaling driven
by adenosine levels [72]. In addition, investigating
exposure in animal studies modeling pre-and-post
menopausal life stages, including the use of hormone
replacement, are needed to understand neurotoxi-
city relative to hormone levels that are important
in human disease etiology. Nonetheless, reporting
results of sex-specific toxicity in laboratory animals
should be considered a requirement to fully under-
stand environmental influence on chronic neurologic
disease.

Utilize expansive new tools to consider
gene-environment interaction

All disease phenotype is a result of our genes
(intrinsic factors) and our environment (extrinsic
factors). As we predict that gene-environment inter-
action drives the majority of idiopathic PD cases
(further discussed in the Clinical Agenda below), pre-

clinical research platforms provide a crucial resource
for testing these associations. Transgenic and knock-
in animal models, induced pluripotent stem cells
(iPSCs) and other human derived cells, CRISPR-
edited cell lines, zebrafish, drosophila, C. elegans,
and yeast, are well-suited to manipulate genetic
targets that interact with environmental contami-
nants. In addition, high-throughput content assays,
such as transcriptomics (RNA-Seq, single-cell Seq,
ATAC-Seq, spatial transcriptomics) and epigenetics,
provide ideal measurements to evaluate toxicity of
environmental contaminants linked to PD, and to
screen for novel chemicals of concern. In combi-
nation, these assays are even more powerful. For
example, Parmalee and colleagues have charac-
terized a robust method to perform RNA-Seq in
C. elegans exposed to manganese, which could
be easily adaptable for any environmental expo-
sure [73]. Combined with the relative ease of
genetic manipulation in C. elegans, platforms such
as these are ideal for amassing gene-environment
information relative to disease mechanisms in
PD, like mitochondria [74, 75] and monoamine
function [76].

Genome-wide interaction studies that incorporate
one or more environmental factor associated with PD
can uncover novel risk loci, as was demonstrated by
Hill-Burns et al. [77] that found the snaptic vesicle
glycoprotein 2C (SV2C) interacted with nicotine in
Drosophila and humans, providing a genetic basis
for smoking and PD risk. Following this, studies in
mice showed that SV2C mediated dopamine home-
ostasis in the basal ganglia and altered expression of
SV2C was observed in postmortem brain tissue from
PD cases [78]. SV2C was then identified in a GWAS
study as a novel risk locus for PD [79], showing that
the inclusion of environmental risk factors in GWAS
studies combined with preclinical modeling may help
discover other intrinsic vulnerabilities with relatively
low penetrance.

With relevance to human-derived samples, iPSCs,
organoids, and fibroblasts provide a distinct oppor-
tunity to assess intrinsic vulnerability to common
environmental exposures, both for individuals with
inherited PD, as well as sporadic cases that
do not express common PD mutations [80].
These interactions can also uncover important bio-
logical similarities of PD pathogenesis between
genetic mutations and environmental exposures, as
was shown in iPSC-derived dopaminergic neurons
expressing the LRRK2-G2019S mutation, which
showed a genetic expression profile similar to that



B.R. De Miranda et al. / Parkinson’s Disease Environmental Research Agenda 51

of control iPSCs treated with the pesticide rotenone
[81]. As high-throughput and automated platforms
continue to develop, a key factor for PD is to include
relevant exposure conditions to ensure the biologi-
cal basis of disease is not solely translated from an
isolated laboratory environment.

Incorporate the microbiome and diet

The gut-brain axis has emerged in the last decade
as an interesting target to understand PD origins
and phenotype, as data from population-based cohort
studies showed that individuals who underwent trun-
cal vagotomy were at lower risk for PD [82]. A
decade earlier, the gut-brain connection had been pos-
tulated as a potential route for toxicants, pathogens,
or pathogenic processes to access to the brain via the
vagus nerve [83]. In addition, animal studies con-
firmed the transmission of �-synuclein from the gut
to the brain [84], which was limited by vagotomy
in mice [85], while intestinal �-synuclein expression
was influenced by bacterial lipopolysaccharide expo-
sure [86]. The gastrointestinal system also represents
a central target for environmental contaminants, as
ingestion is a common route of exposure for systemic
toxicants associated with PD (e.g., drinking water
contaminants; [87]). A proof-of-prinicple example
of this was shown in mice treated with rotenone via
intragastric gavage, that displayed elevated levels of
�-synuclein in the enteric nervous system as well as
the brain [88].

Gastrointestinal microbiome heterogeneity or dys-
biosis is a also major factor in xenobiotic metabolism
[89], possibly driving differential disease risk among
similarly exposed populations. Individuals with
PD have distinct gut signatures and microbiome
dysbiosis, some of which are caused PD medica-
tions [90], which could further influence chemical
metabolism. Alterations in gastrointestinal micro-
biota are likewise driven by environmental PD
toxicants, as was recently shown in a rat model
of rotenone exposure [91] as well as chlorpyri-
fos [92], suggesting that environmental influence
upon gastrointestinal homeostasis is likely bidirec-
tional. As the aforementioned studies and others have
already shown, the gastrointestinal system plays a
central role in PD and is a vulnerable target for
peripheral exposures that ultimately influence brain
pathophysiology.

