
Int. J. Human-Computer Studies (2002) 56, 225–245

doi:10.1006/ijhc.2001.0523

Available online at http://www.idealibrary.com.on

Preventing user errors by systematic analysis of
deviations from the system taskmodel

Fabio Patern "oo and Carmen Santoro

CNUCE-C.N.R., Via G. Moruzzi 1, 56100, Ghezzano Pisa, Italy.

emails: f.paterno@cnuce.cnr.it; c.santoro@cnuce.cnr.it

(Received 7 February 2001 and accepted in revised form 18 December 2001)

Interactive safety-critical applications have specific requirements that cannot be
completely captured by traditional evaluation techniques. In this paper, we discuss
how to perform a systematic inspection-based analysis to improve both usability and
safety aspects of an application. The analysis considers a system prototype and the
related task model and aims to evaluate what could happen when interactions and
behaviours occur differently from what the system design assumes. We also provide a
description and discussion of an application of this method to a case study in the air
traffic control domain.

# 2002 Elsevier Science Ltd.

KEYWORDS: model-based evaluation; safety and usability; task models; inspection-based
evaluation

1. Introduction

A number of usability evaluation techniques have been developed in recent years. They

can be classified according to many dimensions: for example, the level of refinement of

the user interface considered or the amount of user involvement in the evaluation. More

generally, usability evaluation methods can be classified as: model-based approaches,

where a significant model related to the interactive application is used to drive the

evaluation; inspection-based assessment, where some expert evaluates the system, or

some representation of it, according to a set of criteria; and empirical testing where

direct use of the system is considered.

The research area of model-based design and evaluation of interactive applications

(Puerta, 1997; Patern "oo, 1999) aims at identifying models able to support design,

development, and evaluation of interactive applications. Such models highlight

important aspects that should be taken into account by designers. Various types of

models, such as user, context and task models have proved to be useful in the design

and development of interactive applications. Task models describe activities that have

to be performed so that user’s goals are attained. A goal is a desired modification of the

state of an application. The use of task analysis and modelling has long been applied in

the design of interactive applications. However, less attention has been paid to their use

to support systematic usability evaluation. To this end, it is important to have task

1071-5819/02/020225+21 $35.00/0 # 2002 Elsevier Science Ltd.



models described by flexible and expressive notations with precise semantics able to

represent the different ways to perform tasks and the many possible temporal and

semantic relationships among them. This allows designers to develop systematic

methods able to indicate how to use the information contained in the task model for

supporting the design and evaluation of the user interface.

There are various approaches that aim to specify tasks. They differ in aspects such as

the type of formalism they use, the type of knowledge they capture, and how they

support the design and development of interactive systems. In this paper, we consider

task models that have been represented using the ConcurTaskTrees notation (Patern "oo,

1999). In ConcurTaskTrees, activities are described at different abstraction levels in a

hierarchical manner, represented graphically in a tree-like format (see Figure 1 for an

example). In contrast to previous approaches, such as Hierarchical Task Analysis,

ConcurTaskTrees provides a rich set of operators, with precise meaning, able to

describe many possible temporal relationships (concurrency, interruption, disabling,

iteration and so on). This allows designers to obtain concise representations describing

many possible evolutions over a user session. The notation also provides the possibility

of using icons or geometrical shapes to indicate how the performance of the tasks is

allocated. For each task it is possible to provide additional information including the

objects manipulated (for both the user interface and application objects) and attributes

such as frequency. Automatic tools are needed to make the development and analysis of

such task models easier and more efficient. A tool to specify task models in

ConcurTaskTrees (CTT) and analyse their content is publicly available at http://

giove.cnuce.cnr.it/ctte.html.

Task models can also be useful in supporting design and evaluation of interactive

safety-critical applications. The main feature of these systems is that they control a real-

world entity and have to fulfil a number of requirements while preventing the controlled

entity from reaching hazardous states (states where there is actual or potential danger

to people or the environment). There are many examples of safety-critical systems in

real life (air traffic control, railway systems, industry control systems, etc.). In this field

specific issues arise. For instance, in safety-critical domains, sometimes user actions

cannot be undone (for example, if an irreversible physical process has been activated),

so the issue of user errors and how to design the user interface so as to avoid them,

acquires a special importance. In fact, many studies have shown that accidents often are

caused by a human error whose likelihood may be increased by poor design.

The goal of this paper is to discuss how task models can be used in an inspection-

based usability evaluation for interactive safety-critical applications. In order to show

Figure 1. An example of high-level task.

F. PATERNÓ AND C. SANTORO226



how such evaluation works, we consider a case study in the air traffic control

application (ATC) domain. However, it is worth emphasizing that the objective of this

paper is to present an innovative method for analysing safety-critical systems, rather

than the design of a new ATC system complying with current ICAO standards.

To this end, we first introduce our approach and a method (an early version was

introduced in Patern "oo & Santoro, 2001) to describe how to use information contained

in task models to support an exhaustive inspection-based evaluation. We then

extensively discuss a case study where the method was applied with a multidisciplinary

team to the air traffic control domain. Finally, we discuss this experience in terms of

results and lessons learnt, providing some concluding remarks and indication for

further work.

2. Task models and usability evaluation

Task models can be useful in various phases of the design cycle. They can play an

important role in the requirements elicitation and specification phase [see for example

GTA (van der Veer, Lenting & Bergevoet, 1996)], for example, by requiring precise

definition of temporal relationships between the different activities that should be

performed, avoiding any ambiguities. In addition, task models can be used to support

the design of interactive applications: a number of criteria have been identified on how

to use the information contained in CTT task models to drive the design of the user

interface (Paterno, Santoro & Sabbatino, 2000). Task models satisfy the need to

maintain concise and precise documentation of the system under consideration.

