
Preventing Shilling Attacks in Online Recommender
Systems

Paul-Alexandru Chirita
L3S Research Center
University of Hannover

Hannover, Germany

chirita@l3s.de

Wolfgang Nejdl
L3S Research Center
University of Hannover

Hannover, Germany

nejdl@l3s.de

Cristian Zamfir
L3S Research Center
University of Hannover

Hannover, Germany

zamfir@l3s.de

ABSTRACT
Collaborative filtering techniques have been successfully em-
ployed in recommender systems in order to help users deal
with information overload by making high quality person-
alized recommendations. However, such systems have been
shown to be vulnerable to attacks in which malicious users
with carefully chosen profiles are inserted into the system
in order to push the predictions of some targeted items. In
this paper we propose several metrics for analyzing rating
patterns of malicious users and evaluate their potential for
detecting such shilling attacks. Building upon these results,
we propose and evaluate an algorithm for protecting rec-
ommender systems against shilling attacks. The algorithm
can be employed for monitoring user ratings and remov-
ing shilling attacker profiles from the process of computing
recommendations, thus maintaining the high quality of the
recommendations.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval; H.3.4 [Information Storage and
Retrieval]: Systems and Software; H.3.5 [Information
Storage and Retrieval]: Online Information Services

General Terms
Algorithms, Experimentation, Performance

Keywords
Web applications, Recommender systems, Collaborative fil-
tering, Shilling attacks

1. INTRODUCTION
Recommender systems based on collaborative filtering play

an increasing role in filtering information in an overloaded
information system. They are not only helping users find

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WIDM’05, November 5, 2005, Bremen, Germany.
Copyright 2005 ACM 1-59593-194-5/05/0011 ...$5.00.

relevant items, but are also beneficial to companies produc-
ing items by increasing both selling rate and cross-sales.

Currently, there are quite several commercial recommender
systems used in e-commerce1 [5], movie2,3 and music recom-
mendations4 [14], etc., as well as some research oriented ones
(see, for example, PocketLens [6], or ClickStream CF [3]),
and even governmental ones (such as NASA’s service for
recommendation of related technical reports [7]). In such
a collaborative filtering based recommender system, users
build profiles by rating certain items, and obtain personal-
ized recommendations for other, uknown items, based on the
correlation between their ratings and those of other users.

The most popular types of algorithms for collaborative
filtering (CF) are user-based and item-based:

1. User-based algorithms build for each user a neighbor-
hood of users with similar opinions (i.e., ratings) in the
system. Ratings from these users are then employed
to generate recommendations for the target user.

2. Item-based algorithms compute a set of similar items
for each item and use these similarities to compute
recommendations.

Unfortunately, since good ratings promise a good selling
rate, these systems are prone to manipulation from produc-
ers or malicious users. Examples of manipulation have been
outlined in [4] and include attacks from popular systems
like Amazon and eBay. Recent research has shown that
most popular algorithms employed in current CF applica-
tions can be rather easily manipulated through biased pro-
files [4]. More specifically, this can be achieved by introduc-
ing fake user profiles that highly rate a set of target items,
and then rate other items, in such a way that they become
similar to many profiles of regular users. The desired result
is known as a shilling attack and consists of either increasing
(push attack) or lowering (nuke attack) the ratings of some
target items.

Attacks on recommender systems can affect the quality of
the prediction for many users, resulting in decreasing over-
all user satisfaction with the system. Such threats may cost
users’ time and money and pose a serious challenge to the
recommender system administrators, who have to manually
discover the shilling attackers. This vulnerability of recom-
mender systems is even more severe if we think it actually
extends to any personalized information system in which an

1http://www.amazon.com
2http://www.movielens.org
3http://www.tivo.com
4http://www.audioscrobbler.com

attacker can introduce fake profiles in order to increase the
general interest for a set of target resources.