There are some natural limitations of microbiome
research in animals as the gut microbiome differs
between species and is heavily influenced by diet

[93]. However, these limitations are also opportuni-
ties to better translate diet heterogenity into PD risk
from the preclinical research stage, as human data
already confirms that certain diets may influence PD
risk from pesticide exposure, such as paraquat and
rotenone [94]. Likewise, specific diets can poten-
tiate neurotoxicity of environmental contaminants,
as was observed in offspring from high fat diet-
fed female mice combined with TCE exposure [95],
which caused epigenetic and redox alterations in the
cerebellum. More studies are needed to examine the
connection between widespread environmental con-
taminants and diet in mechansims of parkinsonism
that carefully controlled basic or laboratory research
studies can provide in support of human population
data.

BASIC SCIENCE: CONCLUSIONS AND A
PATH FORWARD

The etiology of PD is influenced by environmen-
tal exposures [15, 16, 20, 96–98]. Thus, while not
exhaustive, incorporating one or several environmen-
tally focused components into basic PD research
will ultimately improve our ability to prevent PD.
Many of these efforts will require collaborative,
cross-disciplinary groups and emerging technology
combined with basic toxicological principles such
as those that have been applied in other fields (e.g.,
cancer; [99]), but less frequently for PD.

One tool that has been specifically designed to
do just this, is the Human Health Exposure Analy-
sis Resource (HHEAR; https://hhearprogram.org/), a
program sponsored by multiple NIH entities (NIEHS,
NCI, NHLBI, and ECHO). HHEAR uses an eligi-
bility and feasibility-based application for access to
data analysis services that will incorporate exposure
data into human health studies. With both labora-
tory and data analysis support, the incorporation of
biomarkers, transcriptomics or metabolomics, and
gene-environment interaction for a specific project
would be an ideal mechanism for PD studies, both in
the pre-clinical and clinical areas. However, one of
the strengths of the HHEAR program is also a limita-
tion. The very rigorous analysis approach may reduce
the discovery of unknown associations as the bulk
of the program targets already known environmental
factors.

While a primary goal of an environmental research
agenda for PD is to limit the negative impact of
exposure on neurological health, there is also evi-

https://hhearprogram.org/
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dence for a benefit to therapeutic development.
A recent example is the gene-environment inter-
action between the leuceine-rich repeat kinase 2
(LRRK2) protein and environmental toxicants, such
as rotenone [100, 101], TCE [102], paraquat [103,
104], and manganese [105, 106]. Because the
pathological elevation in LRRK2 kinase activity
induced by environmental toxicants is similar to
LRRK2 gain-of-function mutations, pharmaceuti-
cal inhibiton of LRRK2 by small molecule kinase
inhibitors currently under clinical review [107],
could be appropriate for individuals following certain
exposures [63].

CLINICAL RESEARCH: EVALUATING
THE ORIGINS OF PD

To prevent PD, we also need to study the origins
and consequences of the disease beginning with the
epidemiology of the disease and ending with whole-
body autopsies.

Measure PD incidence and its change globally

Some of the basic facts about PD remain a mystery,
beginning with how many individuals have parkin-
sonisms. For example, U.S. estimates vary by almost
50%. According to the Global Burden of Disease
Study, the prevalence of PD in the U.S. in 2016 was
710,000 [5]. By contrast, a recent study estimated that
in 2017 1,040,000 Americans were diagnosed with
the disease [6]. In Europe, a review of “high-quality”
studies found a more than two-fold difference in
prevalence estimates [108].

The variability in these estimates highlights the
dearth of rigorous studies on the prevalence and inci-
dence of the disease. The most recent door-to-door
study conducted in the U.S. occurred in the 1970s
[4, 109]. Such studies are critical because the rates
of undiagnosed PD can be enormous and result in
underestimates of the disease’s true burden. The pro-
portion of individuals with PD who are undiagnosed,
and thus missed by claims-based estimates, ranges
from 12% in Rotterdam, to 48% in Beijing, to 100%
in rural Bolivia [110]. Similarly, temporal studies on
the incidence of PD are few [111]. The absence of
high-quality, accurate data on the epidemiology of
PD limits our ability to understand its root causes.
Estimated PD prevalence and percent change in age-
stanzardized rates from 1990–2016 are presented in
Table 2.