They can also be useful in the evaluation phase. The work done so far in model-based

evaluation has mainly aimed to support performance evaluation (such as GOMS

approaches) to predict task completion times or usability evaluation through the

automatic analysis of user interactions (Ivory & Hearst, 1999). An example of the latter

techniques can be found in Lecerof and Patern "oo (1998), where the use of task models in

remote usability evaluation is described: the possible activities supported by the

application and described by the task model are used to analyse real user behaviour as

revealed by automatically recorded log files of user interactions with a graphical

interface. This type of evaluation is useful for assessing final versions of applications.

However, we think that task models may also help support evaluation in the early

phases of the design cycle. Indeed, inspection-based methods are often applied to

evaluate prototypes in order to give suggestions for obtaining improved versions. They

are less expensive than empirical testing and one advantage is that their application at

least decreases the number of usability problems that can be detected by the final

empirical testing.

A number of inspection-based evaluation methods have been proposed. In heuristic

evaluation (Nielsen, 1993), a set of general evaluation criteria (such as visibility of the

state of the system, consistency, avoid providing useless information, etc.) are

considered and evaluators have to check whether they have been correctly applied.

This method heavily depends on the ability of the evaluator and many software

engineers may have problems to understand how to apply such general criteria to their

specific cases. In cognitive walkthrough (Wharton, Rieman, Lewis & Polson, 1994), the

PREVENTING USER ERRORS BY SYSTEMATIC ANALYSIS 227



evaluators have to identify a sequence of tasks to perform and for each of them four

questions are asked. While this method is clear and can be applied with limited effort, in

our opinion it has a limitation: it tends to concentrate the attention of the evaluator on

whether or not the user will be able to perform the right interactions. Little attention is

paid on what happens if users perform errors (interactions that are not useful for

performing the current task) and on the consequences of such errors. It is easy to

understand how crucial this aspect is in interactive safety-critical applications where

the consequences of human errors may even threaten human life (see for example, the

accident at Linate airport in October 2001 where 118 people died because of human

error).

Few works have addressed this type of problem. Reason (1990) introduced a first

systematic analysis concerning human error, including the simple slips/mistakes

distinction. Human reliability analysis (Hollnagel, 1993) stems from the need to

quantify the effects of human error on the risks associated with a system and typically

involves estimating the probability of the occurrence of errors, which quickly runs into

the problem of acquiring the data necessary for reliable quantification. Practical

experience shows that different methods in this area often yield different numerical

results, and even the same method may give different results when used by different

analysts. Leveson (1995) introduced a set of guidelines for the design of safety-critical

applications, but little attention was paid to the user interface component. Some

guidelines for safe user interactions design are proposed, but they are too general to be

used systematically when designing the user interface. Then, research moved on to

finding systematic methods for supporting design and evaluation in this area. THEA

(Fields, Harrison & Wright, 1997) uses a scenario-based approach to analyse possible

issues. While our approach involves end-users in the evaluation exercise, THEA

supports a judgment study performed by experts. Formal methods (Palanque, Bastide

& Patern "oo 1997) have also been considered for this purpose and have shown to be

useful in analysing limited parts of these applications. In Galliers, Sutcliffe and

Minocha (1999) the authors propose an analysis that supports re-designing a user

interface to avoid the occurrence of errors or to at least reduce their effects. The

analysis is supported by a probabilistic model that uses Bayesian Belief Nets. Johnson

has developed a number of techniques}see for example, Johnson and Botting

(1999)}for analysing accident reports, which can be useful to better understand the

human errors that have caused real accidents.

The contribution of our method resides in the help that it provides to designers in

order to systematically analyse what happens if there are deviations in task

performance with respect to what was originally planned during the system design. It

indicates a set of predefined classes of deviations that are identified by guidewords

(MOD, 1996). A guideword is a word or phrase that expresses and defines a specific

type of deviation. These types of deviations have been found useful for stimulating

discussion as part of an inspection process about possible causes and consequences of

deviations during user interactions. Mechanisms that aid the detection or indication of

any hazards are also examined and the results are recorded. In our approach, we build

upon the HAZOP family of techniques, originally developed for investigating hazard

and operability issues in the chemical process industry. While the basic HAZOP

techniques have been used for analysing software-based systems (McDermid &

F. PATERNÓ AND C. SANTORO228



Pumfrey, 1994) and safety-critical systems (Burns & Pitblado 1993), we note a lack of

proposals to introduce them in structured methods for user interface analysis, design

and evaluation with the support of the task models.

3. The method

In the analysis, we consider the system task model: how the design of the system to

evaluate assumes that tasks should be performed. The goal is to identify the possible

deviations from this plan. Interpreting the guidewords in relation to a task allows the

analyst to systematically generate ways in which the task could potentially deviate from

the expected behaviour during its performance. This serves as a starting point for

further discussion and investigation. Such analysis should generate suggestions about

how to guard against deviations as well as recommendations about user interface

designs that might either reduce the likelihood of the deviation or support its detection

and recovery from hazardous states.

The method is composed of three steps:

(1) Development of the task model of the application considered: this means that the

design of the system is analysed in order to identify how it requires that tasks are

performed. The purpose is to provide a description logically structured in a

hierarchical manner of tasks that have to be performed, including their temporal

relationships, the objects manipulated and the tasks’ attributes. We use the

ConcurTaskTrees notation but other notations for task modelling with similar

operators could still be suitable.

