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Abstract 

Background: SARS-CoV-2 poses a considerable threat to those living in residential aged care facilities (RACF). RACF 

COVID-19 outbreaks have been characterised by the rapid spread of infection and high rates of severe disease and 

associated mortality. Despite a growing body of evidence supporting airborne transmission of SARS-CoV-2, current 

infection control measures in RACF including hand hygiene, social distancing, and sterilisation of surfaces, focus on 

contact and droplet transmission. Germicidal ultraviolet (GUV) light has been used widely to prevent airborne patho-

gen transmission. Our aim is to investigate the efficacy of GUV technology in reducing the risk of SARS-CoV-2 infec-

tion in RACF.

Methods: A multicentre, two-arm double-crossover, randomised controlled trial will be conducted to determine 

the efficacy of GUV devices to reduce respiratory viral transmission in RACF, as an adjunct to existing infection control 

measures. The study will be conducted in partnership with three aged care providers in metropolitan and regional 

South Australia. RACF will be separated into paired within-site zones, then randomised to intervention order (GUV 

or control). The initial 6-week period will be followed by a 2-week washout before crossover to the second 6-week 

period. After accounting for estimated within-zone and within-facility correlations of infection, and baseline infection 

rates (10 per 100 person-days), a sample size of n = 8 zones (n = 40 residents/zone) will provide 89% power to detect 

a 50% reduction in symptomatic infection rate. The primary outcome will be the incidence rate ratio of combined 

symptomatic respiratory infections for intervention versus control. Secondary outcomes include incidence rates of 

hospitalisation for complications associated with respiratory infection; respiratory virus detection in facility air and 

fomite samples; rates of laboratory confirmed respiratory illnesses and genomic characteristics.

Discussion: Measures that can be deployed rapidly into RACF, that avoid the requirement for changes in resident 

and staff behaviour, and that are effective in reducing the risk of airborne SARS-CoV-2 transmission, would provide 
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Background

Outbreaks of SARS-CoV-2 infections (COVID-19) in 

residential aged care facilities (e.g. nursing homes) have 

proven catastrophic [1]. Rapid transmission of SARS-

CoV-2 between residents, combined with the increased 

likelihood of severe illness or death due to resident age, 

comorbidities, and frailty, have resulted in the highest 

overall mortality rate of any population [1].

�e principal infection control measures employed in 

most settings, including RACF, currently focus on the 

transmission of SARS-CoV-2 in the form of respiratory 

droplets. Transmission occurs via close contact with an 

infectious person or via contact with a contaminated 

surface. Prevention measures include social distancing, 

the use of masks, hand hygiene, and surface sterilisation. 

However, there have been many instances of transmission 

occurring despite strict adherence to such infection con-

trol strategies [2, 3]. As a result, there is growing concern 

that airborne transmission in the form of bioaerosols, 

which can remain suspended in the air for a considerable 

period, can contribute to transmission [4–6].

During the COVID-19 pandemic, our understanding 

of modes of SARS-CoV-2 transmission has evolved [7]. 

An increasing body of evidence supports bioaerosol-

mediated spread [4–6, 8]. While the overall contribution 

of this transmission route remains uncertain, an air-

borne component of COVID-19 transmission would be 

consistent with other respiratory viruses, such as SARS-

CoV-1, Middle Eastern respiratory syndrome coronavirus 

(MERS-CoV), and influenza [9, 10].

Measures to prevent airborne transmission of viral 

and bacterial pathogens in other clinical and non-clinical 

contexts, including reduced air-recirculation, air-filtra-

tion, and the use of germicidal ultraviolet (GUV) light 

[11], have considerable potential to reduce COVID-19 

transmission in residential aged care. Such approaches 

can be applied in parallel to existing infection prevention 

measures, and implemented in a rapid, cost-effective, and 

non-disruptive manner. Importantly, they are not reli-

ant on changes in the behaviour or practices of residents 

or staff as, for example, required for safe use of Personal 

Protective Equipment (PPE).