To fill in these large knowledge gaps, we need to
conduct door-to-door studies of the disease in mul-
tiple parts of the world to generate accurate point
estimates of the prevalence of the disease. We also
will need to address how PD is defined and separated
from other movement disorders such as essential
tremor or corticobasal degeneration. As a set of
heterogenous diseases consisting of a long prodro-
mal and progressive phase [115, 116], motor and
non-motor symptoms [117, 118], variable cognitive
features [119], and differing ages of onset [120],
parkinsomisms are often misdiagnosed and diag-
noses differ between nations, ethnic groups, ages, and
sexes. Next, we need prospective studies of popula-
tions to understand temporal trends in the incidence
of the disease and to assess these trends alongside data
on known and potential environmental factors linked
to the disease. Such data should include assessments
of the air individuals breathe (indoor and ambient),
the water they drink, and the food they eat. And the
records of environmental testing of air, water, soil,
and foods should be made freely available to the
research community. As demonstrated in Table 2,
global data for specific environmental factors corre-
lated to PD prevalence is limited.

Prospective cohorts are also valuable because they
allow for the assessment of prodromal features of
the disease, such as hyposmia, constipation, and
REM sleep behavioral disorder, which can be early
harbingers of the disease [121–123]. These studies
are especially important in areas of the world where
prevalence rates have been historically low, such as
sub-Saharan Africa, but where use of pesticides and
industrial solvents are increasing and air pollution is
rising [5, 124, 125]. Leveraging geospatial data to
monitor disease as it relates to environmental health
may present an opportunity to track PD at a global
population level [126].

In addition to acquiring population-based data, we
need to investigate clusters of PD as they can provide
additional clues and evidence of preventable risk fac-
tors of the disease. Such clusters have been reported
in both the lay and academic press [110, 127–130],
though many more have likely gone unrecognized.
A number of studies have documented high rates of
PD among farmers, rural residents, and drinkers of
water from private wells who may have increased
exposure to pesticides associated with PD [131–133].
While numerous pesticides are linked to PD risk, the
widely used herbicide paraquat dichloride has accu-
mulated the strongest quantitative data for individuals
living near its application, as was originally described
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Table 2
Estimated Parkinson’s disease prevalence 1990–2016 with limited data on contaminant emissions

Country Prevalence Percent Pesticide Pesticide Pesticide Percent SO2 SO2 SO2 Percent
of PD, change in age- use 1990 use 2000 use 2016 change in Emissions Emissions Emissions Change in
2016 standardized (in tons) (in tons) (in tons) pesticide 1970 (in 1990 (in 2000 (in SO2

rates, use thousand thousand thousand Emissions,
1990–2016 1990–2016 tons) tons) tons) 1970–2000

Global 6,063,000 22% 2,304,000 3,082,000 4,161,000 81% 140,480 141,980 104,560 –26%
China 1,408,000 116% 775,000 1,280,000 1,773,000 129% 7,330 171,90 21,390 192%
U.S. 707,000 10% 401,000 430,000 408,000 2% 29,830 20,990 14,820 –50%
India 576,000 30% 75,000 45,000 59,000 –21% 1,110 3,300 5,360 381%
Germany 162,000 12% 31,000 35,000 47,000 52% 8,120 5,350 637 –92%
Brazil 129,000 16% 50,000 140,000 377,000 654% 777 1,640 1,730 123%
France 120,000 –2% 98,000 98,000 72,000 –27% 3,360 1,370 670 –80%
Canada 104,000 43% 30,000 40,000 91,000 203% 5,150 3,080 2,230 –57%
Argentina 68,000 3% 26,000 84,000 200,000 669% 166 113 137 –18%
Australia 41,000 8% 18,000 33,000 63,000 250% 1,450 1,590 2,370 64%
Kenya 7,000 22% 3,000 2,000 2,000 –33% 21 42 67 215%
New Zealand 6,000 14% 3,000 4,000 5,000 67% 102 54 64 –38%
Ghana 4,000 14% 66 82 9,000 13,536% 17 20 33 94%

Pesticide use and sulfur dioxide (SO2; a component of air pollution) emission trends reported globally and in select countries. The lack of detailed environmental emission data highlights the need
for studies assessing PD prevalence globally with quantifiable exposure assessment [5, 112–114].



54 B.R. De Miranda et al. / Parkinson’s Disease Environmental Research Agenda

Fig. 2. Paraquat usage in the U.S. has increased over the last decade. Maps and graph generated from the U.S.
Geological Survey (USGS) Pesticide National Synthesis Project URL: http://water.usgs.gov/nawqa/pnsp/usage/maps/show map.
php?year=2017&map=PARAQUAT&hilo=L.

in conjunction with the fungicide maneb in Califor-
nia’s Central Valley (OR 4.17, 95% CI 1.15–15.16)
[134]. Despite this well-established link, paraquat
usage has increased in U.S. agricultural areas over
the last decade (Fig. 2), potentially exposing many
more individuals to this herbicide. U.S. geospatial PD
prevalence has been investigated by [4, 135, 136], but
a comparison with detailed areas of pesticide appli-
cation, such as paraquat, has not been conducted on
a national scale.