Based on the above observation that shilling attackers use
synthetic profiles5, in this paper we investigate the use of
statistical metrics to reveal rating patterns of shilling attack-
ers. We experimentally evaluate these metrics for existing
zero-knowledge shilling attacks and propose an algorithm
that makes use of them to detect and isolate shilling attack-
ers. To the best of our knowledge, this is the first algorithm
that effectively detects the most general attacks on recom-
mender systems [4].

The rest of the paper is structured as follows: In Section
2 we introduce the most popular CF algorithms and outline
existing work on developing and guarding against attacks
on recommender systems. In Section 3 we define several
statistical metrics, which could be utilized to identify rat-
ing patterns of shilling attackers, and then we empirically
analyze each of them in Section 4. In Section 5 we propose
an algorithm, which detects shilling attackers by exploiting
these metrics. Finally, we show how it could be integrated
into an web-based recommender systems in Section 6, and
conclude with a summary and future work in Section 7.

2. BACKGROUND

2.1 Common CF Algorithms
User-based collaborative filtering. The most popular

collaborative filtering algorithm is the kNN-based algorithm.
Data is represented as a user × item matrix, with an entry
(u,i) representing either the rating user u gave to item i, if
she rated it, or null otherwise. Similarity between users is
then computed using the Pearson correlation [11]:

Wij =

P
k∈I(Rik − R̄i)(Rjk − R̄j)qP

k∈I(Rik − R̄i)2
P

k∈I(Rjk − R̄j)2
(1)

where I is the set of items users i and j both rated, Rik

is the rating user i gave to item k, and R̄i is the average
rating of user i. Finally, predictions for user i and item a
are computed using the k-nearest neighbors formula below:

Pia = R̄i +

Pk
j=1 Wij(Rja − R̄j)Pk

j=1 Wij

(2)

Item-based collaborative filtering. Another popular
CF algorithm is based on the item-item similarity [13]. Here,
items are thought of as two vectors in the |users| multidi-
mensional space, and the similarity between items i and j
can be computed using the cosine-based similarity:

Sim(i, j) =
~i ·~j

‖~i ‖ · ‖ ~j ‖
(3)

Then, the prediction for an item is computed using a
weighted average of user’s ratings Rua, weighed by the sim-
ilarity score:

Pui =

P
all similar items,a RuaSim(i, a)P

all similar items,a |sim(i, a)| (4)

5This is in fact reasonable, since no large-scale success could
be achieved by manually inspecting items and rating them
as a regular user would.

2.2 Identifying and Detecting Shilling Attacks
While there is a lot of work in the field of developing

collaborative filtering algorithms, only recently some papers
have concentrated on developing shilling attack models [9,
12] and on benchmarking the robustness of recommender
systems against shilling attacks [4, 8].

Lam and Riedl [4] introduce the Random Bot and the
Average Bot types of shilling attacks and evaluates their ef-
fectiveness in promoting the target items by computing the
prediction shift and expected Top-N occupancy for these
items in both user-based and item-based collaborative fil-
tering environments.

A Random Bot attacker rates all the items in the system
with the mean 3.6 out of 5 and a 1.1 deviation. The intuition
behind this is that making random ratings within a certain
average interval will allow the attacker to have a high influ-
ence in making predictions for other users. Depending on
the objective of the attack, the items in the target set are
rated with the minimum rating (for nuke attack) or maxi-
mum rating (for push attack). An Average Bot attacker is
more effective but requires knowledge of the average rating
for each item in the system. Each Average Bot attacker
rates the items outside the target set randomly, following a
normal distribution with a mean equal to the average rating
for that item, thus becoming more similar to the real users
than the Random Bot.

In [12] several other attack models are developed, under
the assumption that the attacker has some knowledge about
the ratings of the other users. We think that such knowledge
is hard to obtain, if not impossible in a real world system.
Another disadvantage of this approach is that the ratings in-
troduced by an attacker are algorithm dependent. Finally,
the detection of the attackers is not addressed in the paper.
In fact, the only work that partially tackles this challenge
is [15]. There, a spreading similarity algorithm is developed
in order to detect groups of very similar shilling attackers.
While this is indeed a first step, it only applies to a simpli-
fied attack scenario, whereas our algorithm applies to more
general and powerful attack.

