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Abstract—The Precision Time Protocol (PTP) distributes a
time reference across a network: it specifically addresses demand-
ing environments, where it can reach sub microsecond precision
using appropriate technologies. Its scalability is primarily limited
by message packet delay variations induced by packet collisions.

While it is possible to avoid collisions with non-PTP packets
using appropriate traffic management technologies, collision
between PTP packets is an open problem in large systems with
critical clock precision requirements.

We propose a coordination algorithm that avoids the occur-
rence of such collisions. It assumes the availability of a multicast
facility from the timing reference source, the master clock, to all
the slaves: this is not a restrictive hypotesis since PTP itself takes
advantage of this kind of connectivity, and it is also compatible
with typical wireless environments.

The algorithm operates without introducing additional traffic,
it ensures an upper bound to the time between two successive
synchronizations of any given slave, it does not alter the structure
of the standard PTP messages, it envisions a dynamic number of
slaves, it tolerates the replacement of the master with a hot spare
in case of failure, and does not rely on specialized hardware.

The algorithm has a footprint that does not insist on activities
that are already time sensitive, and its operation is mostly
concentrated on the master.

The algorithm inherits the security and fault tolerance limits of
PTP: in particular this refers to malicious nodes, and to broken
devices that may jam the network.

Keywords: Precision Time Protocol, Packet Collisions, Coordi-
nation protocol, token routing, wandering token.

I. INTRODUCTION

The IEEE1588 Precision Time Protocol (PTP) is a clock
synchronization protocol designed for a very wide applica-
bility range. It computes data needed for the syntonization,
intended as the tuning of clock frequency, and the synchro-
nization, intended as the consensus about the clock value at a
certain time. It is based on a regular flow of packets carrying
timestamps between a unit known as the master clock, and
the units known as slave clocks; it is integrated by a master
election algorithm, also based on packet exchange [1].

The traffic carrying the timestamps used for clock syn-
chronization has stringent timing requirements: the delayed
delivery or the loss of a single packet may deteriorate the
precision of a slave clock, with effects that depend on the
application environment [3]. Excluding hardware failures,
these events are always related to packet jamming: packets
related to distinct control flows collide for the utilization of a
resource, and the resource responds with a penalty for one
or both flows. The CSMA/CD policy is just one example

of this. One solution is that communication related to clock
synchronization uses dedicated resources: this is implemented
in several ways considering time synchronization packets as
high-priority traffic [4]. In this way we obtain that collisions
are limited within time synchronization packets, but they are
not entirely prevented.

To solve this problem, we introduce an algorithm that
globally serializes the production PTP packets that are prone
to collision. Collisions are thus completely eliminated.

In order to be of practical interest, a solution must satisfy
a number of requirements:

• to be compatible with the existing standard;
• to have no impact on clock synchronization traffic;
• to ensure regular access to the master by the slaves;
• not to introduce single points of failure;
• to be scalable.
We introduce a solution that complies with the above

requirements, but that requires that communication between
the master and the slaves is in multicast: in fact this require-
ment is not far from IEEE1588 philosophy, which envisions
certain messages to be delivered from the master to all slaves.
Communication in the reverse direction, from the slaves to
the master, is not required to show the same property for the
application of the algorithm. As a side effect, the reciprocal
visibility of slaves is not required.

In a nutshell, our solution consists in managing the cir-
culation of a token carrying the privilege of requesting a
clock synchronization to the master. The token circulates in
a network that, for our purposes, can be assimilated to a
star, with the master clock at the center. The token is passed
from one slave to the other, bouncing on the master: token
duplication and loss are therefore avoided by the presence of
a centralized control. However this control does not extend to
the selection of the next token destination.

The decision about the next destination of the token is
usually demanded to the slave holding the token, that operates
using data available locally: with infrequent exceptions, the
role of the master is limited to forwarding the packet to the
destination indicated by the token source. The advantage is
that the replacement of the master, as well as the cold start of
the system, do not require the preliminary reconstruction of a
directory of the slaves in the master clock.

The decision about the next destination of the token is
randomized: at each step any of the slaves can be selected
as the next destination for the token [8]. This rule is simple to
implement when each slave holds a limited list of other slaves



(see [9] for theoretical aspects related with this approach),
not necessarily adjacent at link level, but leaves open the
possibility that a slave waits for a token for an indefinite time.