High levels of air exchange can be prohibitively expen-

sive due to heating and cooling costs [11]. Filtration 

systems require ongoing maintenance to ensure efficacy 

and modification of existing air conditioning systems. As 

such, GUV has a number of important advantages over 

other options in the context of residential aged care facil-

ities (RACF). GUV is highly effective in killing viral path-

ogens, including a 98.2% reduction in airborne influenza 

[12], and a 400-fold decrease in SARS-CoV-1 infectious 

virus [13], and is effective in other human coronaviruses, 

such as alpha HCoV-229E and beta HCoV-OC43 [14].

GUV technology is commercially available in several 

different modalities. Upper-room GUV systems direct 

ultraviolet rays into the upper air zone and exposing 

air as it circulates through natural convection. Upper-

room GUV (with effective air-mixing) has been shown 

to reduce airborne tuberculosis transmission at a rate 

equivalent to implementing a high volume of mechani-

cal air ventilation (replacing the air volume of the room 

24 times per hour) [15]. Similarly, when GUV has been 

deployed as “in-duct” or standalone fan-based systems, it 

has been shown to result in significant reductions in both 

viral viability and rates of symptomatic respiratory infec-

tions [16]. �ese GUV modalities therefore allow deploy-

ment to be tailored to the particular characteristics and 

layout of individual RACF including proximity to resi-

dents and staff to ensure safety.

We describe a multicentre, two-arm double crossover, 

randomised controlled trial of a facility-level intervention 

involving the use of GUV light devices to reduce rates of 

airborne respiratory viral transmission in residential aged 

care settings.

Methods/design

�e Prevention of SARS-CoV-2 (COVID-19) transmission 

in residential aged care using ultraviolet light (PETRA) 

study is registered in the Australian and New Zealand 

Clinical Trials Registry ACTRN12621000567820. A pub-

lication reporting the main study outcomes will be pub-

lished in accordance with the Consolidated Standards of 

Reporting Trials (CONSORT) statement [17].

Study design and setting

�e PETRA study is a multicentre, two-arm double 

crossover, randomised, non-blinded controlled trial, with 

the two arms allocated to intervention order in a 1:1 ratio 

considerable benefit in safeguarding a highly vulnerable population. In addition, such measures might substantially 

reduce rates of other respiratory viruses, which contribute considerably to resident morbidity and mortality.

Trial registration Australian and New Zealand Clinical Trials Registry ACTRN12621000567820 (registered on 14th May, 

2021).

Keywords: SARS-CoV-2, COVID-19, Germicidal ultraviolet light, Residential aged care, Health care quality, Respiratory 

virus infection, Transmission
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(Fig.  1). Building characteristics of RACF vary, includ-

ing by age, layout, occupancy, rates of air change, and air 

ventilation systems. �is variation requires the deploy-

ment of GUV devices in a manner that is facility-specific, 

but which also provides a consistent level of air treatment 

across facilities. �e deployment of GUV devices focuses 

on communal use areas, including corridors, lobbies, din-

ing rooms, and occasional recreation areas. No devices 

will be placed within resident rooms, amenities, or staff-

only areas. Devices will be systematically deployed across 

the communal use areas of each facility to ensure consist-

ent volumes of air are irradiated across facilities.

RACF within metropolitan and regional [18] South 

Australia will be considered for recruitment if they pos-

sess the ability to sub-divide communal living areas into 

discrete areas that enable a concurrent comparison of 

interventions, with the facility cohorts otherwise subject 

to the same facility practices (e.g. environmental clean-

ing, staffing, and social distancing). Each area will be ran-

domly allocated to receive GUV light air treatment, or no 

air treatment, for the 6-week duration of the first period, 

followed by a 2-week washout period and then crossover 

of treatments for the second 6-week period. Cases of res-

piratory viral infections will be continuously monitored 

throughout the study, with air and environmental sam-

ples collected weekly for the duration of the study.

Intervention

�e intervention will involve the commercially available 

Laftech GUV appliances: UV-FLOW-C wall- and ceiling-

mounted system, UV-FAN-XS wall-mounted air puri-

fier, and UV-FAN M2/95HP air purification device (LAF 

Technologies, Melbourne, Australia). We will implement 

the combined use of two GUV approaches: wall- and 

ceiling-mounted GUV devices situated in locations that 

provide air sterilisation of shared spaces, such as dining 

areas, and connecting corridors and spaces between resi-

dent rooms, with additional units providing coverage to 

high traffic spaces, such as lift areas; and portable stan-

dalone fan-driven units used in occasional areas, such 

as activity halls and chapels (employed during and fol-

lowing area use). GUV devices will be installed in study 

zones within each facility. Zones will be paired within 

facilities, with one zone in each pair randomised to the 

intervention or control condition for the first period. 