We think that zero-knowledge attacks such as the Ran-
dom Bot are particularly interesting, since for the other at-
tacks, recommender systems administrators could increase
the privacy of user profiles using cryptographic means [6, 10,
2], thus falling back to the zero-knowledge ones. In general,
the more insight a recommender system offers about its rat-
ings, the more susceptible to attack it is, allowing powerful
low cost (in terms of number of fake profiles) attacks to be
mounted on the system.

3. METRICS FOR DETECTING RATING
PATTERNS OF SHILLING ATTACKERS

3.1 Introduction
We have argued that shilling attacks could be very nox-

ious to CF systems. Now, could we define an algorithm
independent approach, which protects against these attacks
by mining the rating patterns from the users database? We
consider the answer to be positive. This section will lay the
foundation towards such an approach, presenting first the
statistical metrics that could be utilized to analyze user rat-
ings, and then a näıve algorithm exploiting them. We will
then complete our attack detection scheme in Section 5.

3.2 Metrics
In [1], a number of algorithm independent qualitative fac-

tors are used in analyzing the influence of a user on a rec-
ommender system. While the goal of [1] was not related to
attacks at all, we think some of these factors could be use-
ful in analyzing patterns for the fake profiles introduced by
the different types of shilling attacks. More specifically, we
found the following metrics suitable to address our problem
of detecting shilling attacks:

1. Number of Prediction-Differences (NPD)
NPD is defined for each user as the number of net pre-
diction changes in the system after her removal from
the system.

2. Standard Deviation in User’s Ratings
This metric represents the degree in which a rating
given by a user to an item differs from her average
ratings.

3. Degree of Agreement with Other Users
The degree of agreement is in fact the average devia-
tion in a user’s ratings from the average rating of each
item: 1/k

Pk
a=1 |Ria − R̄a|, where Ria is the rating

user i gave to item a and R̄a is the average rating of
item a.

4. Degree of Similarity with Top Neighbors
As stated by its name, this metric describes the av-
erage similarity weight with the Top-K neighbors of a

user. It uses the following formula:
Pk

i=1 Wij

k

As we will see from Section 4 these metrics provide a useful
insight into detecting shilling attackers, but are not sufficient
for identifying attackers, as they output quite a few false
positives. Therefore, we also defined a new measure, Rating
Deviation from Mean Agreement (RDMA). Intuitively, this
can be seen as the measure of the deviation of agreement
with other users on a set of target items, combined with
the inverse rating frequency for these items. RDMA can be
computed in the following way:

RDMAj =

PNj

i=0
|ri,j−Avgi|

NRi

Nj
(5)

where Nj is the number of items user j rated, ri,j is the
rating given by user j to item i, NRi is the overall number
of ratings in the system given to item i. Alternatively, one
could also compute the number of ratings and the average
rating using only a subset of users, thus giving a local view
to our measure. We will discuss these variants in Section 5.

Since shilling attacks usually try to push items with low
ratings, the users mounting such an attack will also have a
high RDMA, because for the target items, the numerator of
each term (the difference from the average rating) will be
high, whereas the denominator (the number of predictions)
will be low; thus the overall term will be high6, and the
attackers will be simply removed from the computation of
recommendations.

6Users with very special tastes might also have a high
RDMA value though. This is one of the reasons that de-
termined us to seek a more complex algorithm for shilling
attacks detection. The outcome will be presented in Section
5.

3.3 Basic Algorithm for Detecting Shilling
Attackers

Considering the fact that attackers should have a high
influence in the system in order to effectively promote the
target items, we want the metrics in Section 3.2 to reveal
distinctive features in the rating patterns. Attackers should
therefore have very high values for NPD, Average Similarity,
Degree of agreement with other users, and RDMA, as well
as a very low value for Standard Deviation in User Ratings.
The following algorithm detects shilling attackers based on
these expectations:

Algorithm 1. Basic algorithm for detecting shilling attackers.