The master is able to avoid the occurrence of such a case,
since it participates to all synchronization sessions: when it
detects that one of the slaves is about to starve, it de-routes a
token in order to allow it to run a synchronization session.

We take into account that the additional complexity in-
troduced by a new protocol should be in balance with the
expected benefits. So when the target application tolerates
sporadic clock inaccuracies, or when collisions are so rare
to approximate hardware failures, it may be questionable to
complicate the system to avoid such events. In the paper we
discuss and evaluate:

• the relevance for the specific application of a collision
event;

• the frequency of such an event in the specific network.
It is not possible to give an exhaustive answer to both

questions, since they widely depend on the specific use case,
and PTP itself is designed to be as much generic as possible.
So we give generic guidelines, by analyzing the consequences
of a collision event.

A collision event is usually managed buffering one of the
colliding messages, and transmitting it at a later time: this
introduces jitter, that is the primary source of imprecision in
PTP. The relevance of sporadic clock imprecision depends on
the specific application, but we consider that typical applica-
tions of the PTP are quite demanding about this. However,
even in case of clock sensitive applications, events that are so
rare to be assimilated to a master clock failure may become
negligible. So the frequency of collision events is also relevant,
and must be considered.

The evaluation of the frequency of collision events depends
on system networking and cannot be solved with a general
purpose statement: however, a simple model is sufficient to
give an idea of when the algorithm we propose is of practical
interest.

When clock synchronization events are homogeneously
distributed in time — and the PTP ensures this property,
as discussed below — we may consider them as a Poisson
process. Its density, the number of events per time unit,
corresponds to the rate between the number of slaves, n, and
the average interval between two successive synchronization
requests from the same slave: for PTP we have that this
average corresponds to δ

2 where δ is the maximum interval
between two successive synchronizations of the same slave.

From the properties of Poisson distributions, the probability
of a collision during a lapse of given amplitude (for instance,
the gap between two successive time slots reserved to clock
synchronization) grows exponentially with the number of
slaves, and with the frequency of clock synchronization ses-
sions. This value is tightly bound to the target clock precision.

To give an idea, in a system composed of 10 slaves, a syn-
chronization period δ of 2 seconds, and one synchronization
slot every 1 msec, the probability of a collision during a slot
is in the 10−4 range. If the number of nodes rises to 100, or
if the period δ is decremented to 200 msecs, the probability
of collision rises to 0.01.

So the introduction of a collision avoidance protocol may
be questionable in a system where collision events are rare.
However their probability grows rapidly with system size and
synchronization frequency; if we envision the evolution of PTP
towards larger systems with tighter timing requirement, then
collision avoidance should be seriously taken into considera-
tion. This paper is the first step in this direction.

The rest of the paper is organized as follows: the next sec-
tion describes PTP synchronization messages, and in section
III we introduce the algorithm that serializes synchronization
requests. In section IV and V we focus on two relevant sub-
problems that are opened by the algorithm: the implementation
of a unique identifier for the slaves, where we explore the
possibility of using the MAC address for the purpose, and
the maintenance of the random neighborhoods of the slaves,
comparing the protocol adopted for our solution with another
recently published to solve a similar problem.

II. PROBLEM DESCRIPTION

The PTP features a clock synchronization protocol which
is built on three messages: a SYNC message, sent in multicast
from the master clock to the slaves, a DELAY REQ message
sent from a slave to the master, and a DELAY RESP sent in
the reverse direction. In our system, SYNC and DELAY RESP
messages are sent in multicast, with the indication of a specific
destination in the case of DELAY RESP messages.

The SYNC message transfers from the master to the slave
the value of the clock of the master: a sequence of such
messages, when network delay from the master to a certain
slave is constant, carries enough information to enable the
syntonization of the clock of the slave.

But network delays and clock offsets must be frequently
measured since they are prone to a slow drift due to a
number of reasons, firstly temperature; to this purpose PTP
introduces the DELAY REQ and DELAY RESP messages. A
DELAY REQ message is sent to the master, which replies with
a DELAY RESP message that contains the timestamp recorded
when the request was received; the slave uses it to rescale the
clock value using also the timestamps collected during the
SYNC message exchange.

Considering the traffic associated to the operation of the
PTP, while the SYNC message is sent in multicast, each slave
requires a distinguished pair of DELAY REQ/DELAY RESP
messages. This fact is the reason of limited scalability of the
PTP: traffic grows linearly with the size of the system, and
eventually saturates carrier capacity. We call two-way session
this latter request/response exchange (not to be confused with
the peer-to-peer variant of the PTP, which falls outside the
scope of the paper).