Similar deployment of GUV devices in paired areas will 

be employed across each zone.

GUV units will be switched off during control periods 

and run continuously during intervention periods. Six-

week intervention periods will be divided by a 2-week 

“washout” period to account for viral incubation periods, 

where all devices will be off, before crossover to the recip-

rocal intervention (Fig. 1). An open trial approach will be 

employed, without masking or blinding. Any changes in 

existing infection control practices will be recorded. �e 

intervention will be implemented for two consecutive 

winters to account for variation in the prevalence of res-

piratory viruses.

Outcomes

Primary outcome

�e primary outcome will be the incidence rate ratio of 

combined symptomatic respiratory infections for the 

intervention group versus the control group. �e study 

will utilise the existing framework for surveillance of 

influenza-like illness (ILI) in RACF. �e guidelines pub-

lished by both national (Communicable Disease Network 

Australia) [19] and local authorities (Communicable Dis-

eases Control Branch of South Australia) [20] define ILI 

in RACF based on European guidelines [21]. �e existing 

guidelines stipulate that residents meeting the ILI defini-

tion, including symptoms of fever, cough, or sore throat, 

should be discussed with the treating general practitioner 

and undergo testing for influenza by nucleic acid amplifi-

cation using a nose and/or throat swab [19, 20]. To ensure 

thorough and consistent case identification, according 

Fig. 1 PETRA Trial Stages. Designated zones within RACF will be paired, with one zone in each pair randomised to the active or control condition 

for the first intervention period. Similar deployment of GUV devices in paired areas will be employed across each zone. GUV units will be switched 

off during control periods and run continuously during active periods. Six-week treatment periods will be divided by a 2-week “washout” period to 

account for viral incubation periods, before crossover to the reciprocal intervention
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to study definitions, the study manager/coordinator or 

study research nurse will liaise directly with facility staff 

for the duration of the study to capture this information.

During the intervention periods (Fig. 1; Table 1), iden-

tification of cases of symptomatic respiratory viral infec-

tion will be based on the existing clinical definition of ILI. 

RACF clinical team representatives will follow the facil-

ity’s standard surveillance program, and will complete a 

symptomatic respiratory infection data capture sheet, 

which will serve as the data collection instrument for the 

PETRA trial. Multiple episodes of infection in the same 

resident will be counted as case occasions for the same 

resident provided that the following criteria are met:

1. At least 2 weeks have passed since the initial case def-

inition was met.

2. �e symptoms triggering the subsequent case defini-

tion have developed acutely (within 72  h of record-

ing).

However,

3. If the same pathogen is detected for both episodes, 

these will be considered one episode of infection, not 

two.

In accordance with current guidelines, residents meet-

ing the ILI definition should undergo subsequent pathol-

ogy testing. Participating facilities will request medical 

officers send respiratory swab to a pathology service for 

diagnostic testing of viral respiratory pathogens includ-

ing: SARS-CoV-2, influenza A, influenza B, parainfluenza 

virus 1, 2, 3, and 4, adenovirus, rhinovirus, human metap-

neumovirus, and respiratory syncytial virus. Patients will 

have met the primary outcome based on fulfilling the 

symptomatic respiratory infection clinical definition, 

even if no swab was performed or if the swab result is 

negative. However, data on swab results will be obtained 

from pathology services. �ose who meet the clinical def-

inition and also have a positive diagnostic result will have 

met the definition of a confirmed symptomatic respira-

tory viral infection. �e numbers of confirmed respira-

tory infection cases for each respiratory pathogen tested 

will be determined and analysed as a secondary outcome.

Secondary outcomes

Outcome 1 Incidence rates of hospitalisation (number of 

hospitalisations per 100 person-days followed) for com-

plications associated with respiratory infections. Hospi-

tal admissions, or presentations at hospital emergency 

departments for complications associated with acute 

respiratory infections, will be recorded through facility 

notes, including viral diagnostics and time.