PD incidence is not limited to rural or agricul-
tural areas, and in fact, appears to be more prevalent
in urban counties [135, 137], as well as areas with
high concentration of air pollution [138]. Investi-
gations describing clusters of PD tied to industrial
byproducts that might be found in urban areas are
available, but far fewer than pesticides. Among the
best studied of these is by Gash and colleagues who
investigated 30 individuals who worked in a small
industrial plant manufacturing small instruments like
metal gauges in Berea, Kentucky [139]. The indi-
viduals worked with the organic solvent TCE in a
degreasing area. The three individuals who worked
nearest the large vats of TCE without any protective
equipment like gloves, masks, or aprons all devel-
oped PD. When surveyed, fourteen others reported
at least three parkinsonian signs. The remaining 13
reported no symptoms but when evaluated in clinic,
the speed of their hand movements was significantly
slower than age-matched controls [139]. Highlight-
ing the value of identifying disease clusters, the Gash
report led others to conduct an analytic epidemio-
logic twin study that confirmed the association with
TCE (OR 6.1, 95% CI 1.2–33, p = 0.034) [140]. Given
that TCE, which was ubiquitous in the 1970s [141],
contaminates thousands of industrial sites in the U.S.
and abroad and that up to 30% of U.S. groundwater

is contaminated with the chemical [142], additional
clusters are likely and worthy of investigation [140].
The challenge is that the time lag between exposure
to TCE and related chemicals and development of
parkinsonian symptoms can be a decade or longer
making evaluation of populations difficult [140].

The TCE clusters are not isolated incidents. In
2004, Kumar and colleagues described three clusters
of PD in Canada associated with variable work envi-
ronments: a television crew, a college, and a garment
factory [127]. Like the TCE incident in Kentucky,
some may be attributed to direct chemical exposure in
an occupational setting (a garment factory, for exam-
ple, may use solvents widely). However, not all PD
clusters are clearly defined by an individual’s occupa-
tion; some may be instead related to the environment
in which they lived and worked. In fact, one of the
largest organic solvent contamination events in U.S.
history occurred at the Marine Corps Base Camp
Lejeune in North Carolina. Over 30 years, Marines,
their families, and civilians on the base were exposed
to TCE and related chemicals at levels up to 3000
times above safety thresholds in the water they drank,
cooked with, and bathed in. Consequently, up to one
million individuals are at increased risk for several
chronic diseases, including PD (Hazard Ratio [HR]
3.13, 95% CI 0.76–12.81) [87, 143–145]. Similar
exposures that increase PD risk may be prevented
in the future if we investigate and learn.

The flip side of investigating clusters of PD is to
systematically assess sites with known contamina-
tion of or highly exposed populations. Several studies
have been done for pesticides (e.g., the Agricultural
Health Study; [29, 146]), but again far fewer have
been conducted for other environmental comtami-
nants linked to PD risk, such as organic solvents like
TCE and methylene chloride, or air pollution and

http://water.usgs.gov/nawqa/pnsp/usage/maps/show_map.php?year=2017&map=PARAQUAT&hilo=L
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metals. Unfortunately, such sites are not in short sup-
ply. Almost half of the sites on the U.S. National
Priorities List (Superfund sites designated for clean
up by the federal government) are contaminated with
chemicals that are potentially neurotoxic [147]. In
addition, there are thousands of these and similar
sites across the U.S. and around the world. Evaluating
such sites will help determine the neurodegenerative
risk associated with such chemicals [140], understand
the relationship between likely dose and response,
help determine the scope of diseases associated with
many of these known carcinogens, and inform our
understanding of the extent to which these chemicals
contribute to PD.

In conjunction with investigating clusters and
contaminated sites, additional studies of occupa-
tional exposure can help evaluate potential risk
factors for the disease. While some of these stud-
ies have been done, the results have been mixed
[146, 148, 149]. Studies of individuals who com-
monly use industrial chemicals, such as mechanics,
embalmers, computer chip manufacturers, and dry
cleaners, are rare, but insightful. For example, a
recent study examining PD risk from occupational
exposure to solvents in a Finnish population con-
cluded that PD risk was significantly associated with
occupations that involved chlorinated hydrocarbon
solvent use (OR 1.63, 95% CI 1.05–2.50 for elec-
tronic/telecommunications work; OR 1.40, 95% CI
0.98–1.99 for laboratory assistant; OR 1.23, 95%
CI 0.99–1.52 for machine/engine mechanic) [150].
Beyond occupational exposure, where exposures are
likely to be high, assessments of low-level, chronic
exposure, such as eating pesticide-laden foods, are
limited and may be best addressed in prospective
studies. This information can inform policies, the
public, and help reduce the risk of PD and potentially
other chronic diseases.