A slave initiates two-way sessions at regular intervals,
whose maximum extent is determined by the quality of the
slave clock, and by the target precision, that we assume to be
constant in time. For each session the slave uses the most
recent SYNC message as a reference, also recorded in the
sequenceId field of DELAY REQ message header.

The standard requires that the interval between successive
DELAY REQ messages from the same slave are taken from
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a uniform random distribution between zero and a maximum
value, that here we indicate with δ (see clause 9.5.11.2 Timing
Requirements in [1]); this corresponds to an average interval
of δ

2 . Assuming uniform timing requirements throughout the
n slaves in the system, two-way sessions can be modeled
with a system-wide Poisson process, as anticipated in the
introduction, whose density is λ = 2n

δ .
We obtain an analytic prediction of the probability of a colli-

sion if we are able to determine a τ such that two DELAY REQ
issued at times separated by less than τ are in collision.
However, a reliable evaluation of this quantity is extremely
hard to obtain, depending on many aspects eventually hidden
in the implementation of networking devices, and being not
stable in time (see [10] for an analysis of the early Ethernet
from a similar point of view). That is the reason why the
adoption of an approach like the one presented in this paper
is of interest for critical applications. Here below we assume
that a value of τ exists, and we use it for drawing qualitative
conclusions that are valid under this assumption.

Using a Poisson model for the DELAY REQ message pro-
duction process, the probability of a collision is1:

Pcoll = 1 − (1 + 2r)e−2r with r =
nτ

δ
(1)

As anticipated in section I, the probability of collision
increases exponentially with the number of slave clocks in
the system, represented by n, and with the required precision,
which grows with the inverse of δ. The value of τ can be used
to moderate the growth, but while this value is mostly bound
to the networking technology used, the other values may vary
within the same application.

This is an evidence of the problem of collisions of two-way
sessions: the probability of such an event is difficult to evaluate
a priori, and rapidly grows in demanding environments. We
conclude that an algorithm that eliminates the problem, by
serializing two-way sessions, is of interest for a successful
evolution of the PTP protocol.

III. A COORDINATION PROTOCOL BASED ON TOKEN
CIRCULATION

The algorithm is based on a token circulation mechanism
[7]: each slave clock that executes a two-way session grants
the privilege of executing the next two-way session to another
slave. The basic idea is extremely simple, but must be com-
plemented with a number of additional features, in order to be
applicable. We divide the explanation of our instance of token
circulation in three steps:

• the algorithm that is run while there is exactly one slave
holding the privilege (legal conditions) and

• the implementation of the token passing operation, and
• the actions undertaken when certain events break legal

conditions.
The explanation of how token passing is implemented is

delayed, since it is not needed to explain algorithm operation
in legal conditions.

1an exhaustive justification of the formula is found in [5]

A. Operation in legal conditions
In order to ensure a fair share of synchronization oppor-

tunities, we need to overlay a sub-network used for token
circulation: a number of deterministic solutions that enforce
an overlay ring are found in literature. However, they are very
slow in recovering from failures. Here we propose a token
circulation algorithm that is targeted on the peculiar features
of our environment.

We observe that slave clocks do not need to run two-way
sessions at regular intervals: the time between two successive
executions may be variable, as long as a given maximum is not
exceeded. That opens the way to non-deterministic algorithms:
the token may not visit all slave clocks in a deterministic
sequence, but on the contrary it may follow a route obtained
applying repeatedly a non-deterministic token routing rule.
One simple rule consists of passing the token, at each round,
to another slave chosen at random: the rule is effective, since
the time between two consecutive visits of the token to a
given slave clock, the return time of the token, has favorable
properties, included resilience to node failures. An example
of application of this technique to a congestion avoidance
problem is in [6], but the same technique is also used for
distributed coordination in ad-hoc networks [8].

A plain random walk approach introduces an assumption
that contrasts with scalability: in order to select another slave
clock at random, the sender needs to access a registry of
all clock identifiers. The presence of a centralized registry
introduces a single point of failure and re-instantiates a mutual
exclusion problem. On the other hand, the maintenance of a
local cache on each slave is impractical since it might contain
an unpredictable number of slave identifiers.

A viable compromise consists in maintaining a neighbor-
hood of limited size: it is a known result that the random
walk properties (included the distribution of the return time)
are preserved when the graph is not complete.

