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Abstract. In this paper we show how using a representation of an ellip-
tic curve as the intersection of two quadrics in P

3 can provide a defence
against Simple and Differental Power Analysis (SPA/DPA) style attacks.
We combine this with a ‘random window’ method of point multiplication
and point blinding. The proposed method offers considerable advantages
over standard algorithmic techniques of preventing SPA and DPA which
usually require a significant increased computational cost, usually more
than double. Our method requires roughly a seventy percent increase in
computational cost of the basic cryptographic operation, although we
give some indication as to how this can be reduced. In addition we show
that the Jacobi form is also more efficient than the standard Weierstrass
form for elliptic curves in the situation where SPA and DPA are not a
concern.

1 Introduction

Elliptic curve based cryptosystems are particularly suited for cost-effective im-
plementations of public key primitives on low powered computational devices
such as Smart Cards, Mobile Phones and PDAs. Nevertheless, the use of side
channel information, such as that provided by Simple and Differential Power
Analysis (SPA/DPA) [7] on naive implementations can lead to the revelation of
the secrets that the algorithm is working on.

Elliptic curve systems have the advantage of almost always using a new
random ephemeral secret integer in the double and add algorithm for each run
of a protocol, unlike RSA. Hence, a DPA attack on ECC is harder to mount
for this reason than one against RSA. On the other hand smart card vendors
require any implementation to be as immune as possible from SPA and DPA.

One problem with elliptic curve systems is that the doubling operation is
significantly more efficient than the general addition operation. This needs to be
compared to the RSA case, where squaring is only slightly more efficient than
general multiplication. Hence, it may be possible to use SPA to recover some bits
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of each ephemeral exponent, since one may be able to distinguish an addition
from a doubling. Recall [6] that for EC-DSA only a few bits of each ephemeral
exponent need to be leaked in this way per message, for the underlying secret
key to be revealed.

Hence, various proposals have been made to completely secure elliptic curve
systems against SPA and DPA. To protect against DPA it has been proposed
to use a randomised projective coordinate system. Here the base point on the
curve P = (x, y) on each protocol run is first randomised by replacing P with
the (Jacobian) projective point

P ′ = (xz2, yz3, z),

or the (homogeneous) projective point

P ′′ = (xz, yz, z),

for some random non-zero field element z. This still allows some of the efficient
techniques for point multiplication to be used, such as those described in [1]
and [5]. The use of mixed coordinate (i.e. affine and projective coordinates used
together) multiplication algorithms are, however, not used which causes some
efficiency loss.

Moreover, the above defence will not protect against SPA, hence for SPA
protection one of two defences are usually proposed. The first is as follows,
instead of computing [k]P one computes [k + rq]P , where q is the order of P
and r is some random integer. This defence significantly increases the cost of a
point multiplication. This does not provide any defence against SPA since if one
can recover k′ = k + rq from a single run then one can recover k = k′ (mod q)
for this run since q is known. A second technique is to take a random integer
r and compute k′ = rk (mod q) and r′ = 1/r (mod q). One then computes
Q = [k′]P and then [r′]Q = [k]P , again a task which significantly increases
computational cost.

Neither of these defences against SPA address the underlying cause, which
is the disparity between the addition and doubling algorithms. A model for the
elliptic curve in which addition and doubling are given by the same formulae will
not suffer from such side channel analysis on the code dependent nature of the
operation. In this paper we proposed such a model, based on the Jacobi form
of an elliptic curve. Our model, for certain elliptic curves, will provide a defence
against SPA and will only give a 70 percent increase in computational cost.

To understand our defence against SPA we first explain roughly how an SPA
attack on a standard elliptic curve binary point multiplication method would
proceed. Recall the binary method for point multiplication proceeds as in the
following algorithm.

Binary Multiplication Method

INPUT: A point P and an integer k
OUTPUT: The point Q = [k]P .
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1. Q←O.
2. For i from t down to 0 do:
3. Q← [2]Q.
4. If (ki = 1) then
5. Q←Q + P.
6. Return Q.