(2) Analysis of deviations related to the basic tasks: the basic tasks are the leaves in

the hierarchical task model, tasks that the designer deems should be considered

as units.

(3) Analysis of deviations in high-level tasks: these tasks allow the designer to identify

a group of tasks and consequently to analyse deviations that involve more than

one basic task. Such deviations concern whether the appropriate tasks are

performed and if such tasks are accomplished following a correct ordering.

It is important that the analysis of deviations be carried out by interdisciplinary

groups where such deviations are considered from different viewpoints and back-

grounds in order to carry out a complete analysis. The analysis follows a bottom-up

approach (first basic tasks, and then high-level tasks are considered) that allows

designers first to focus on concrete aspects and then to widen the analysis to consider

more logical steps.

We have found useful to investigate the deviations associated with the following

guidewords:

(1) None, the unit of analysis, either a task or a group of tasks, has not been

performed or it has been performed but without producing any result. None is

decomposed into three types of deviations depending on why the task

performance has not produced any result. It can be due to a lack of initial

PREVENTING USER ERRORS BY SYSTEMATIC ANALYSIS 229



information necessary to perform a task or because the task has not been

performed or because it has been performed but, for some reason, its results are

lost. For example, if we consider the task of selecting an aircraft on a graphical

screen, it cannot be performed because the system does not provide correct

presentation of the aircraft, or because the information is correctly presented but

the controller does not realize the need for the selection, or because the

controller mentally selects the aircraft but then forgets to perform the action on

the screen because of being interrupted by other activities.

(2) Other than, the tasks considered have been performed differently from the

designer’s intentions specified in the task model; in this case, we can distinguish

three sub-cases: less, more or different. Each of these sub-cases may be applied

to the analysis of the input, performance or result of a task, thus identifying nine

types of deviations (less input, less performance, less output, other than input,

other than performance, other than output, more input, more performance, more

output). An example of the less input sub-case is when the user sends a request

without providing all the information necessary to perform it correctly. Thus, in

this case the task produces some results but they are likely wrong results.

(3) Ill-timed, the tasks considered have been performed at the wrong time. Here we

can distinguish at least when the performance occurs early or late with respect to

the planned activity.

The choice of these guidewords is based on the observation that a task is an activity that

usually requires some initial information, then its performance occurs and lastly

such performance generates some result. A deviation can occur in any of the parts of a

task.

In addition, for each task analysed, it is possible to store in one table the result of the

analysis in terms of the following information.

(1) Task, indicating the task currently analysed.

(2) Guideword, indicating the type of deviation considered.

(3) Explanation, explaining how the deviation has been interpreted for that task or

group of tasks.

(4) Causes, indicating the potential causes for the deviation considered and which

cognitive faults might have generated the deviation.

(5) Consequences, indicating the possible effects of the occurrence of the deviation in

the system.

(6) Protection, describing the protections that have been implemented in the

considered design in order to guard against either the occurrence or the effects of

the deviation on the system.

(7) Recommendation, providing suggestions for an improved design able to better

cope with the considered deviation.

Tables can be used as documentation of a system and its design rationale, giving

exhaustive explanation of cases when an unexpected use of the system has been

considered and which type of support has been provided in the system to handle such

abnormal situations.

F. PATERNÓ AND C. SANTORO230



The process of performing the evaluation by interpreting every guideword for every

task of the prototype on the one hand addresses completeness issues; on the other hand

has the drawback of taking time and effort. However, what has to be emphasized on

this subject is that we are dealing with safety-critical systems, so the costs are amply

justified if there is a substantial gain in terms of safety.

We think it is useful to classify the explanation in terms of which phase of the

interaction cycle, according to the stages of Norman’s model (Norman, 1988), can

generate the problem.

(1) Intention, the user intended to perform the wrong task for the current goal. An

example of intention problem is that while controllers aim to solve an air traffic

conflict to obtain a safer state, they decide to increase the level of an aircraft but

in this manner they create a new conflict.

(2) Action, the task the user intended to perform was correct but the actions

identified to support it were wrong. An example of action error is when the

controller wants to graphically edit a path to send to an aircraft by selecting

points that are not selectable.

(3) Execution, the performance of an action was wrong, for example the controller

selects a wrong aircraft because of a slip.

(4) Perception, the user has difficulties in perceiving or correctly perceiving the

information that is provided by the application. A perception problem is when

the user takes a long time to find the user interface element necessary to perform

the next task.

(5) Interpretation, the user misinterpreted the information provided by the

application. An interpretation problem is when there is a ‘‘More Info’’ button

but the user misunderstands for what topic more information is available.

(6) Evaluation, in this case the controller has perceived and correctly interpreted the

information but it is wrongly evaluated, for example the controller detects an air

traffic conflict that does not exist.

Many types of strategies can be followed when a deviation occurs: these range from

techniques aiming to prevent abnormal situations, to others that allow such situations

to arise, but inform the user of their occurrence in order to either mitigate or aid in

recovering from potential problems (if any). To better explain how the method works,

we consider an example of both basic task and high-level task.

Table 1 presents an example of the analysis of a basic task in an air traffic control

case study where controllers can also interact with graphical representations of the

current airport traffic. The task considered is Check deviation (the user checks whether

an aircraft is following the assigned path in the airport). The class of deviation

considered is None. First, we have to identify the information required to perform the

task. In this case, it is the state of the traffic in the airport and the path associated with

the aircraft under consideration. If we consider the No input case, we can note that it

can have different causes, both generating perception problems: either a system fault

has occurred or the controller is distracted by other activities. This shows that the

method is able to consider both system and user errors. In any case, the consequence is

that the controller has no updated view of the air traffic.