A solution based on a random walk exhibits another issue,
since for any ∆ > 0 there is a non-null probability of a return
time larger than ∆. Instead we need to ensure that a two-way
session occurs at least every δ time units.

We consider that an effective way to cope with this de-
terministic requirement consists in exploiting a global view of
the system, which is maintained on the master clock: whenever
one of the slave clocks appears to have been waiting δ time
units, the master re-routes the token to feed the starving slave.

The algorithm used for the management of slaves neighbor-
hoods is a key aspect of our solution, since it determines the
fairness of token visits. We introduce an algorithm that we call
swap on timeout that works as follows: whenever a slave that
proposes to pass the token to peer X detects that the master
reroutes the token to another slave Y , it replaces X with Y
in its neighborhood. In section V we compare our algorithm
with another, recently published, and with a full mesh.

One important property of our algorithm is that, since all
nodes are characterized by the same δ, the possibility that
more than one timeout is triggered simultaneously is excluded
in legal conditions. In fact, at time t only one slave may starve,
which is the one that executed the two way session at time
t− δ, necessarily unique.
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1 Neighbors: array [1..degree];
2 forever
3 A = TwoWaySession.observe();
4 I = A.Dest;
5 if ( LocalId == I )
6 i = randomInteger(1..degree);
7 B = new(TwoWaySession);
8 B.ProposedDest = Neighbors[i];
9 B.run();

10 Neighbors[i] = B.Dest;

TABLE I
SLAVE CLOCK ALGORITHM

1 LastVisit[Slave]: array [1..n];
2 forever
3 A = TwoWaySession.receive();
4 S = select Slave

with LastVisit <= (now-delta);
5 if (defined S)
6 A.Dest = S;
7 else
8 A.Dest = A.ProposedDest;
9 A.complete();
10 LastVisit[A.Dest] = now;

TABLE II
MASTER CLOCK ALGORITHM

We have therefore deterministically excluded the occurrence
of collisions, and ensured that all nodes execute one synchro-
nization every δ time units. This result comes at the price of the
design complexity introduced by the token passing protocol.

We conclude with a summary of the algorithm.
In table I we show the algorithm run by the slave, which

consists of a forever loop that is executed each time a new
two-way session A is observed on the wire. Such operation
entails a token passing operation, and each slave in the system
records the destination of the token, represented as A.Dest in
the program. If the destination of the token matches with the
local slave identifier, the operation continues selecting one of
the Neighbors at random as the proposed next destination
of the token; a new two-way session B is run and the token
is passed. At the end of session B, in the Neighbors array
the proposed destination is replaced with the real destination
of the token, that differs from the proposed one in case of
rerouting.

The master clock executes a distinguished algorithm, as
shown in table II. As a general rule it is transparent (i.e.
stateless): the destination of the token is the same proposed
by the slave. The master forces a different destination only to
feed a slave that is detected as starving.

B. Reacting to infrequent events: leave, join and restart

In this section we discuss how the protocol reacts to events
that perturb legal conditions: leave and join are considered
firstly, next we consider how to deal with the startup transient.

A leave event is detected when the slave indicated as the
destination of the token does not perform as expected: the
master clock observes the event and records it in the registry.
Following that, tokens directed to this slave will be regularly

re-routed, with the usual feedback on slaves that have the
leaving node in their neighborhood.

A consequence of the leave event is the loss of the token:
there is no candidate slave for the next two-way session.
The master recovers from this event entering the warm start
procedure described below.

The join event begins when the new slave clock advertises
its presence to the master. In response, the master delivers
one or more slave identifiers to the joining slave, and it enters
its identifier in the registry. This preliminary conversation is
carried out using Signalling messages (see [1], section 13.12),
and it does not interfere with time sensitive traffic. Finally the
master reroutes a message to the new slave: this induces a
feedback on the slave that proposed a different destination for
the token, and the joining slave enters its membership.

Concerning system restart, we distinguish a warm start and
a cold start: the difference between the two is in the master
registry state, that is empty in the latter case.

At the beginning of a cold start the master waits for
signalling messages from the slaves. When the first is received,
it is not yet possible to initiate the token circulation algorithm:
this will only start when at least two slaves have successfully
performed the join. At this point the master enters the warm
start procedure.

A warm start consists in creating and delivering a new token
to one of the known slaves.