With a standard representation an attacker can attempt to determine the bits
of k by seeing how the program behaves at the if-statement. The test is always
carried out but the subroutine for point addition will only be called when the
ith bit of k is set. The attacker can attempt to spot this jump to a subroutine,
which will have a different power trace to point doubling, and hence determine
k.

The most common idea to make point addition and doubling indistinguish-
able, is to unify the common code part for both operations, and add dummy code
to balance the difference between point addition and point doubling. Ideally one
needs to execute the same code at the same addresses but with different results,
but this is unfortunatelly not possible if point addition and point doubling are
not unified.

Now suppose exactly the same code was called for point addition and point
doubling with the same power trace profile for both operations. The attacker
would now need to determine whether one or two calls to this procedure were
performed on each iteration. This is a much harder problem for SPA to solve,
but if this is still a worry one can unroll the loop to make this task harder for
the attacker. But for standard elliptic curve Weierstrass models one cannot use
the point addition code in the case where the two points are equal, since the
addition formulae contain a singularity when the inputs are the same.

Notice that the defence of simply adding spurious multiplication operations
into the doubling code, as mentioned above, would not be a suitable defence since
the point doubling and point addition code would still have seperate execution
profiles, and would reside in different areas of memory or hardware.

Nevertheless, with the basic double and add algorithm a little bit of informa-
tion can leak from the bit test, even if the same code is used for point addition
and doubling. A carefull implementation can make this information not usable
in practice from the point of view of an attacker. Moreover, we present in the
last section a multiplication algorithm that reduce significantly the amount of
information that can leak from point multiplication.

One is still left open to a DPA style attack whereby internal data bits are
guessed (depending on whether the if statement produces a branch) and these
are correlated over a number of runs. However, for ECC systems these are easily
prevented by point blinding (essentially using the redundancy of a projective
coordinate representation) or by the protocol using ephemeral point multiples
on each run.
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2 Intersection of Two Quadrics

Let K denote our ground field, which in applications will be a finite field Fp of
characteristic greater than three. It is well known that an intersection of two
quadric surfaces in P

3

Q : {Q1(x0, x1, x2, x3) = 0} ∩ {Q2(x0, x1, x2, x3) = 0}
generically defines a curve of genus one. Hence, assuming Q has a point defined
over K, the curve Q is birationally equivalent to an elliptic curve, also defined
over K.

Just as the chord-tangent law defines a geometric group law on the elliptic
curve we can also define a group law on Q in geometric terms, see [8]. We first let
P0 denote our given K-rational point on Q, which we shall treat as the identity.
Three points P1, P2, P3 ∈ Q(K) will sum to zero if and only if the four points
P0, P1, P2 and P3 are coplanar. The negation of a point −P1 is given as the
residual intersection of the plane through P1 containing the tangent line to Q at
P0.

An algorithm to pass from a general intersection of two quadric surfaces with
a K-rational point to an elliptic curve is given in [2, p 36]. In [3, pp 63–64] a
method is given to pass in the other direction, from a general elliptic curve over
K

E : Y 2 = X3 + AX + B,

to the intersection of two quadrics given by

Q :
{
z21 −Bz23 −Az2z3 − z0z2 = 0,
z22 − z0z3 = 0.

The map from a point (X,Y ) ∈ E(K) to a point (z0, z1, z2, z3) ∈ Q(K) is given
by z0 = X2, z1 = Y , z2 = X and z3 = 1.

Also in [3] formulae are given to add points onQ(K). If we let a=(a0,a1,a2,a3)
and b = (b0, b1, b2, b3) denote two points on Q(K) then their sum is given by
c = a+ b with

c0 = R(a,b)2,
c1 = b1S(a,b) + a1S(b,a),
c2 = R(a,b) · T (a,b),
c3 = T (a,b)2,

where

R(a,b) = a0b0 − 2Aa2b2 − 4Ba3b2 − 4Ba2b3 + A2a3b3,

S(a,b) = a20b0 + 2Aa2a0b2 + 4Ba2a0b3 + 3Aa3a0b0
+12Ba3a0b2 − 3A2a3a0b3 + 4Ba3a2b0 − 2A2a3a2b2
−4ABa3a2b3 −A3a23b3 − 8B2a23b3,