Outcome 2 Respiratory virus detection in facility air 

samples. In addition to assessing symptomatic respira-

tory viral infections, presence of viral RNA/DNA within 

RACF will be measured. �e methodology used is not 

designed to distinguish between viable and non-viable 

viral particles, and these environmental assessments are 

not intended as a measure of infection risk. Rather, they 

provide a snapshot of the level of detectable viruses in 

the environment that could be missed from only testing 

symptomatic residents (i.e. as generated by asymptomatic 

staff, visitors or residents). Viral shedding by asympto-

matic individuals has indeed been described in relation 

to both common respiratory viruses [22] and COVID-

19 [23]. As an indirect measure of viral particle load, 

Table 1 PETRA study protocol timeline

GUV germicidal ultraviolet light; RACF residential aged care facilities; UV-C ultraviolet C

Pre-treatment Weeks 1–6 Weeks 7–8 Weeks 9–14 Post-treatment

RACF eligibility assessment ●

RACF recruitment ●

Communication with participating RACF residents, 
families and staff

●

Zone allocation ●

Design GUV device layout per zone ●

Install GUV devices ●

Quality control of UV-C light ● ●

Zone randomisation ●

Routine monitoring of respiratory viral infections ● ●

Weekly air sampling of viral particles ● ●

Weekly fomite sampling of viral particles ● ●

Viral sequencing ●



Page 5 of 7Brass et al. BMC Infect Dis          (2021) 21:967  

this study component will provide an additional basis to 

assess intervention impact.

Assessment of airborne respiratory virus presence will 

be performed based on air sample collection at the end 

of each study week (Coriolis micro liquid output air sam-

pler; Bertin Instruments, Fortitude Valley, Queensland) 

[24, 25]. A sample collection protocol sufficient for the 

detection of aerosol-borne Respiratory Syncytial Virus 

(RSV) and influenza [24, 25] as well as for levels of cir-

culating COVID-19 particles reported in healthcare envi-

ronments [26] will be employed. Viral particles in the air 

will be determined using realtime, multiplexed versions 

of polymerase chain reaction assays used in the routine 

diagnostic respiratory assay.

Outcome 3 Respiratory viral detection in facility fomite 

samples. Samples will be collected from non-absorbent 

fomites with pre-wetted (0.25 strength Ringer’s solution) 

polyester-tipped swabs, using a fixed area template [27]. 

Presence of viral RNA/DNA in fomite samples will be 

determined using an identical method to that used for air 

samples. �e selection of surfaces will include common 

touch-points and surfaces encountered in shared areas 

(e.g. lift buttons, door handles), with sample collection 

performed at the end of each study week for the duration 

of the study schedule (Table 1).

Outcome 4 Incidence rates of laboratory-confirmed 

respiratory illnesses and genomic characteristics. Data 

will be captured on specimens sent to pathology services 

for respiratory virus testing during the study period. Inci-

dence rates will be calculated for individual respiratory 

viruses previously described. Viral sequencing will be 

performed on the nucleic acid extract of laboratory-con-

firmed positive specimens to determine epidemiological 

links.

In addition to the specified study outcomes, a number 

of other variables will be recorded. �ese will include air 

ventilation rates, carbon dioxide levels, and facility lock-

downs in response to outbreaks of notifiable infections or 

infections associated in rapid spread or high infectivity. 

For example, the identification of three or more cases of 

influenza-like illness occurring within 72 h in residents, 

or a sudden increase in influenza-like cases, or one case 

of influenza confirmed by any laboratory testing method 

in the presence of other reported influenza-like illness 

cases, constitutes an outbreak and triggers specific con-

tainment measures [19]. �e detection of SARS-CoV-2 

is referred to as a COVID-19 outbreak. Any infection-

related changes in facility operation, such as facility-level 

vaccination rates, will also be recorded.

Facility participation

RACF participation is at the discretion of the provider’s 

senior management and in consideration of the best 

interest of residents. Facilities will have the option to 

withdraw from the trial at any stage. Informed consent 

will not be sought from individual aged care residents. 

However, individual residents and their families will be 

communicated with prior to and throughout the trial by 

the study team.