C. Token passing implementation

Token passing is implemented as a part of the two-way
session: the slave clock that sends the DELAY REQ message
includes in it the unique identifier of a proposed destination
of the token using some space left available in the packet
for extensions2 (octets at offset 5 and from 16 to 19). The
master clock has a chance to re-route the token, following
the algorithm II, by indicating a different destination in the
DELAY RESP packet: otherwise it transparently copies the
proposed destination into the DELAY RESP packet. Since we
assume that DELAY RESP packets are sent in multicast, all
slave clocks in the network observe the final destination of
the token.

Note that the token is not represented by any sort of
data structure, either inside a slave clock or in a piece of
communication. The property of holding the token is simply
embedded in the control flow of the slave clock. The token
is (virtually) passed from the slave clock that sends the
DELAY REQ message to the slave clock indicated in the
DELAY RESP packet.

The token creation is implemented including the unique
identifier of a slave in a SYNC message.

D. Fault tolerance and security

We consider separately three kinds of failure: slave failures,
master failures and network failures. In case of slave failures,
we also consider the event of malicious behaviors.

2Note that the attachment of ad hoc TLV field is deprecated for this kind
of messages (see [1], clause 13.4)
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Silent failure and recovery of a slave correspond respectively
to leave and join events: we have already explained how the
algorithm deals with such events. Regarding the malicious
behavior of a slave, the algorithm itself does not introduce
significant security holes: one slave might break token passing
fairness by indicating always the same slave as the token
destination, or drop the token each time it receives it, but
the algorithm tolerates such adverse behaviors. Spoofing the
unique id used in the protocol allows to damage one specific
slave clock. The case is even worse if the slave is able to
embody several slaves at the same time: it may damage the
overall serialization algorithm if it produces a flood of joins
with distinguished identities. A secure implementation of PTP,
currently a matter of discussion within PTP working group,
would therefore improve the robustness of our algorithm,
wherever it is an issue.

A broken or malicious slave might also damage the overall
algorithm by jamming the link layer with packets, thus making
communication impossible: this event equally impacts also
PTP, and should be addressed using fault confinement tools
that fall outside the scope of this paper.

The failure of the master is an event that is taken into serious
consideration by PTP: regarding our algorithm, as long as the
PTP protocol is able to replace the failed master with a new
and warm spare, our algorithm is not affected by the event,
that is ignored. In the case the master is replaced with a cold
spare, there is the possibility that some of the slaves starve:
to understand why, we distinguish two cases that refer to the
state of the registry of the slaves maintained in the master,
with respect to the state of the slave. For a certain slave such
state may be either joined or not joined, and we explore the
two inconsistent conditions.

When the state is marked as joined in the registry, but the
slave is either failed or considers itself as not joined, its state is
fixed in the registry with the first event regarding the slave. If it
does not respond when it is passed the token, it will be marked
as not joined in the registry; if it produces a join request, its
state becomes consistent with the registry. We conclude that
the case is covered by the regular operation of the algorithm
without local or global drawbacks.

When the state is marked as not joined in the registry, but
the slave considers itself as joined, the master is unable to
detect when it is the case to reroute a packet to the slave to
avoid starvation. So, if the token is not passed to the slave by
another slave before the timeout expires, the slave is going to
starve. This event is anomalous, since the slave is considered
operational and joined to the membership of synchronized
slaves: however its starvation cannot be entirely excluded in
such a case, and it is managed by leaving the membership,
thus fixing the inconsistency in master’s registry. Later on the
slave may re-join the membership.

The frequency of occurrence of this anomaly depends on
the master reroute event frequency, which is related to the
fairness of the token routing, which depends on the effec-
tiveness of membership management. The net effect is that
the membership maintenance algorithm contributes to avoid
anomalous starvations. The last section in this paper is devoted
to the discussion of such issue, comparing our membership

maintenance rule with another recently published.
Network failures that cause the partition of the network are

considered in PTP, and dealt with by activating a spare master.
We apply the same considerations made for the master replace-
ment procedure: network partition will induce inconsistencies
in the registries of the masters, and compensating actions will
follow.

IV. IMPLEMENTATION OF THE UNIQUE ID USING THE
MAC ADDRESS

There are many ways to implement unique identifiers: here
we focus on a solution based on MAC addresses, which are
ready to use pieces of data that satisfy uniqueness. Unfortu-
nately, there is a tradeoff between simplicity and effectiveness:
the simplest variant of this solution incurs into the possibility
of network collisions when the master registry is inconsistent.
It happens since a MAC address is 6 octets long, while only
5 are available for extensions in the packets of interest.