T (a,b) = 2a1b1 + a2b0 + a0b2 + Aa3b2 + 2Ba3b3.
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What is remarkable about these equations is that they also hold when a = b, i.e.
when a doubling operation is performed. Hence, the use of such a representation
will remove the distinction between doubling and adding, and hence help to
defeat SPA as argued above. However, the above formulae are overly complicated
and therefore not particularly suited to a real life implementation, so in the next
section we reduce to a special class of elliptic curves over K for which the above
formulae can be made particularly simple leading to efficient implementation.

3 Jacobi Form

To make the formulae from the above section more amenable to machine cal-
culation we require that our quadrics Q be simultaneously diagonalisable over
K. This is equivalent to saying that our initial elliptic curve has three points of
order two defined over K, or equivalently that the polynomial X3 +AX +B has
all three roots defined over K.

Hence, from now on we shall assume we have chosen an elliptic curve

E : Y 2 = X3 + AX + B

which has three points of order two defined over K. This means that the group
order N = #E(Fp) is divisible by 4, hence we should choose such a curve with
N = 4q with q a prime.

By applying a standard Möbius transformation we can move the three points
of order two to the positions (0, 0), (−1, 0) and (−λ, 0) where λ ∈ K. Our elliptic
curve has then become

E′ : y2 = x(x + 1)(x + λ).

To obtain this transformation, first write the factorisation of X3 +AX +B over
K as

X3 + AX + B = (X − θ1)(X − θ2)(X − θ3).

Then we define the following Möbius transformation, where {i, j, k} = {1, 2, 3},

x =
X − θiZ

(θi − θj)2
,

z =
Z

θi − θj
,

y = Y (θi − θj)5/2,

where (X,Y, Z) is a homogeneous projective point on E(K) and (x, y, z) is a
homogeneous projective point on E′(K). Then setting

λ =
θi − θk

θi − θj
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we see that the curve E is mapped to the curve E′ since

x(x + z)(x + zλ) =
1

(θi − θj)6
(X − θ1Z)(X − θ2Z)(X − θ3Z)

=
Y 2

(θi − θj)6
= y2z.

This change of variable requires that for some 1 ≤ i, j ≤ 3 with i �= j we have
that θi−θj is a square modulo p. If p ≡ 3 (mod 4) then −1 will not be a square
modulo p and so either

θi − θj or θj − θi

will be a square modulo p, for all possible i and j. When p ≡ 1 (mod 4) then
there is a 1/8 chance for given θ1, θ2, θ3 that we cannot find a pair of indices
such that θi − θj is a square modulo p.

In [4] Chudnovsky and Chudnovsky consider the following intersection of two
quadrics

Q :
{
x20 + x21 − x23 = 0,
k2x20 + x22 − x23 = 0.

From two points (a0, a1, a2, a3) and (b0, b1, b2, b3) on Q we can compute their
sum (c0, c1, c2, c3) via the formulae

c0 = a3b1 · a0b2 + a2b0 · a1b3,
c1 = a3b1 · a1b3 − a2b0 · a0b2,
c2 = a3a2b3b2 − k2a0a1b0b1,

c3 = (a3b1)2 + (a2b0)2.

The zero of this group law is given by the point (0, 1, 1, 1). The above formulae
for the group law on Q are also valid when (a0, a1, a2, a3) = (b0, b1, b2, b3), and
so the same formulae can be used both for doubling and general addition. Each
addition or doubling can be efficiently implemented so that it requires a total of
16 field multiplications.

For use in signed window methods of point multiplication we require the
formulae for point negation in the Jacobi model. Given the addition formulae
above it is easy to see that

−(a0, a1, a2, a3) = (−a0, a1, a2, a3).

We now, for a moment, leave our main application of defences against SPA
and DPA and turn to the use of Jacobi form as a way of speeding up algorithms
for elliptic curve point multiplication in environments where SPA and DPA are
not a concern.