PREVENTING USER ERRORS BY SYSTEMATIC ANALYSIS 231



The protection in the current system changes accordingly, if the system supporting

the graphical representation is not functioning, then the controller can only look

through the window in order to check the state of the traffic (according to current

ICAO procedures). If the controller is distracted then pilots, especially if they perceive

that something abnormal is occurring, may contact the controller. The recommenda-

tions for an improved system change depending on the case considered: duplication

policy should be followed against system faults whereas warning messages should be

provided in the case of aircraft deviating from the assigned path. Slightly different

possibilities are considered in the other sub-cases. For instance, in the No performance

case we consider when the information is available but for some reason the task is not

performed: the controller is distracted or overconfident, so he does not correctly

interpret the information. In the No output case, we have that the task is performed but

its results are lost, e.g. the controllers find a deviation but they forget it because they are

unexpectedly interrupted by another activity.

Table 1
Example of analysis of task deviations

Task: Check deviation Guideword: None
Explanation Causes Consequences Protections Recommendations

No input
The controller
has no
information
concerning the
current traffic

System failure
Perception
problem

The controller
has no updated
view of the air
traffic

The controller
looks at the
window to check
the air traffic

Duplication of
communication
system

Controller is
distracted or
interrupted by
other activities
Perception
problem

Pilot calls
controller to
check the path

Provide an
automatic warning
message only
when an aircraft
is deviating from
the assigned path.

No
performance
The controller
has the
information
but he does
not check it
carefully

Controller is
distracted or
overconfident
Interpretation
problem

Red line in the
case of runway
incursion

No output
The controller
finds a
deviation
but immediately
forgets it

Controller is
interrupted by
other activities
Intention
problem

F. PATERNÓ AND C. SANTORO232



When not considering basic tasks, the deviations should be applied in a slightly

different manner although we can still use similar tables to store the results of the

analysis. In fact, in these cases, the interpretation and the application of each

guideword to a higher-level task has to be properly customized depending on the

temporal relationships existing between its subtasks. For example, consider a higher-

level task with its basic tasks connected by the sequential enabling operator ([ ]� or�

depending on whether information is exchanged between the tasks or not), for example

Send instruction to a flight task in Figure 1. Because of the temporal relationship that

relates the first left subtask to the others, a lack of input for the first basic task means a

lack of input for the whole parent task. Therefore, this case (None/No input) of the

analysis of the parent task can be brought back to the correspondent case of its first left

child. In this case, the Select flight label task cannot be performed because, for example,

the controller is wrong at selecting the label. The None/no performance case means that

no lower-level subtask (Select flight label, Show extended label, Decide strategy and

Send instruction) has been performed. The None/No output case is when all the subtasks

have been carried out, but no output has been produced at the end. Referring to the

aforementioned Send instruction to a flight task in Figure 1, this case can be brought

back to the None/no output case of the Send instruction task.

For the other guidewords, the reasoning changes accordingly. For example, the Less

guideword applied to the Send instruction to a flight task means that one associated sub-

task has not been carried out. For example, the user forgets to perform the last subtask

(Send instruction) after having performed the other subtasks (Select flight label, Show

extended label and Decide strategy). Another possibility is sending an instruction to a

flight without having previously decided any appropriate strategy. TheMore case might

arise because of an additional, unforeseen performance of one subtask (e.g. one task is

executed more than once). The Different case occurs when a different temporal

relationship is introduced within the subtasks (e.g. the subtasks are performed

concurrently rather than sequentially) or wrong subtasks are performed. With regard to

Figure 1, an example of a different temporal relationship would be for instance if the

controller sends an instruction while still deciding a strategy (thus, Decide strategy and

Send instruction become concurrent tasks instead of sequential ones). The analysis of

Early and Late guidewords should consider the parent task as a whole, inquiring about

the impact on the system of all the situations when a too early/late performance of the

parent task occurs.

Of course, with different arrangement of temporal operators, the reasoning has to be

appropriately customized. It is beyond the scope of this paper to provide the reader

with an exhaustive analysis of all the possible cases treated. Instead, what has to be

emphasized is that, depending on the specific decomposition of a higher-level task into

lower-level tasks, the application of the guidewords has to be adapted on the basis of

the particular temporal relationships specified.

We note that analysis of high-level tasks can imply changes in the task structure in

terms of subtasks and possible temporal relationships and this can stimulate the

identification of better solutions requiring changes in such structure.

A systematic analysis can require the consideration of a high number of cases,

sometimes similar among them, thus only a selection of meaningful cases can be deeply

analysed in order to limit the amount of time and effort spent.

PREVENTING USER ERRORS BY SYSTEMATIC ANALYSIS 233



4. Setting up an evaluation session

The evaluation exercises should be carefully organized. It is important to involve,

besides the evaluators, at least some software developers and real end-users as well. For

each stakeholder, it would be better to have more than one representative to get a good

level of reliance of the results achieved. The participants should be introduced to the

method so that they can understand the structure of the exercise and the reasons for it.

The meaning of each requested information should be precisely explained, otherwise

the entire process might be distorted. For example, the participants could associate a

very restrictive meaning to each column, neglecting to mention cases that, on the

contrary, are interesting as well. A classic example is the interpretation of the

‘‘protection’’ word. Protection sometimes is thought only in terms of the system-side

(automatic or semi-automatic safeguards provided by the system). On the contrary, we

refer to a wider denotation: not only all the automatic protections offered by the

system, but also all the protections provided by the other users involved in the system.

For example, protections are all the situations when human agents have sufficient

information to be able to realize that something is going wrong in the system.