01. Let MetricsLow=Standard Deviation in Ratings and
MetricsHigh= NPD, Degree of agreement,
Average Similarity, RDMA

02. for each m in MetricsHigh and MetricsLow
03. for each user u
04. compute m(u)
05. for each user u
06. if u has high values in MetricsHigh

and very low values in MetricsLow
then u is a shilling attacker

In lines 2-4, the algorithm computes for each user the
values for all statistical metrics, and then in lines 5-6 de-
cides, based on her assessed probability of being an attacker,
whether her profile will be discarded from the computation
of recommendations or not.

4. EXPERIMENTS

4.1 Attack Scenario
An attack consists of a group of profiles that are intro-

duced into the system in order to push the ratings of a set of
target items. The target items are usually unpopular items
(low average rating) that are not rated by many users7. Our
experiments are conducted using the Random Bot shilling
attack. In [4], the number of attacker profiles reaches almost
1% of the total number of users. The cost of an attack can
be estimated as a function of the number of profiles that
have to be introduced in the system. Usually, introducing
more than 1% fake profiles can be considered infeasible, but
we will go up to 3% attacker profiles. For implementing the
experiments we used the open source MultiLens8 collabora-
tive filtering platform.

We have evaluated the patterns from section 3 for databases
without any attackers and with 3% Random Bot attackers.
The target items set is composed of three randomly selected
items that have a low average rating, as well as a small
number of ratings.

In our experiments we have used the MovieLens database
containing 100,000 movie ratings for 1682 items from 943
users. For the attack scenario we introduced 30 additional
users, which were Random Bot attackers with the same tar-
get items set. All users have rated at least 20 movies, with

7Popular items are already recommended by the system to
some extent, and are therefore rated by a larger number of
users. Thus, making them even more popular would usually
imply a too costly effort from the attackers. We further
discuss on this choice in Section 5.2.
8http://sourceforge.net/projects/multilens/

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 100 200 300 400 500 600 700 800 900 1000

NP
D

Users

NPD

"final_sorted_npd_2"

Figure 1: NPD without attackers

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 100 200 300 400 500 600 700 800 900 1000

N
PD

Users

NPD with random bots

NPD for normal users
NPD for attackers

Figure 2: NPD for a database with attackers

ratings between 1 and 5. The Random Bot attackers rated
the items in the system as explained in Section 2.

Our experiments show that all the patterns studied are
relevant in exposing behavior of the attackers. The values
for the patterns studied are either high, or almost the same
(with a small deviation) for most of attackers, but a few
regular users can also be considered attackers if we use only
one of these patterns to detect attackers. The rest of this
section discusses each of the patterns in detail.

4.2 Using Rating Patterns to Detect Shilling
Attacks

NPD. As discussed in [1], NPD shows a power-law distri-
bution, most of the users having very low NPD, while only
a few are having a very high NPD. This applies for both
the database with and without attackers. Figure 1 presents
the NPD values for the database without attackers. After
having introduced the attackers (Figure 2), they will slightly
decrease for the regular users, leaving the top NPD value to
the malicious users. This is because the attackers are very
similar to many users and removing them from the neigh-
borhood of a user would result in prediction changes for all
these users. However, we notice that they also overlap with
the top 0.3% of the normal users.

Standard Deviation in User’s Ratings. Random Bot
attackers give random ratings within a relatively small inter-
val, centered around 3.6. This distribution of ratings makes
them outstanding from the database, because they are the
only “users” having the Standard Deviation in Ratings close

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 100 200 300 400 500 600 700 800 900 1000

St
an

da
rd

 a
gr

ee
m

en
t

Users

Standard agreement for the database without the RandomBots

"standard_agreement"

Figure 3: Degree of Agreement for a database with-
out attackers

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 100 200 300 400 500 600 700 800 900 1000