By using the doubling formulae given in [4]

c0 = 2a1a3 · a2a0,
c1 = (a1a3)2 − (a2a3)2 + (a1a2)2,
c2 = (a2a3)2 − (a1a3)2 + (a1a2)2,
c3 = (a2a3)2 + (a1a3)2 − (a1a2)2,
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where (c0, c1, c2, c3) = [2](a0, a1, a2, a3), we obtain doubling formulae which only
requires eight field multiplications.

However, with a little care one can even achieve doubling in seven field mul-
tiplications, which is more efficient than doubling in projective coordinates on a
standard Weierstrass equation in odd characteristic.

Lemma 1. A point can be doubled in the Jacobi model using seven field multi-
plications.

Proof. We first take the doubling formulae obtained from specialising the general
point addition method to obtain

c0 = 2a3a1 · a2a0,
c1 = (a3a1)2 − (a2a0)2,
c2 = (a3a2)2 − k2(a0a1)2,
c3 = (a3a1)2 + (a2a0)2,

which requires ten field multiplications to evaluate. Using the equations of the
curve,

k2a20 = a23 − a22 and a20 = a23 − a21,

we see that we can, assuming a2 �= 0, rewrite c2 as

c2 = (a0a2)2 − (a1a3)2 + 2(a1a2)2.

Then we can perform a doubling by evaluating

!1 = a3a1,

!2 = a0a2,

!3 = 2(a1a2)2,
c0 = 2!1!2,
c3 = (!1 + !2)2 − c0,

c1 = c3 − 2!22,
c2 = −c1 + !3.

It is easy to verify that the same equations hold when a2 = 0.

It is interesting to note that this means we can triple a point in 16 + 7 = 23 field
multiplications. Note, in [4] triplication formulae for points in the Jacobi model
are also given, which also require only 23 field multiplications.

To use these formulae all that remains is to produce the link between Q and
E′. The two parameters k and λ defining Q and E′ are linked by the equation

λ = 1− k2.

To describe the map from E′ to Q, let (x, y, z) denote a projective point on E′,
i.e.

y2z = x(x + z)(x + zλ),
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such a point is obtained from (X,Y ) by generating a random z ∈ K∗ and
putting (x, y, z) = (Xz, Y z, z), note this homogeneous projective representation,
as remarked on both above and below, is needed to prevent DPA attacks. The
equivalent point on Q is then given by the equations

x0 = −2(x + z)y,
x1 = −z2 + z2k2 + 2 z k2x + k2x2 + y2 − x2 − 2 z x,

= λ(−x2 − z2 − 2xz) + y2,

x2 = −2 z k2x− k2x2 − z2k2 + z2 + 2 z x + y2 + x2,

= λ(x2 + z2 + 2xz) + y2,

x3 = −z2k2 + k2x2 + z2 + 2 z x + y2 + x2,

= λz2 + y2 + 2xz + (2− λ)x2.

The reverse operation is obtained by computing

x = (x2 − x3)λ,
y = x0λk

2,

z = x1k
2 − x2 + x3λ.

Suppose we implemented a standard point multiplication algorithm using a
signed window method with r = 5, see [1, Algorithm IV.7], on the elliptic curve
E over Fp, where p is a 192-bit prime number. This would, on average, require
191 point doublings and 38 general point additions. The standard projective
coordinate methods on the curve E require 16 field multiplications to perform
a general addition and 8 field multiplications to perform a doubling. Hence, the
average number of field operations required would be 2136.

Using our Jacobi representation and the same multiplication algorithm we
would require on average 3664 field multiplications since both doubling and gen-
eral addition requires 16 field operations. Hence, we obtain about 70 percent
performance penalty as compared to the standard method. However, since dou-
bling and addition is performed by the same code we hopefully obtain a better
defence against SPA attacks.

If we were not concerned with a defence against SPA/DPA then using the
Jacobi model we can perform a point multiplication in, on average, 1945 field
multiplications. This is because we can perform a double in seven field multi-
plications. Therefore, the Jacobi model gives roughly a ten percent performance
improvement over the standard Weierstrass model.