We recall that a MAC address may be encoded in two
different ways. In case the MAC is left with its factory
settings (universally administered), the three most significant
octets encode the manufacturer of the network card, while
the three least significant octets contain an identifier which is
unique for a given manufacturer. Otherwise the MAC address
can be rewritten with a locally unique identifier (locally
administered).

The case of locally administered addresses is not of par-
ticular interest, since it is straightforward to assign distinct
MAC addresses with less than 5 significant octets. However,
open environments may preclude the configuration of MAC
addresses in network devices, so we explore also a solution
that relies on universally administered MAC addresses. In [5]
we present another solution under the same assumptions, but
with a different footprint: it is computationally lighter, but
requires more intervention from the master.

Our solution uses 4 octets and one flag S in DELAY REQ
and DELAY RESP messages. A 4 octets digest is obtained
from a generic MAC address using the following rule:

• the three least significant octets of the MAC are un-
changed in the hash;

• the most significant octet of the hash is obtained using a
hash function of the three most significant octets of the
MAC address and of the SequenceId of the message.

The hashing function used to obtain the most significant
octet may be very simple: for instance, it may consist of the
UDP-style 1 octet long checksum of the 3 octets of the MAC
and of the least significant octet in the SequenceId. In the
unlucky case that two devices in the network have identical
values for the 3 least significant octets, the probability of a
hash collision is one over 28−1, nearly 1%, each time one of
the addresses is used. This frequency is considered acceptable
only because hash collisions are effectively managed by the
master clock, as explained below.

The slave includes the 4-octets long digest of the address
of a proposed destination of the token in the DELAY REQ.

The master collects MAC addresses from the frame headers
of slaves that send DELAY REQ, as well as from those
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that dynamically join the network. It also records the last
DELAY RESP sent for each specific slave, and it is so that
the master is able to evaluate timeouts.

In the absence of starving slaves, the master copies the
proposed destination received with the DELAY REQ into the
DELAY RESP, and the flag S is reset. Otherwise the master
records the digest obtained from the MAC address of the
starving slave in the DELAY RESP, and sets the S flag.

Each of the slaves, observing a DELAY RESP message, is
able to decide if it is the destination of the token, by matching
the digest reported in the message against that obtained from
the local MAC address and the SequenceId contained in the
message.

As noted above, a hash collision may occur when a
DELAY REQ message contains a hash matching the MAC
addresses of more than one slave. The master is able to detect
the problem, and to reroute the token to a non-ambiguous
destination, thus avoiding packet collision. When one of the
ambiguous destinations is starving the S flag disambiguates
the destination, that corresponds to the starving one.

A serious problem emerges when the registry of the slaves
maintained by the master is inconsistent: in this case a hash
collision is not detected when colliding hashes correspond to
slaves that have already joined, but are not present in the
registry. A frame collision will occur in this case. However,
the event will not happen again, since the slaves hit by the
problem will starve, leave and re-join the system.

V. EVALUATION OF THE NEIGHBORHOOD MAINTENANCE
ALGORITHM

Evaluating the effectiveness of the neighborhood mainte-
nance algorithm is a relevant issue, since a fair circulation
of the token minimizes the master intervention needed to
avoid slave starvation. This is relevant since the intervention
of the master breaks the distributed nature of our protocol,
and therefore introduces a vulnerability: the master needs an
updated global view of the system to perform correctly, that
contrasts with the claimed absence of a single point of failure.
Our design option is not to totally avoid the presence of single
points of failure, but to reduce their impact. In our case only
a flaw in the master registry may have as a consequence,
with a probability bound to the master intervention rate, the
timeout of a slave: in fact we do not introduce a new single
point of failure (the master is already essential for clock
synchronization), and further we reduce its impact minimizing
the frequency of its active intervention.

Since the evaluation of the effectiveness of the neigh-
borhood maintenance algorithm is relevant, we propose an-
alytical and simulation results that prove the effectiveness
of the algorithm used in this paper. We use an analytical
model of an optimal — yet inapplicable — algorithm as a
benchmark, and simulation results for the others. We car-
ried out the simulations using an ad hoc simulator writ-
ten in Perl, whose code (about 100 lines) is available at
http://code.google.com/p/ispcs2009/.