Governance

�e study will comply with the National Health and Med-

ical Research Council (NHMRC) Australian Code for the 

Responsible Conduct of Research. A Clinical Trials Mem-

orandum of Understanding will be established between 

all RACF and the South Australian Health and Medical 

Research Institute (SAHMRI). A Study Protocol Steering 

Committee will be established to monitor trial progress 

and its ongoing ability to meet the objectives. Risk and 

financial management will comply with SAHMRI’s insti-

tutional policies. Consumer involvement will continue to 

be gathered through existing consumer reference groups 

at SAHMRI.

Sample size calculation

Based on a cluster randomised two-arm double-crosso-

ver design, in which each RACF zone is assigned to both 

the intervention and the control condition twice (once 

for each condition in each of two consecutive respiratory 

infection seasons), a sample size of n = 8 RACF zones 

(across five facilities) with an average size of n = 40 occu-

pied beds per zone, will provide 89% power to detect a 

50% reduction in rate of symptomatic infections, i.e. five 

per 100 person-days in the intervention group versus 10 

per 100 person-days in the control group. �is calcula-

tion assumes an average of 35 days of follow-up for each 

subject for each of the four 6-week intervention periods 

providing 40 × 35 = 1400 person-days of follow-up per 

zone, a coefficient of variation for the zone event rate 

within each treatment of 50%, a 20% loss-to follow-up, 

and an intra-class correlation (ICC) for zones of ρ = 0.20 

resulting in a variance inflation factor (VIF) of VIF = (1 

− ρ)/4 = 0.2 i.e. 20% of the total number of zones and 

subjects required for a parallel group trial [28]. In sum-

mary, 8 zones with an average of 40 subjects per zone and 

35 days follow-up per subject across each of the four sep-

arate treatment periods will be required for this double 

crossover trial.

Statistical considerations

Primary analysis on the difference in infection incidence 

rates between the two periods will be assessed using 

mixed effects Poisson regression with fixed effects for 

the intervention group, intervention order, intervention 

period, and a period-to-intervention interaction term 

in order to assess for a possible intervention-to-period 
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interaction effect. �e logarithm of the duration of expo-

sure to each intervention (person-days) will be included 

in the model as an offset term. �e zone and facility will 

be included as random intercepts with zones nested 

within facilities. As a sensitivity analysis, we will also 

assess differences in infection incidence rates using wider 

time-windows for each testing period in order to account 

for the median incubation period of respiratory infection 

by up to four days, depending on the specific virus [29]. 

Analysis will be performed using Stata version 17. A two-

sided type-one error rate of alpha = 0.05 will be used to 

indicate statistical significance.

Discussion

�e PETRA study aims to evaluate the feasibility and 

effectiveness of retrofitting GUV devices into RACF to 

combat respiratory virus outbreaks, including COVID-

19. Despite clear potential for airborne transmission to 

contribute to COVID-19 outbreaks in RACF [30], cur-

rent strategies employed to protect the wider community, 

including for more than 210,000 Australians currently 

living in residential aged care, do not include any meas-

ures to address this specific threat. Reductions to the 

risk of COVID-19 viral transmission within this vulner-

able population could prevent considerable loss of life. 

In addition to the threat of COVID-19, this study will 

address the burden of other respiratory pathogens, such 

as RSV and influenza, that are common causes of consid-

erable morbidity in aged care settings and transmissible 

via bioaerosols [6, 31, 32].

Commercially available upper-room GUV is an exist-

ing and validated technology. Previously identified 

as a potential solution for multi- and extensive drug-

resistant pathogens [33], GUV has proven highly effica-

cious against airborne viruses, including influenza and 

SARS-CoV-1 [12, 13]. Upper-room GUV systems direct 

GUV light into the upper air zone and treat air as it cir-

culates through natural convection. GUV light can also 

be enclosed within units that draw air into a germicidal 

compartment.

By assessing a potentially applicable environmental 

infection control strategy, we believe our study addresses 

a critically important public health need. Moreover, 

results from this study could potentially advocate for 

the rapid and cheap translation to additional RACF and 

other high-risk settings to reduce the risk of respiratory 

illness and mortality in our most vulnerable populations.
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