Returning to our main interest of defending against SPA/DPA we can obtain
a better performance in the following way. We can flip a coin before doubling to
decide whether we use the 7 or the 16 field operations formulae for doubling. The
average number of field multiplications then becomes 2040, which is more effi-
cient than the standard algorithm using a Weierstrass model. Hence, we obtain
greater efficiency and a defence against SPA/DPA at the same time.
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Chudnovsky and Chudnovsky [4] give a number of possible other improve-
ments to multiplication algorithms in Jacobi models. However, they address this
problem from the point of view of efficiency and not from the point of view
of minimising the effect of DPA. We leave it as an open research problem to
reconcile these two approaches for elliptic curves in Jacobi form.

To protect even further against DPA type attacks we stress we need to per-
form a method of point blinding, whilst transforming from the standard form
to the Jacobi form, as above. Assume the affine point P = (X,Y ) ∈ E(K) is
given, on every protocol run one then randomises the representation of P by
taking a homogeneous representation. This is achieved by generating a random
element Z ′ ∈ K∗ and replacing P by the equivalent point P ′ = (X ′, Y ′, Z ′)
where X ′ = XZ ′ and Y ′ = Y Z ′.

3.1 Example Curve

The prime field Fp defined by

p = 2192 − 264 − 1

is a popular choice for elliptic curve systems, since it offers a number of efficiency
advantages. For this field one could choose the curve defined by

λ = 421

which has group order

6277101735386680763835789423320997497001573836313910896964

which is four times a 190 bit prime.

4 Randomised Signed Windows Method

To add even further defence against side channel analysis we propose the use of
a signed window multiplication algorithm, which uses a random window width.
This defence can also be used for standard elliptic curve systems, and not just
those in the Jacobi model considered above.

We keep the main signed window algorithm as standard, see for example [1,
Algorithm IV.7]. However, we alter the preprocessing of the ‘exponent’, as in
[1, Algorithm IV.6], so as to produce a random window width. We assume that
the system will multiply a fixed point P by a random number k, using a lookup
table of the point multiples

Pi = [2i + 1]P,

for 0 ≤ i ≤ 2R−2 − 1. The preprocessing in the signed window algorithm is used
to express k as

k =
d−1∑
i=0

bi2ei
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where ei ∈ Z≥0 and

bi ∈ {−2R−1 + 1,−2R−1 + 3, . . . , 2R−1 − 3, 2R−1 − 1}.

Usually one uses fixed window lengths so that ei+1 − ei ≥ R for 0 ≤ i ≤ d − 2.
The following algorithm produces a randomised signed window representation
of k which will provide a more difficult target for side channel analysis.

Signed m-ary Window Decomposition

INPUT: An integer k =
∑	

j=0 kj2j , kj ∈ {0, 1}, k	 = 0.
OUTPUT: A sequence of pairs {(bi, ei)}d−1

i=0 .

1. d← 0, j← 0.
2. While j ≤ ! do:
3. If kj = 0 then j← j + 1.
4. Else do:
5. r←R{1, . . . , R}.
6. t← min{!, j + r − 1}, hd← (ktkt−1 · · · kj)2.
7. If hd > 2r−1 then do:
8. bd← hd − 2r,
9. increment the number (k	k	−1 · · · kt+1)2 by 1.
10. Else bd← hd.
11. ed← j, d← d + 1, j← t + 1.
12. Return the sequence (b0, e0), (b1, e1), . . . , (bd−1, ed−1).

The only change from the standard algorithm is the addition of line 5, where
←R denotes a random assignment to the variable on the left from the set on
the right.

5 Conclusion

In this paper we have proposed two new defences against side channel analysis
for elliptic curve based cryptosystems. Firstly, the use of the Jacobi form for an
elliptic curve means that the time/power required to perform a point addition
will be almost identical to that of a point doubling. Such a balanced approach is
a well known design technique for defeating side channel analysis, and this is the
first time a truly balanced technique has been proposed for use in elliptic curve
systems. Secondly, the use of a randomised window method creates another level
of defence.

In addition our Jacobi form representation can be made more efficient than
the standard Weierstrass representation for implementations where SPA and
DPA are not a concern.
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