The evaluators should have the task model available in order to have a representation

helping them to systematically identify what should be analysed. In order to simplify

the exercise, it is not necessary that end-users follow the details of the notation used for

specifying the task model. It is sufficient that the model is used by the evaluators who

analyse it to decide the questions or issues to raise. In addition, in real case studies it

may happen that the task modelling phase is carried out in a time different from when

the deviation analysis exercise is carried out. Thus, it can happen that the participants

do not completely agree on how some parts of the task models have been modelled

because, e.g. aspects that are relevant have been neglected or other objections are

raised, so it is important to reach a common agreement before starting the exercise.

During the exercise the prototype (at whatever level of refinement it is), should be

available and the participants should spend some time to understand its main features.

It can be useful to have an audio record of the session that can be considered later on to

check some parts of the discussion.

During the session, evaluators should drive the discussion raising questions following

the task model and the list of deviations. Often in the discussion, it is useful to explain

which presentation elements of the user interface support the logical task considered. In

addition, for each task it is important to clearly identify what information is required to

perform it and what the result of its performance is. If users make a mistake in

understanding the information requested for each task, their answers might be

inappropriate. The worst thing is that those misunderstandings might not be so evident

at the beginning: if discovered ahead in the discussion they could invalidate parts of the

previously achieved results, inevitably wasting time.

Tables can take some effort to be filled in and in some cases, designers may consider

providing only a meaningful subset of cases able to address all the main issues. The

effort required to be exhaustive is justified especially when systematic documentation of

the system and design rationale are required. This is particularly important in long

projects in which different people have to consider the system design at different times,

for example, when discussing how to satisfy new requirements.

F. PATERNÓ AND C. SANTORO234



5. A case study

We have applied the method to a prototype for the air traffic control in an aerodrome.

The main purpose of the system is to support data-link communications to handle

aircraft movement between the runways and the gates.

Data link is a technology allowing asynchronous exchanges of digital data coded

according to a predefined syntax. It complements the current communication

technology that is based mainly on radio communications and observations from the

window of the control tower. The support of this new technology is particularly useful

in the case of bad atmospheric conditions. Thus, controllers can interact with graphical

user interfaces showing the traffic within an airport in real-time (see for example,

Figure 2) and messages received from pilots. In addition, in this type of application

controllers can compose messages by direct manipulation techniques.

In the airport, there are two main controllers: the ‘‘ground’’, who handles the aircraft

on the taxiways until they reach either the beginning of the runway (for departing

aircraft) or the assigned gate (for arriving aircraft), and the ‘‘tower’’, who decides on

take-off and landing of aircraft. In the considered system, the controllers have enriched

flight labels available on their user interface instead of traditional paper strips

Figure 2. The user interface of the prototype evaluated.

PREVENTING USER ERRORS BY SYSTEMATIC ANALYSIS 235



commonly used in current air traffic control centres. The enriched flight labels

permanently show just essential information concerning flights (standard mode) but

they can interactively enlarge to show additional information (selected mode) and

shrink again. They are different depending on the specific controller. For instance,

consider a departing flight: the related label shown in standard mode on the ground’s

user interface includes information about the flight identifier, the category and the

assigned runway [see Figure 3(a)]; the flight label available to the tower controller for

the same flight differs over the third field, which shows the expected departure direction

of the flight [see Figure 3(b)]. When a label is selected, an extended set of information is

shown [selectedmode}Figure 3(c)], including the path assigned to the flight (which can

be both textually and graphically represented), the current velocity of the aircraft, and

other useful data. In addition, by clicking with the right mouse button on the selected

label a pop-up menu with the possible commands to send is visualized [Figure 3(d)] and

such commands vary depending on the particular controller.

We undertook the exercise in different work settings: at first, just the evaluators were

involved, mainly to understand which kind of questions/answers the approach could

have arisen. The goal of this phase was to get a preliminary overview of how to carry

out the exercise, trying to identify possible key areas on which to subsequently focus the

attention and critical points to be clarified.

The next phase was to perform the exercise involving also the developers. It was a

useful opportunity for the evaluators to further clarify some aspects, especially those

related to the prototype’s user interface design choices. In fact, software developers are

expected to give precise contribution about the protections existing in the system as

they are the more reliable source of information with respect to it.

In addition, it was also a way of validating the results obtained during the

preliminary exercise when only the evaluators were involved. For example, if some

issues had not arisen or the results obtained were different from what was obtained

before, it was a good way to discuss and check them and annotate key points.

Then the real and complete evaluation was performed with a multidisciplinary team

in which software developers, final users (air traffic controllers in this case) and experts

in user interface design were involved. Having a multidisciplinary team is useful because

Figure 3. Flight information and commands depending on controller and mode. Enriched flight labels: (a)
ground, standard mode; (b) tower, standard mode; (c) tower, selected mode; (d) tower, selected mode,

available commands shown.

F. PATERNÓ AND C. SANTORO236



a problem is seen from all the different viewpoints and perspectives and everyone gives

its own contribution based on his/her own knowledge, skills and expertise. Meeting the

final users is important also because they help to understand the right importance of

aspects tightly related to the domain’s knowledge. In this way, some problems that

could be overestimated are brought back into the correct terms and seen in the right

perspective and, on the other hand, there is no risk of underestimating other aspects.

Figure 4 shows an excerpt of the task model used to carry out our evaluation

exercise, whose meaning will be explained by referring to some of its tasks in the next

sections. Here we would just like to recall that ||| is the concurrency operator,� is the

enabling operator, [ ] � is the enabling with information exchange operator, and [ ] is

the choice operator and that the temporal evolution is indicated from left to right (thus

T1�T 2 means that T 2 performance is enabled after T1).