St
an

da
rd

 a
gr

ee
m

en
t

Users

Standard agreement for the database with the RandomBots

"standard_agreement_randombots"

Figure 4: Degree of agreement for a database with
attackers. Notice that the variation of the degree of
agreement for the attackers is very small (Attackers
have user IDs between 944 and 973).

to 0. Most users have a greater entropy in ratings and some-
times give extreme ratings like the minimum rating. How-
ever, some small percent of users have a small Standard
Deviation in Ratings, so that attackers could disguise their
behavior by increasing the entropy in their ratings and thus
escaping detection using this pattern. Still, avoiding de-
tection by increasing entropy will also decrease the power of
attack, as it will decrease the attacker’s similarity with other
users in the system. Therefore, we conclude that analyzing
this pattern for shilling attacks can be useful, as it will force
malicious users to disguise their attacks, thus reducing the
overall impact of the attack on the entire system.

Degree of Agreement With Similar Users. We have
computed this metric using the top-25 similar users from the
neighborhood formation phase of user-based collaborative
filtering. In spite of the fact that attackers make random
ratings, an interesting pattern we discovered was that they
had almost the same value for this metric (Figures 3 and 4).
Even though other regular users could also have very similar
values, one could use the results from analyzing this pattern
in order to reduce the false positives output by the attacker
detection algorithm.

Average Similarity with Top Neighbors. The av-
erage similarity was also computed over each user’s top-25
neighbors. We discovered that it resembles NPD: it has a

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 100 200 300 400 500 600 700 800 900 1000

Av
er

ag
e

Si
m

ila
rit

y

Users

Average Similarity for a database without attackers

Average Similarity
Max_Average_Similarity/2

Figure 5: Average Similarity without attackers

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600 700 800 900 1000

Av
er

ag
e

Si
m

ila
rit

y

Users

Average Similarity for a database with attackers

Average Similarity for normalusers
Average Similarity for attackers

Max_Average_Similarity/2

Figure 6: Average Similarity with attackers

power law distribution and the values for the attackers over-
lap for some small set of users (Figures 5 and 6). While NPD
exhibits scalability issues, computing the average similarity
for each user is much faster, and thus preferable. More,
selecting users that have a greater value than 1/2 of the
maximum average similarity in the system, would include
all the attackers in the output. Therefore, we chose to use
this metric along with RDMA in our improved algorithm
from Section 5.

RDMA. For a database without attackers, very few users
had a high normalized RDMA, which was promisive, since
we expected the attackers (once introduced) to have a very
high RDMA. However, RDMA was high for the attackers
only for a small attack size. Once we increased the attack
size to 3%, several normal users had bigger RDMA than
the attackers. This is partially because an attack of such a
large size is enough to radically increase the average rating
for the target items, so that regular users who rated these
items with the minimum rating get in this case an increased
RDMA. Generally, when the attackers give a rating centered
around 3.6 to the items outside the target set, users that
only expressed extreme like (the maximum rating) or utter
dislike (the minimum rating) have an increased RDMA for
a large-scale attack.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 200 400 600 800 1000

R
D

M
A

Users

RDMA without attackers

RDMA

Figure 7: RDMA without attackers

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 200 400 600 800 1000

R
D

M
A

Users

RDMA with attackers

RDMA for attackers
RDMA for normal users

Figure 8: RDMA with attackers

5. ENHANCED ALGORITHM FOR
DETECTING SHILLING ATTACKERS

5.1 Description
When computing RDMA, we can use only a subset of the

total users for computing the Average Rating and Number of
Predictions for each of the items. For the database without
any attackers, this results in very few users (2, in our exper-
iments) having high RDMA so that removing them from the
database will not affect the quality of the recommendations.

In the following, we describe an improved two step algo-
rithm, which exploits the above mentioned idea: we first
compute the average similarity with the top neighbors for
all users and then select for computing RDMA only those
users that have an average similarity smaller than 1/2 of
the maximum average similarity in the system. We then as-
sociate with each value of RDMA a function that evaluates
the probability that the respective user is a shilling attacker.
The algorithm is depicted below.