Our investigation aims at estimating the ultimate relevant
parameter: the frequency with which the master has to reroute

a packet to avoid the starvation of a slave. The results are
shown in figures 1 and 2, and commented here below. They
show that our algorithm significantly approaches the ideal case
of a full mesh, and that it is substantially better than other
alternatives.

We start giving an analytical model of the random walk
of the token when connectivity corresponds to a full mesh:
although inapplicable to our case, it provides a reference since
it returns a sort of lower bound. An evaluation of the stochastic
process of rerouting events is obtained analyzing the return
time of the token during the operation in legal conditions.
At each move of the token each slave clock has an identical
probability 1

n−1 to be selected as the destination of the token.
In such a case, the return time has an exponential distribution
with a mean of n − 1 moves (here we approximate the
geometric distribution of Bernoulli trials with an exponential
since n is assumed to be large). If two-way sessions occur
at regular intervals, every τ time units, the time between
two following visits of the token on a certain component has
exponential distribution with mean (n− 1)τ .

The delay between successive visits has exponential distri-
bution with a mean (n− 1)τ . Using an approximation that is
valid for large systems, the probability of a wait w longer than
δ, corresponding to a timeout event, is:

P (w > δ) = e−
δ

(n−1)τ ≈ e−
1
r (2)

This function is labelled as full mesh in figure 2.
Since we envision neighborhoods significantly smaller than

n, we expect, and the simulations confirm, an increment of
master interventions compared to the above analytical model.

The neighborood relation is represented by the edges of a
graph whose nodes are the slave clocks. For our purposes, the
number of outgoing edges (the outdegree) from each node is
a constant d for all the nodes of the graph. Upon forwarding
a token, the slave sends it along one of the outgoing edges,
selected at random.

Excluding a deterministic computation of an overlay net-
work of degree d, one appealing approach to the problem is
to enforce a randomized composition of neighborhoods: the
feeling is that, at least in the long run, the return time is going
to be distributed evenly.

In order to conform to the assumption that each slave has
an identical probability to be selected as the next destination
for the token, each of the n slaves should have the same
number of inward edges, or indegree: in other words, in a
network with outdegree d, each slave should be present in the
neighborhood of other d slaves (that derives from classical
results that can be found in the tutorial paper [9]). This con-
dition is difficult to enforce in our dynamic network without
a centralized management of neighborhoods. To introduce a
viable reference case, we evaluate by simulation an algorithm
that randomly associates d neighbors to each slave, without
guarantees concerning the indegree: the resulting frequency
of token rerouting events is shown in figure 1 as randomized
neighborhood. But this algorithm relies on the existence of a
globally accessible directory of slaves.
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Distributed algorithms that maintain a list of k � n
neighbors selected at random has been recently investigated
with reference to ad hoc networks in [2]. The authors introduce
an algorithm (that we indicate as reverse sampling) that,
transposed in our environment, consists in replacing one of
the neighbors with the one that executed a two-way session
m token passing events ago, the m parameter being around 10
for very large networks. The slave clocks keep updated a FIFO
containing the identifiers of the m most recently visited slave
units by observing token passing operations in the network.
The same algorithm applied to the PTP is explained in [5].

This algorithm has the beneficial effect of breaking potential
clusters, but negatively affects the balance of incoming and
outgoing neighborhood links. In fact, the event that the slave
visited m rounds ago is one of those with a lower indegree is
low, since those with a lower indegree have fewer chances to
be visited. As a consequence, slaves that are not sufficiently
represented in the neighborhoods of other slaves for stochastic
reasons tend to be visited even less frequently: in the absence
of other compensating actions, the system eventually collapses
to a clique of 2 slaves, thus making token circulation totally
ineffective. The simulation results are indicated with reverse
sampling in Figure 1.

The algorithm described in section III envisions a central-
ized management limited to the case of a timeout. When
a timeout occurs, the starving slave — which is probably
poorly represented in neighborhoods — is added to one of the
neighborhoods, at expenses of a recently visited slave. This
tends to stabilize the indegree of all the slaves around the
outdegree. The result is shown in the line labeled with swap
on timeout in figure 1.

The simulations referenced above have been run with a
simulation time unit corresponding to τ , in a system of 100
slave clocks with an outdegree of only 3 slaves. The rate
r = 0.1 makes the system reasonably prone to collision events
(with a probability around 1%, using equation 1), so to justify
the introduction of a collision avoidance algorithm, but not so
close to PTP scalability limits (r = 1) to be considered simply
badly designed.