During the exercises many interesting issues arose. In the next section, we give

examples of some of them indicating the tasks and the deviations that raised the issues

in order to allow the reader to understand as to how the method was useful to identify

them. We also show how an analysis of the source of the problem can help identify new

solutions for an improved design.

6. Sample issues detected

6.1. THE AUDIO WARNINGS PROBLEM (TASK: CHECK DEVIATION}GUIDEWORD: NONE)

The first issue is related to the controller’s task of checking whether the current state of

an aircraft conforms with the expected one, especially in terms of current/planned

positions in the aerodrome area. We called this task ‘‘Check deviation’’, and if it is not

Figure 4. An excerpt of the task model used to perform the evaluation exercise.

PREVENTING USER ERRORS BY SYSTEMATIC ANALYSIS 237



performed by the controller (because of a high workload or a controller’s memory fault

or a system fault) the protections existing in the current prototype are operative only in

truly hazardous situations, such as a runway incursion (see Figure 5). In this case, a red

line connecting the aircraft involved is highlighted on the controller’s user interface.

However, such a safeguard is still insufficient: whenever it is really crucial to attract the

controller’s attention, a visual warning is not always the most appropriate technique,

especially in an environment such as envisioned ATC centres, where the user must

control a lot of visual tools and media even more than now. In fact, datalink is expected

to play an important role in the transmission of routine messages (e.g. controller’s

downlinking of actual flight parameters), in order to achieve a substantial gain in voice

channel availability. For this reason, most pilot–controller communications that now

are carried out by means of voice in envisaged data-link equipped ATC centres will be

carried out by means of datalink visual messages, leaving the R/T channel for the most

time-critical ones. In this future scenario, with the controllers supposed to monitor even

more visual tools than in the current system (but in quieter control rooms), audio

warnings may be a useful improvement to the current prototype provided that they are

sparingly used. This means that their use should be limited only to low probability

Figure 5. Example of runway incursion.

F. PATERNÓ AND C. SANTORO238



situations with serious consequences (e.g. a runway incursion), to reduce the probability

of simultaneous occurrences of such warnings and to prevent at the same time the

controllers from getting used to continuously hearing them. In addition, it is also

important to allow controllers to disable such alarms (usually in high traffic situations),

because as soon as the controllers become aware of the hazard, they want to

concentrate on the problem without annoying (and useless) acoustic warnings still

active in the control room. Controllers found such alarms particularly useful in low

traffic situations when they tend to get distracted and overconfident. In fact,

controllers’ slips or errors do not usually occur when high workloads are put on them,

except when they have little work to do and their attention level flags because they tend

to trust too much the ability of the pilots to separate each other (e.g. in case of good

atmospheric conditions).

It is worth noting that, when discussing the audio warnings and, more generally, the

opportunity of using the aural channel for all situations where it is important to rapidly

attract attention, the controllers seemed to have rather strong opinions against their

use. During follow-up discussions on this point, we discovered that the controllers had

just experienced a run of badly implemented audio warnings in the current system. An

illustrative example was the system allowing pilots to notify controllers of some

problems on board. In such a situation, the pilot must press the Transponder and a

special code is inserted generating an audio alarm in the Control Tower. Once the

controllers become aware of the problem, they should provide confirmation to

the pilots by switching off the connected ground equipment in order to better

concentrate on the problem. However, this was simply not possible because the pilot

still had the device switched on, then the alarm kept on sounding in the Control Tower.

In this case, the problem was not directly connected with the presence of an audio

warning, but with the annoying sound that continued even after the controller

understood that a hazardous situation occurred. This example highlighted that the

problem was not the audio in itself but its particular (poor) implementation in the

system.

6.2. THE NEED FOR DIFFERENT VIEWS OF THE AERODROME AREA

(TASK: CHECK DEVIATION}GUIDEWORD: NO INPUT)

In the prototype, it was already possible for the controller to zoom in or out of the

aerodrome map in order to have a more detailed view of some parts of the aerodrome.

However, it is possible that some conflicts occur in the part of the airport currently out

of the controller’s view (No input case of the ‘‘Check Deviation’’ task) because the

controller has just zoomed in a different part of the aerodrome map. In this situation,

the possibility of having a button to return to the default view is not sufficient to make

the controller aware of some hazardous situations in time. Thus, the suggestion was to

have the global view of the aerodrome map (for evident safety goals) permanently

displayed and, on request, to activate a separate window highlighting a specific part of

the aerodrome (local view). For example, in Figure 6, one can see a possible

implementation of our suggestion where there is a secondary window presented after

the controller requested to zoom in on a part of the aerodrome which is rather crowded

of aircraft.

PREVENTING USER ERRORS BY SYSTEMATIC ANALYSIS 239



6.3. PROVIDING LOGICAL ACKNOWLEDGEMENT OF DATALINK MESSAGES

(TASK: SEND CLEARANCE}GUIDEWORD: NO PERFORMANCE)

Another deviation considered was associated to the task of sending a clearance, when a

No performance deviation occurs. The causes can be either a system’s fault or a

distracted pilot. The protection against similar deviations in the current system can be

afforded by detecting the lack of reaction from the pilot within a time interval after the

controller has sent a clearance. However, this kind of protection is rather poor because

it does not provide the controllers with the information about whether the clearance has

really reached (or not) the pilot’s system so that the controllers are able to act as soon as

possible. Time being a very critical aspect in such systems, we suggested that automatic

acknowledgement of the fact that the clearance has reached the pilot’s system is very

important in such a highly safety-critical system and should be introduced as an

improvement in the prototype because waiting for the pilot’s reaction could delay the

overall activity too much. In addition, such feedback would improve the controller’s

degree of awareness of the current situation of the system. It is worth noting that such

Figure 6. Possible solution to the zoom in problem.