Develop biological markers of exposure and
identify during prodromal phase

Current epidemiological studies that assess envi-
ronmental and thus preventable causes of PD are
limited by the absence of robust biological mark-
ers of exposure. Such markers are needed because
the time between exposure and diagnosis of the dis-
ease can be a decade or longer [140]. A few studies
have found remnants of fat-soluble pesticides in the
brains of individuals with PD [151–154], including
polychlorinated biphenyls (PCBs) [155]. However, in
vivo studies have been few [156] even though levels

of some pesticides and their metabolites can be found
in the body fat of humans [157, 158].

Markers of other industrial byproducts may be
harder to find. For example, volatile compounds,
such as solvents, are rapidly metabolized [159], and
present in collectable samples for only weeks post
exposure. Epigenetic modifications by environmen-
tal exposure represent a potential marker, as could
changes in mitochondrial or other metabolites [160].
However, these studies are in early stages and need
to be expanded. Biological markers for exposure to
heavy metals and air pollutants are similarly needed.

One of the ongoing challenges in the field is the
inherent bias investigators have with regard to which
environmental factors to study. In laboratory and
epidemiological studies, choices on what chemicals
or exposures to measure must be made. Recently,
the use of untargeted high-resolution mass spec-
trometry (HRMS) has been suggested to provide
a more comprehensive and unbiased examination
of environmental contributors to disease. The expo-
some represents the non-genetic drivers of disease
[161] and could provide an important addition to
PD research. By examining all of the detected peaks
by HRMS, the effort becomes more analogous to
GWAS studies [162]. HRMS-based exposomic stud-
ies build off of the field of metabolomics, but focus on
the exogenous features in human samples. By com-
bining those with the endogenous small molecules,
which is the focus of metabolomics, it becomes pos-
sible to compare thousands of environmental features
with thousands of endogenous molecules and hun-
dreds of biological pathways. This sort of unbiased
and systematic approach could provide the PD field
important insight into the wide range of environmen-
tal factors that may play a role in disease etiology,
progression, and response to therapy.

Idiopathic PD develops over decades and envi-
ronmental factors may influence multiple stages of
the disease such as initiation, symptom phenotype,
and progression. Detection of exposure biomarkers
before PD motor or cognitive symptoms develop is
key, as many of the prodromal symptoms of PD (e.g.,
anosmia, gut motility changes) align with points of
entry for environmental toxicants (inhalation, inges-
tion). There is very minimal research on prodromal
symptoms of PD correlated with specific exposures;
however, technology to measure exposure at the time
it occurs, such as metabolomics, may improve this
connection. In one example of this approach, the
presenece of phthalate metabolites in cerebrospinal
fluid were discovered to be higher in individuals with
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Fig. 3. Number of publications on Parkinson’s disease and select topics, 1960-2021. Based on Medline search of Medical Subject Headings
(MeSH) and PubMed for keywords or phrases in publications for PD-related topics. Estimates vary depending on search terms and database
coverage.

dementia with Lewy bodies (DLB) than those diag-
nosed with Alzheimer’s disease [163]. This study
included a small amount of individuals at the prodro-
mal DLB stage (16), which could indicate phthalate
exposure is involved in the initiation of DLB. As
others have suggested [164], the prodromal phase
represents a critical disease stage where intervention
could occur, whether through environmental factor
modification or early therapeutic intervention, and
therefore warrants increased attention.

Evaluate relationship between environmental
and genetic risk factors

“Gene-environment interaction” is often used to
describe the majority of idiopathic PD etiology [18,
19, 165], but most human population studies assess
genetic risk for PD without any context of exposure.
A few rare highly penetrant genetic mutations such
as in the �-synuclein (SNCA) gene clearly cause the
PD phenotype [10, 166]. In contrast, mutations in
the LRRK2 gene, responsible for perhaps 1–2% of
PD, are only 30% penetrant [167]. The much more
common genetic variants (single nucleotide poly-
morphisms, SNPs) identified in large GWASs are
associated with only minimally increased risk and
are not even thought of in terms of their penetrance.
These observations clearly suggest and are supported
by twin studies [168, 169] that except in very rare cir-

cumstances, interactions with the environment (both
intrinsic and extrinsic) are necessary to produce the
disease. PD is not unique in this respect. Highly pen-
etrant mutations cause only a small proportion of
virtually all late life disorders. The converse of course
is also true—highly “penetrant” environmental expo-
sures are rare causes of late life disorders, perhaps
with the exclusion of smoking related disease.