At startup, we assume that all slaves have a unique neighbor:
all outbound edges point to the same peer. This is certainly an
unfavorable condition from which the system has to recover.

In the case of reverse sampling the master intervention rate
marginally improves with time, and stabilizes around 6%: this
means that every 100 token passing operations the master
reroutes 6 times the token to a starving slave. In case of a
cold restart of the master, one slave starves and leaves the
system every 18τ on average. At the end of the experiment
only 4 slaves have an indegree of 3, and 33 are not present in
any neighborhood.

This result is worse than that obtained starting with a static
randomized neighborhood. In that case the master intervention
rate is around 1%. As explained, the applicability of this
solution to a dynamic distributed system is controversial.

The swap on timeout technique exhibits a dramatically
better performance: the intervention rate rapidly drops to
values around 0.03%, two orders of magnitude better than that
obtained with reverse sampling. To understand the meaning of
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Fig. 1. Comparison of neighborhood maintenance algorithms (r = 0.1,
n = 100): moving average (k = 32) of the frequency of token rerouting
events. Logarithmic scale on y axis.

a f(i ≥ a) p(i ≥ a) ∗N
0 235 245

1000 169 180
2000 114 133
3000 86 98
4000 67 72
5000 51 53
6000 40 39
7000 30 29
8000 23 21
9000 16 16

10000 12 11
11000 11 8
12000 7 6

TABLE III
FREQUENCY OF INTER-ARRIVAL TIMES IN SIMULATION AND ACCORDING

TO A POISSON PROCESS OF MASTER INTERVENTION EVENTS

this result, consider the case of a system running steady: in
case of a cold restart of the master with an empty registry,
there is a lapse of 3000τ on average to reconstruct the master
registry before one slave starves. At the end of the experiment
67 slaves out of 100 have an indegree of 3, and all the slaves
are included in at least one membership.

The distribution of inter-arrival times between successive
master interventions during the stationary behavior after time
200000τ (see figure 1) is shown in table III. It is characterized
by an average of 3266τ , with a standard deviation of 3658τ :
this is in good agreement with an hypothesis of a Poisson
process for master intervention events, with a confidence level
of 87% using a χ2 test.

A useful reference for evaluating the efficacy of the swap on
timeout technique is given by the expected intervention rate in
case of a full mesh network. In that case the analysis given at
the beginning of this section returns a predicted intervention
rate e−

1
r ≈ 0.005%. It is only one order of magnitude better

than that obtained using the swap on timeout scheme with an
outward degree of 3 in a system of 100 slaves.
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Fig. 2. Comparison between neighborhood maintenance algorithms (r = 0.1,
n = 1000): moving average (k = 32) of the frequency of token rerouting
events. Logarithmic scale on y axis.

We verify the scalability of our solution in a network of
1000 slaves, probably oversized with respect to current appli-
cations, keeping the outdegree to 3 neighbors. In figure 2 we
observe that all three solutions appear to scale homogeneously,
and that the swap on timeout technique keeps offering better
performance. There is no apparent degradation in the master
intervention frequency.

VI. SUMMARY AND CONCLUSIONS

The Precision Time Protocol is extremely flexible, and fits a
number of operational environments: however collisions may
degrade its performance and reliability.

We first characterized the application environments where
collisions make a problem, and we quantified their occurrence
using a simple analytic model.

The solution we propose falls within the boundaries of the
standard: it uses messages defined in the standard in a way that
conforms to the standard. A new message content, recorded
in fields that the standard leaves available for extensions, adds
semantics that are used to coordinate the slaves, thus avoiding
collisions.

This results in a mutual exclusion algorithm, based on a
token that performs a random walk in the network of slave
clocks. The idea is not original per se, but here it is targeted
to a specific case, exploiting the exceptional flexibility of PTP.

In order to make the basic idea of practical interest, we
introduce techniques to enforce a maximum time between suc-
cessive visits of the token to a given slave, and to dynamically
optimize the interconnection graph.

The algorithm exhibits the fault tolerance features required
for critical applications, that are typical for PTP: it is resilient
to slave failures, and master failures have consequences only
in case of an inconsistent replacement, and even in this case
they affect only a limited number of slaves and for a limited

time. Such consequences cannot be eliminated completely, but
their likelihood is minimized by an appropriate design.

We follow an approach that is agnostic with respect to the
link layer technology and to specific environments, so we are
confident that our solution will be applicable also to future
link layer technologies and in environments yet to define.
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