F. PATERNÓ AND C. SANTORO240



feedback is just a logical acknowledgment (LACK) from a receiving system that the

message has been successfully received and is operationally acceptable for further

processing. There is no guarantee that the pilot has really read the clearance until the

controller receives the WILCO message, which is the actual pilot’s confirmation.

6.4. HIGHLIGHTING THE MOST SAFETY-CRITICAL ACTIONS

(TASK: SEND STOP}GUIDEWORD: DIFFERENT PERFORMANCE)

At any time, the controller can choose among a set of clearances to send. For example,

in the considered prototype by clicking with the right mouse button on the selected

flight label a pop-up menu (see Figure 7) is visualized with the possible commands,

depending on the controller (ground/tower) and on the flight type (arrival/departure).

This kind of interaction technique shows the commands all in the same manner (items

in a menu), although in case of error the consequences of activation of each command

can considerably differ. For example, consider the situation when the controller detects

that one aircraft is going to crash somewhere: in this case, a slip error occurring while

selecting the ‘‘stop’’ element would be really dangerous. In the considered prototype the

‘‘stop’’ element is currently located in the best position as it is the first item of the menu,

thus the fastest to be found with fewer possibilities to be erroneously confused with

another one. Nevertheless, better highlighting of this command by appropriated

graphical attributes (such as size and colour) would be even more effective.

6.5. THE PROBLEM OF STOPPING TAKE-OFF (TASK: SEND STOP}GUIDEWORD:

ILL TIMED)

Another problem was with the task of stopping an aircraft during take-off. In the

prototype, it is always possible to stop an aircraft taking-off because the related

command (Stop) is always available on the user interface of the controller. However, in

Figure 7. The set of possible commands available to the ground controller for a departing flight.

PREVENTING USER ERRORS BY SYSTEMATIC ANALYSIS 241



real situations, it is not always possible to do it because there are some situations when,

for safety reasons, the take-off cannot be aborted anymore. According to this, the

command ‘‘Stop’’ should no longer be enabled on the controller’s user interface once

the aircraft has started the take-off because trying to abort such an action at that

moment is too late (‘‘ill-timed’’ performance). Thus, in order to make the controller’s

activity easier it is advisable that in this menu only the items that are meaningful

according to the current state of the aircraft are enabled from time to time. Thus, in the

task model a different temporal relationship is required when composing this task with

the tasks associated with sending other clearances (in Figure 4, we can see that the

initial system task model just indicated a choice ([ ] operator) among these tasks,

available at any time). This small example shows how this analysis can also be useful in

revealing limitations in the system task model itself and provide suggestions for

improving its structure.

6.6. IMPROVING THE DYNAMIC BUILDING OF THE PATH

(TASK: BUILD PATH} DEVIATION: NO PERFORMANCE)

The deviation considered is still No performance and the problem was detected when

controllers graphically build a path. As previously mentioned, within the prototype, a

path to be sent to the pilot can be generated in two different ways: an automatic one,

with which the controller takes advantage of the capability of the system to calculate

the path according to some criteria; and a graphical, manual one which is supposed to

be used by experienced controllers who need to have full control of the system in order

to maximize its efficiency. The reason for this is that depending on contingent

situations, neither sending the shortest path nor a ‘‘standard’’ path could be judged as

the most appropriate solution by an experienced controller who can face this situation

by building ‘‘ad hoc’’ paths. In the current prototype, there is a set of fixed points

(nodes) in the aerodrome map: when the controllers have to graphically build a taxi

route they make the path by selecting such points in the right order (the next point is the

closest to the last selected one). If they select a wrong point then nothing happens and

the path is not built. Causes of such an error can be an action slip or a wrong

interpretation (the point selected is not next to the current one). In this case, the

recommendation was to ease the controllers’ task by allowing them to dynamically

draw the path by dragging the cursor, without explicitly selecting all the intermediate

points of the path.

6.7. PROVIDING REDUNDANT INFORMATION IN THE USER INTERFACE

(TASK: SELECT FLIGHT LABEL}DEVIATION: DIFFERENT PERFORMANCE)

A further problem was detected for the Select flight labels task: an erroneous flight can

be selected by controllers (Different performance deviation). In fact, the two controllers

handle a different subset of aircraft depending on the current state of each aircraft, and

the cause of the error could simply be the misinterpretation of such a state. In order to

avoid a controller’s trying to send clearance to an aircraft handled by the other

controller, and thereby wasting time because in this case this action will produce no

F. PATERNÓ AND C. SANTORO242



effect (due to an automatic lock-out), the prototype provides each controller with a

separate list of the flights under his/her control (see Figure 8).

However, this may not be sufficient to prevent the controller from repeatedly trying

to send an instruction to an aircraft not under his/her control, especially because

controllers often concentrate their attention on the aerodrome map. In fact, while

speaking with the controllers we found that they prefer to have the information

duplicated (redundancy) in more than one tool rather than to have a specific tool

dedicated to a specific kind of information. In fact, in the latter case they might spend

too much time looking for the right tool within the user interface. A possible

application (and an improvement for the prototype as well) could be, for instance, to

put information on the flight label of each aircraft about whether the aircraft is

currently under the responsibility of the controller in question. In the considered

prototype, such information was contained in a separate list that each controller has

displayed on his/her user interface, so the controller has to look at it in order to

understand if an aircraft is (or is not) under his/her responsibility. If this information

was displayed on the flight label as well (e.g. by means of a different colour for

each controller), the controllers could have a more immediate view of the traffic

situation that he is currently managing. Thus, we suggested having redundant

information in the associated flight label by means of different visual attributes for

assigned flights.