Notwithstanding the long-running arguments
about their relative importance, there is substan-
tial agreement in the scientific community that both
genetic and environmental factors are important
contributors to PD etiology. Despite this, shock-
ingly little has been published on gene-environment
interactions in human PD epidemiology or in
animal or in vitro models (Fig. 3). Studying gene-
environment interaction in human epidemiology
poses major hurdles that can only be addressed
through well-coordinated scientific policies. Except
in very specialized populations, such as some
occupational settings, determination of exposures
is imprecise at best. A few prospective cohorts
exist, but most of these were assembled to study
other, more common diseases, have not collected
much PD-relevant exposure data, and are generally
underpowered for relatively rarer outcomes such as
PD. Finally, genome-wide gene-environment interac-
tion studies (GEWIS) analogous to GWASs require
enormous sample sizes to identify statistically sig-



B.R. De Miranda et al. / Parkinson’s Disease Environmental Research Agenda 57

nificant interactions. Thus, virtually all studies of
gene-environment interaction have been “candidate-
based,” with both gene and exposure pre-selected
based on what we know, or think we know about their
biological interactions.

Three general classes of genes have been most
explored using this candidate-based approach: 1)
those involved in xenobiotic metabolism and trans-
port, and 2) in the protection from or 3) response
to injury. Pesticides are the most consistently asso-
ciated environmental risk factors for PD and studies
of their interaction with these genes provide the most
compelling examples to date. Several studies found
that the risk associated with regular use of pesti-
cides was modified by polymorphisms in CYP2D6
that reduce the activity of the Phase 1 xenobiotic
metabolic enzyme cytochrome P450 2D6 (OR 8.41,
95% CI 1.01–69.76) [170, 171]. Notably, these same
polymorphisms imparted no increased risk in the
absence of pesticide use.

Other examples include interactions between
organophosphorous insecticide exposure and the
metabolic enzymes paraoxonase 1 (PON1) [19, 172,
173] and aldehyde dehydrogenase (ALDH2) [174].
One of the strongest reported interactions is the
modification of risk associated with the common her-
bicide paraquat and the null variant of the Phase
2 conjugating enzyme glutathione-s-transferase-T1
(GSTT1) [175]. Although homozygous GSTT1 dele-
tions (present in 20% of the population) imparted no
increased risk in the absence of paraquat exposure,
risk was increased 11-fold in those who were both
GSTT1 null and exposed to paraquat (OR 11.1, 95%
CI 3.0–44.6, p = 0.027).

Membrane transporters that extrude xenobiotics
from cells comprise another class of genes that have
consistently been found to modify risk associated
with pesticide exposures. One of the best exam-
ples is ABCC1 (aka multidrug resistance protein 1,
p-glycoprotein), which has been reported to inter-
act with exposure to multiple pesticides including
organochlorines such as dieldrin and DDT [175, 176],
and the insecticide rotenone, a known substrate of
ABCC1 [177, 178]. Lastly, numerous interactions
with pesticides have been reported for genes that
protect against oxidative stress. Among others, these
include nitric oxide synthase (NOS1) [179, 180],
manganese superoxide dismutase (SOD2) [181], and
NAD(P)H quinone dehydrogenase (NQ01) [182].

Genetic interactions with other environmental
risk factors have been less studied. One of par-
ticular note is the increased risk associated with

exposure to solvents in persons lacking active glu-
tathione transferase- M1 (GSTM1; OR 2.34, 95% CI
1.08–4.62, p = 0.03) [19], a phenotype that occurs in
40% of the population. A markedly increased risk
of PD was also observed in solvent-exposed persons
with the CYP2D6 slow metabolizer phenotype (OR
14.67, 95% CI 1.16–185.23) [183].

In addition, PD-related mutations and poly-
morphisms also play a role in gene-environment
interaction, such as the SNCA REP1 263 genotype
and paraquat [184] or traumatic brain injury (TBI)
[185], and LRRK2 and NSAIDS [186]. Animal and
in vitro studies support these observations, includ-
ing interactions of LRRK2 with rotenone, paraquat,
TCE, and manganese [100, 102, 104, 105]. Inter-
secting inflammatory pathways have been proposed
as underlying many of these interactions [187]. As
discussed in the basic research agenda, multiple expo-
sures and environment-environment interactions are
also important from a clinical perspective. For exam-
ple, while both traumatic brain injury and paraquat
increase the risk of PD independently, exposure to
both factors almost triples the risk of the disease
[53, 185]. Of note, each of these gene-environment
interactions were studied in isolation, and it will be
important to develop comprehensive and systematic
approaches to these complex relationships.

Perform whole-body autopsies to assess PD as a
systemic disease

PD is a multifactorial disease influenced by sys-
temic factors as well as multiple types of daily
exposures that gain entry through different portals
(e.g., nose, gut, skin). As such, it should be stud-
ied holistically. And while numerous studies have
evaluated the brains of individuals with PD, fewer
have examined entire bodies. Those that have, such
as the Arizona Study of Aging and Neurodegenera-
tive Disorders, have found Lewy pathology in both
those with and without PD [188]. Interestingly, this
study did not find evidence of Lewy pathology in
peripheral organs without it also being present in
the brain, a contradictory finding to the ‘gut-first’
hypothesis. However, when present, Lewy pathology
was universally found in the olfactory bulb [188]. As
inhalation represents the greatest route of exposure
for many of the environmental contaminants linked
to PD (e.g., pesticides, air pollution, volatile organic
compounds), Lewy pathology in the olfactory bulb
could be directly linked to this exposure route. More-
over, smoking, which decreases the risks of PD, [48]
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alters the nasal epithelium [189, 190], which could
influence the risk associated with inhaled exposures
or pathogens.