Algorithm 2. Enhanced Algorithm for Detecting Shilling Attackers.

01. for each user
02. Compute Average Similarity using

the Pearson Correlation
03. max = the maximum Average Similarity

in the system
04. for each item
05. Compute the average rating and the number

of ratings using user’s u profile if
Average Similarity(u) < max/2

06. for each user u
07. Compute normalized RDMA(u)

using the average rating from 05.
08. avg = average RDMA over all users
09. for each user u
10. if RDMA(u) <avg
11. PS=0
12. else
13. PS=f(RDMA(u))

Where f : [avg, 1]− > [0, 1]

f(x) =
1

eα − 1
(e

α x−Avg RDMA
1−Avg RDMA − 1) (6)

For computing the average ratings and the number of pre-
dictions for each item, the algorithm selects (line 4) only
those users that have a high Average Similarity. In lines
5-7, using these values, we compute RDMA for each user.
Lines 8-12 assign a 0 shilling probability for users having
less than the average RDMA and use function f to compute
the shilling probability for the other users. We choose f such
that it evaluates to almost 1 for values of x very close to 1,
and very close to 0 for the rest of the values, thus trans-
lating the high values for RDMA into an almost 1 shilling
probability. We have tested different values of α and found
only a small variation in results (the experiments presented
here were conducted with α = 10).

The algorithm exploits the fact that eliminating regular
users from computing predictions and average rating for
each item (as used in the equation for RDMA) does not
result in these users having a high RDMA. On the other
hand, eliminating the attackers and the regular users that
are detected as false positives in the first step results only
in the group of attackers having a high RDMA (see also the
discussion from the previous Section, as well as Figures 7
and 8).

The resulting plots for the overall shilling probability com-
puted by our algorithm are shown in Figure 9 for a database
without attackers, and in Figure 10 for a database with at-
tackers. The results show that our algorithm is very effective
against the Random Bot attack. In a separate stream of ex-
periments (not presented here due to space limitations), we
have obtained very similar results for an Average Bot type
of attack. We can thus conclude that our algorithm is ef-
ficient against both zero-knowledge and limited-knowledge
attacks.

5.2 Discussion
Target items. Our experiments have shown that many

items in the system are rated by only a few users, and their
ratings can be pushed very easily. Also, many items with
a low average rating have few ratings because users tend to
rate only the items that are recommended to them by the
system, which are usually the items that also have a high
average. Using these experimental observations we conclude
that items more likely to be target items for a push attack
are the ones that have both a low average rating and a small
number of ratings. Moreover, attacks are quite powerful
using this strategy. In Equation 2, the presence of only
three attackers in the neighborhood of one user is enough
to create a large prediction change and to push such target
items to the top-5 recommended items. The reason for this

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 200 400 600 800 1000

Sh
illi

ng
 p

ro
ba

bi
lit

y

Users

Shilling probability without attackers

Shilling probability

Figure 9: Shilling attack probability for a database
without attackers

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 200 400 600 800 1000

Sh
illi

ng
 p

ro
ba

bi
lit

y

Users

Shilling probability with attackers

Shilling probability for normal users
Shilling probability for attackers

Figure 10: Shilling attack probability for a database
with attackers

is that since the item is rarely rated, most of the terms in
the sum will be 0, and thus only the ratings given by the
attackers count. Because this item is in the target items
set, the attackers have given it the maximum rating, so that
the predicted rating for the item is also very close to the
maximum rating in the system.

Of course, once such an item is rated by the active user, it
will not be displayed any more in the recommendation list.
The more the actual rating and the predicted rating differ,
the less similar the active user and the attackers will become.
However, this is a slow process, and if the users are already
very similar, the active user has to rate many bad items
before the attacker is excluded from her neighborhood. In
other words, all collaborative filtering algorithms have the
power to adapt, but depending on the power of the attack
and other human factors like the frequency of use of the
system, this process can be very slow.