Figure 8. The part of the user interface indicating the controlled aircraft.

PREVENTING USER ERRORS BY SYSTEMATIC ANALYSIS 243



7. Conclusions

In this paper, we have discussed how task models and guidewords can support a

systematic inspection-based usability evaluation for interactive safety-critical applica-

tions. The combination of basic and high-level tasks with the many types of deviations

considered allows designers to address a broad set of issues. This can be useful in

analysing how the system design supports unexpected deviations in task performance.

Such an analysis is particularly important in interactive safety-critical systems where

user error may even threaten human life. We have also discussed the application of this

method to the evaluation of a prototype for air traffic control and showed how it can

require addition of new protections or changes in the task structure.

Our experience has shown the effectiveness of the method, despite some social

constraints that often occur in software development enterprises (software developers

tend to defend every decision taken, users tend to digress in the teamwork, time

pressure problems). The systematic analysis with multidisciplinary teams (including real

users) has provided useful and thorough support in the detection of potential safety-

critical interactions and has aided in improving the design.

Further work is planned to develop tool support able to help in the systematic

identification of relevant issues and the recording of the results for subsequent analysis.

We gratefully acknowledge support from the European Commission and our colleagues in the
(http://giove.cnuce.cnr.it/mefisto.html) MEFISTO project for useful discussions.

References

Burns, D. J. & Pitblado, R. M. (1993). A modified HAZOP methodology for safety critical
systems assessment. Directions in Proceedings of the Safety-Critical Systems Symposium,
Bristol. Berlin: Springer.

Fields, R. E., Harrison, M. D. & Wright, P.C. (1997). THEA: Human error analysis for
requirements definition. Technical Report YCS-97-294, Department of Computer Science,
University of York. http://www.cs.york.ac.uk/�bob/papers.html

Galliers, J., Sutcliffe, A. & Minocha, S. (1999). An impact analysis method for safety-
critical user interface design. ACM Transactions on Computer–Human Interaction, 6,

341–369.
Hollnagel, R. (1993). Human Reliability Analysis}Context and Control. New York: Academic

Press.
Ivory, M. & Hearst, M. (1999). Comparing performance and usability evaluation: new methods

for automated usability assessment. Report available at http://www.cs.berkeley.edu/�ivory/
research/web/papers/pe-ue.pdf.

Johnson, C. & Botting, R. (1999). Reason’s model of organisational accidents in formalising
accident reports. Cognition, Technology and Work, 1, 107–118.

Lecerof, A. & Patern "oo, F. (1998). Automatic support for usability evaluation. IEEE
Transactions on Software Engineering, 24, 863–888.

Leveson, N.G. (1995). Safeware: System Safety and Computers}A Guide to Preventing Accidents
and Losses Caused by Technology. Reading, MA: Addison-Wesley.

McDermid, J. A. & Pumfrey D. J. (1994). A development of hazard analysis to aid software
design. Proceedings of COMPASS ’94. New York: IEEE Press. ftp://ftp.cs.york.ac.uk/
hise reports/safety/develop.ps.Z

F. PATERNÓ AND C. SANTORO244



Mod (1996). HAZOP studies on systems contaning programmable electronics. UK Ministry of
Defence Interim Def Stan 00-58, Issue 1. Available from http://www.dstan.mod.uk/
dstan data/ix-00.htm

Nielsen, J. (1993). Usability Engineering. Boston: Academic Press.
Norman, D. (1988). The Psychology of Every Day Things. New York: Basic Books.
Palanque, P., Bastide, R. & Patern "oo, F. (1997). Formal specification as a tool for objective

assessment of safety-critical interactive systems. Proceedings INTERACT ’97, pp. 323–330.
London: Chapman & Hall.

Patern "oo, F. (1999). Model-based Design and Evaluation of Interactive Applications. Berlin:
Springer Verlag, ISBN 1-85233-155-0.

Patern "oo, F. & Santoro C. (2001). User interface valuation when user errors may have safety-
critical effects. Proceedings INTERACT ’2001, pp. 270–277, Tokyo.

PaternoØ , F., Santoro, C. & Sabbatino, V. (2000). Using information in task models to support
design of interactive safety-critical applications. Proceedings AVI’2000, pp. 120–127. ACM
Press, May 2000, Palermo.

Puerta, A. (1997). A model-based interface development environment, IEEE Software, 14,
40–47.

Reason, J. (1990). Human Error. Cambridge: Cambridge University Press.
Van der Veer, G., Lenting, B. & Bergevoet, B. (1996). GTA: groupware task analysis}

modelling complexity. Acta Psychologica, 91, 297–322.
Wharton, C., Rieman, J., Lewis, C. & Polson, P. (1994). The cognitive walkthrough: a

practitioner’s guide. In J. Nielsen & R.L. Mack Eds. Usability Inspection Methods. New
York: John Wiley & Sons.

Paper accepted for publication by Associate Editor, Dr G Van der Veer

PREVENTING USER ERRORS BY SYSTEMATIC ANALYSIS 245


	1. Introduction
	FIGURE 1

	2. Task models and usability evaluation
	3. The method
	TABLE 1

	4. Setting up an evaluation session
	5. A case study
	FIGURE 2
	FIGURE 3

	6. Sample issues detected
	FIGURE 4
	FIGURE 5
	FIGURE 6
	FIGURE 7
	FIGURE 8

	7. Conclusions
	References