Recent studies have also suggested that �-
synuclein oligomers can be found throughout the
body from the retina [191] to salivary glands [192] to
the skin [193, 194]. Truncated forms of �-synuclein
have also been found in the appendix, and appendec-
tomy was associated with lower PD risk (OR 0.831,
95% CI, 0.756 to 0.907, p < 8.1 × 10–5), which was
more profound for individuals living in rural areas
(OR 0.769, 95% CI, 0.681 to 0.867, p < 1.5 × 10–5),
suggesting that systemic exposures sustained in these
environments influences Lewy pathology [195].

These efforts will require more whole body autop-
sies ideally from large population-based cohorts from
around the world. By expanding our view beyond the
brain for this systemic disease, we might better under-
stand where and how the various parkinsonisms [196]
begin and how they unfold [197]. In line with this, the
distinction of parkinsonisms from other movement
disorders (e.g., essential tremor) and the environ-
mental influence on disease phenotype necessitates
careful study design.

Include populations with high exposure burden

The current and projected global growth of PD
in populous nations cannot alone be attributed to
increased lifespan. Areas of the world that have seen
the greatest growth of modern industrialization, such
as China and India, have had the highest increase
in age-adjusted prevalence estimates for PD [198].
Some of the increased prevalence in PD among these
nations may be a result of better characterization
and diagnosis of PD by neurologists or reductions in
smoking, which is widely accepted to be protective
against PD risk [199]. However, other critical fac-
tors are the products and by-products (e.g., pesticides,
solvents, metals, air pollution) of industrialization.
In the case of pesticides, China greatly outpaces the
rest of the world in annual usage, estimated at over
1,800,000 tons, followed by the U.S. with approx-
imately 55,000 tons [200]. In the last few decades,
South American pesticide usage has risen sharply
(30% sales growth between 2003 and 2004 alone;
[200], including the increased usage of chemicals
such as 2,4-D, paraquat, and chlorpyrifos, which
are implicated in PD [201–203]). As regulations for
chemical usage vary widely between nations, the
risks for their harms may be especially high in certain
parts of the world.

In relation, environmental exposures in any nation
are not equally distributed. Almost all populations
face challenges of environmental justice, where
the most underprivileged areas also face the high-
est amount of environmental exposure risk [204].
For example, elevated blood-lead levels in children,
which affects brain and cognitive development, can
be predicted by socioeconomic factors in the United
States, such as older housing and poverty [205]. In
addition to socioeconomic status, race must also be
better represented in the context of PD risk from expo-
sure, as racial differences occur in PD prevalence,
incidence, and medical treatment [206–209]. While
some racial differences in PD may arise from biol-
ogy [207], others may be based on exposure burden
and gene-environment interaction. Therefore, while
most of the PD field rightly urges a focus on inclusion
of ethnically diverse populations, we cannot exam-
ine the full context of race without including the
environment. Exposure to compounds that produce
neurotoxicity are typically highest in industrialized
(urban) or agricultural (rural) areas and associated
with lower socioeconomic status, less accessability
to green space (urban), and increased likihood to
consume well water (rural; [210]). Combined with
reduced access to healthcare, PD diagnoses related
to sustained exposure may be underreported in these
areas. As previously mentioned, using geospatial
technology to monitor environmental health and its
association with disease may provide an opportunity
to better track areas with limited access [124].

Especially vulnerable populations such as children
must also be considered in this context. Exposure to
environmental toxicants during neurodevelopment,
whether in utero, perinatal, or during childhood,
may have a significant impact on future PD risk.
As Goldman and colleagues observed, PD concor-
dance in dizygotic twins is much higher than in
typical siblings [168], which indicates the perinatal
exposure period is a critical window for future dis-
ease development. There are also mechanistic data
from experimental models to support “silent neuro-
toxicity,” such as the priming of microglia after a
single dose of paraquat in mice, which predisposed
animals to more severe dopaminergic neurodegen-
eration upon secondary insult [211]. Similarily,
developmental exposure to organophosphate pesti-
cides, such as diazinon and chlorpyrifos, casue gene
transcriptional changes associated with PD [212]. As
fat-soluable compounds implicated in neurodevelop-
mental toxicity, such as organochlorine pesticides and
polybrominated diphenyl ethers (PBDEs), are often
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found in breast milk [213, 214], identifying these
vulnerable populations may provide an avenue to pre-
vent exposure at the earliest stages of life. Likewise,
tools to accurately measure multifactorial exposures,
such as the exposome approach, will be essential in
characterizing populations of concern [162].