Employing an algorithm such as the one described in this
paper allows us to periodically monitor the system for the
rating patterns of shilling attackers and will provide a much
faster protection against such malicious users.

False positives. Experiments from Section 4 show that
Algorithm 1 leads to a high number of false positives in iden-
tifying attackers. On the other hand, the enhanced Algo-
rithm 2 does not output false positives even for large attack
sizes. Furthermore, it is scalable since it uses only two of the
metrics discussed in Section 3.2. Eliminating many falsely

 0

 10

 20

 30

 40

 50

 60

 70

 0 100 200 300 400 500 600 700 800 900 1000

Si
m

ila
rit

y

Users

Sorted similarity for some random users

"sorted_similarity_user"
"sorted_similarity_user1"
"sorted_similarity_user2"
"sorted_similarity_user3"

"sorted_similarity_user100"
"sorted_similarity_user933"

Figure 11: Sorted similarity for some random users
in the MovieLens database

identified shilling attackers from the recommendation pro-
cess can result in loss of quality for the recommendations.
This can be argued by looking at the power law distribu-
tion of similar neighbors in user-based collaborative filter-
ing (Figure 11). For an active user u, there are a few very
similar users and many users with much lower similarity val-
ues. If the algorithm outputs some false positives that are
among the very similar users, then recommendations will be
quite influenced by the less similar users and their quality
will inherently decrease.

6. INTEGRATION WITH A WEB-BASED
RECOMMENDER SYSTEM

The previous sections showed that rating patterns can be
very useful in detecting attackers, with only a small num-
ber of false positives. Combining RDMA and the Average
Similarity Metric results in a strong metric which is able to
detect all attackers in the system in our experiments.

As ratings in a recommender system are given in a demo-
cratic way, a user may give an item the maximum rating
even if this is considered a bad product (i.e., the average
rating for this item in the whole system is very low). Thus,
attackers in a collaborative filtering based recommender sys-
tem should not necessarily be perceived as malicious by the
other users, since the process of giving ratings to items is
mostly a question of taste. It is thus arguable whether the
users suspected of attack should be totally excluded from
computing recommendations for the other users.

To address this issue, we present a modification to neigh-
borhood formation in the user-based collaborative filtering
algorithm that weighs each user’s influence in generating
recommendations according to her probability of being a
shilling attacker:

W ′
i,j = Wi,j ∗ (1 − PSj) (7)

where PSj is the probability for shilling, and Wi,j is the
similarity between users i and j. Since the probability for
regular users is almost 0, and for attackers is almost 1, the
effect of using this modification in a user-based collaborative
filtering algorithm is to practically filter out malicious users
from making recommendations, while reducing the influence
of users with special preferences.

In an on-line web based recommender system, we can pro-
vide the user with an additional button to be pressed for

activating protection against shilling attackers. This pro-
tection will probably be activated by a user who gets pre-
dictions she strongly disagrees with. More, a user should
be able to chose to activate or deactivate the protection
against shilling attackers for each Top-N recommendation
list she receives. However, the recommender system would
continuously monitor for shilling attack patterns and com-
pute the appropriate shilling attack probabilities. The only
overhead for the recommender system would be to take the
shilling probability into account when computing the recom-
mendation list. Thus, there is no need to rebuild the model,
making the algorithm scalable to large numbers of users and
items.

7. CONCLUSIONS AND FUTURE WORK
This paper proposed and investigated the use of statistical

metrics for detecting patterns of shilling attackers in a rec-
ommender system. We have evaluated these metrics for the
MovieLens database and shown that attackers do indeed ex-
hibit special, noticeable rating patterns. We also proposed
the use of an additional metric, RDMA, to measure a user’s
disagreement with the other users in the database, weighted
by the inverse rating frequency of her rated items.

Based on these investigations we have developed an algo-
rithm that computes the probability of a user to be a shilling
attacker by studying the rating patterns wihtin the system,
namely exploiting the RDMA and Average Similarity met-
rics. We empirically proved this algorithm to be effective in
identifying all attacks defined in [4], even for large attack
sizes of up to 3% of the system.