POLICY AGENDA

To prevent PD, research needs to be translated
into action. Knowing or having evidence that smok-
ing causes lung cancer meant little until policy (e.g.,
safety warnings, banning from restaurants, taxes) and
other actions (e.g., media depictions) followed. The
result has been plunging rates of lung cancer [215]. A
similar result was achieved with the removal of lead
from gasoline, decades after it was linked to neuro-
toxicity in adults and impaired cognitive development
in children [216].

We have more than sufficient evidence to take some
policy actions to prevent PD now. For certain pes-
ticides and industrial chemicals, we have years of
evidence from different investigators from around
the world linking them to PD and other health con-
cerns. Within the United States, we need to ban or
further regulate substances based on their neurotoxi-
city, such as paraquat, chlorpyrifos, and TCE. Other
countries around the world have already taken such
action [110], as have some states within the U.S.
Wisconsin banned TCE in 2020, followed by New
York, which banned the “most harmful uses” of TCE
later that year. In 2019, the bill H.R. 3817 – Protect
Against Paraquat Act, which would ban the usage
of paraquat in the U.S., was introduced by Rep.
Nydia Velazquez to Congress, but as of this pub-
lication date has not been passed by the House of
Representatives.

As we wait for legislation, paraquat usage in the
U.S. has tripled in the last 25 years, doubled in the
last decade, and increased 20% in the most recent year
for which data are available [217]. Over 30 countries,
including China, have already banned the herbicide.
A unified voice from the individuals with PD, the
research community, and their local and federal lead-
ers can help drive policy changes to limit further
exposure. Other simple steps that may have an imme-
diate impact are policies that continue to educate and
promote safe handling practices for toxicants, as stud-
ies confirm the use of protective gloves alone can
reduce PD risk from pesticide exposure [218, 219],
and could be reduced further with additional PPE.

FUNDING

The NIH, by far the world’s largest funder of
research, spent $224 million on PD research in 2019
[220]. However, the economic burden of PD is $50
billion per year in the U.S. alone [6]. Spending less
than 1% of that in research aimed at understand-
ing, preventing, measuring, and treating the disease
is not enough. Despite an overall growth in fund-
ing, when adjusted for inflation, NIH funding for PD
research has actually decreased in the past decade
at the same time the number of Americans with the
disease has increased [4, 110, 220]. In relation, pub-
lished research studies related to prevention as well
as specific exposure risks lag behind other topics
(Fig. 3). For example, the number of studies pub-
lished on genetic risk for PD is approximately seven
times higher than any extrinsic risk factors or gene-
environment interaction.

Ultimately, if we want to change the course of
PD, as we have for other diseases, we will have
to increase our investment substantially. A much
larger global investment in research and resources,
including partnerships between private and public
funding entities and data sharing initiatives that
include an environmental focus, will pave the way
for preventing PD. Recognizing the central role of
exposure in disease—particularly for, but not limited
to PD—may further promote cross disciplinary or
cross-institution research funding that has typically
fallen on one sector. However, a promising develop-
ment in this area is the recent creation of the Office
for Neural Exposome and Toxicology Research by
the NINDS, which will collaborate with NIEHS to
better understand the impact of environmental fac-
tors and neurological health [221]. In addition, an
increase in research funding aimed at preventing PD
has a synergistic benefit. Numerous chronic diseases,
such as heart disease, cancer, Alzheimer’s disease,
and amyotrophic lateral sclerosis, share one or more
environmental risk factors with PD, potentially pro-
viding far-reaching impact on numerous chronic
diseases.

CONCLUSIONS

The first response to any crisis whether from a fire
or a virus is to contain it to prevent its spread. To
date, we have failed to contain PD. Instead we are
only fueling it. Prevention is the most important step
to addressing the wave of PD.
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We have prevented diseases in the past, and we can
prevent them now. In the 1930s, a March of Dimes
raised money for research that led to the develop-
ment of vaccines that prevent polio. Prevention has
been so effective for polio that the March of Dimes
Foundation has had to change its mission. In the
1980s, a group of brave activists changed the course
of HIV and in the process, our sexual practices [222].
The result is that likely millions, including many of
us, have never been infected with the virus. At the
same time, mothers whose children had been killed
by drunk drivers said that 25,000 deaths a year in
alcohol-related crashes was enough. Drunk driving is
now no longer socially acceptable, and over 300,000
lives have been saved because of their efforts [223].

The prevention agenda we have laid out here to
investigate and address the environmental causes of
PD is an imperfect and incomplete beginning. But the
time has come to increase substantially our invest-
ment in slowing and eventually reversing the rise
of PD. Our health and those of future generations
depend on it.
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