We intend to further improve RDMA, as well as study
other rating patterns for attackers. Moreover, we are inter-
ested in developing and analyzing other more complex low
cost shilling attacks on recommender systems.

8. REFERENCES
[1] G. K. Al Mamunur Rashid and J. Riedl. Influence in

ratings-based recommender systems: An
algorithm-independent approach. In Proceedings of
SIAM International Conference on Data Mining, 2005.

[2] J. Canny. Collaborative filtering with privacy. In SP
’02: Proceedings of the 2002 IEEE Symposium on
Security and Privacy, page 45, Washington, DC, USA,
2002. IEEE Computer Society.

[3] D.-H. Kim, V. Atluri, M. Bieber, N. Adam, and
Y. Yesha. A clickstream-based collaborative filtering
personalization model: towards a better performance.
In WIDM ’04: Proceedings of the 6th annual ACM
international workshop on Web information and data
management, pages 88–95, New York, NY, USA, 2004.
ACM Press.

[4] S. K. Lam and J. Riedl. Shilling recommender systems
for fun and profit. In WWW ’04: Proceedings of the
13th international conference on World Wide Web,
pages 393–402, New York, NY, USA, 2004. ACM
Press.

[5] G. Linden, B. Smith, and J. York. Amazon.com
recommendations: Item-to-item collaborative filtering.
IEEE Internet Computing, 7(1):76–80, 2003.

[6] B. N. Miller, J. A. Konstan, and J. Riedl. Pocketlens:
Toward a personal recommender system. ACM Trans.
Inf. Syst., 22(3):437–476, 2004.

[7] M. L. Nelson, J. Bollen, J. R. Calhoun, and C. E.
Mackey. User evaluation of the nasa technical report
server recommendation service. In WIDM ’04:
Proceedings of the 6th annual ACM international
workshop on Web information and data management,
pages 144–151, New York, NY, USA, 2004. ACM
Press.

[8] M. O’Mahony, N. Hurley, N. Kushmerick, and
G. Silvestre. Collaborative recommendation: A
robustness analysis. ACM Trans. Inter. Tech.,
4(4):344–377, 2004.

[9] M. P. O’Mahony, N. Hurley, and G. C. M. Silvestre.
Promoting recommendations: An attack on
collaborative filtering. In DEXA ’02: Proceedings of
the 13th International Conference on Database and
Expert Systems Applications, pages 494–503, London,
UK, 2002. Springer-Verlag.

[10] H. Polat and W. Du. Privacy-preserving collaborative
filtering using randomized perturbation techniques. In
ICDM ’03: Proceedings of the Third IEEE
International Conference on Data Mining, page 625,
Washington, DC, USA, 2003. IEEE Computer Society.

[11] P. Resnick, N. Iacovou, M. Suchak, P. Bergstorm, and
J. Riedl. GroupLens: An Open Architecture for
Collaborative Filtering of Netnews. In Proceedings of
ACM 1994 Conference on Computer Supported
Cooperative Work, pages 175–186, Chapel Hill, North
Carolina, 1994. ACM.

[12] R. Z. Robin Burke, Bamshad Mobasher and
R. Bhaumik. Identifying attack models for secure
recommendation. In Beyond Personalization 2005,
2005.

[13] B. M. Sarwar, G. Karypis, J. A. Konstan, and
J. Reidl. Item-based collaborative filtering
recommendation algorithms. In World Wide Web,
pages 285–295, 2001.

[14] U. Shardanand and P. Maes. Social information
filtering: Algorithms for automating “word of mouth”.
In Proceedings of ACM CHI’95 Conference on Human
Factors in Computing Systems, volume 1, pages
210–217, 1995.

[15] H.-J. Z. Xue-Feng Su and Z. Chen. Finding group
shilling in recommendation system. In WWW ’05:
Proceedings of the 14th international conference on
World Wide Web, 2005.

