
 

Cronfa -  Swansea University Open Access Repository

   

_____________________________________________________________

   

This is an author produced version of a paper published in:

Nature Plants

                              

   

Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa40810

_____________________________________________________________

 

Paper:

Zarco-Tejada, P., Camino, C., Beck, P., Calderon, R., Hornero, A., Hernández-Clemente, R., Kattenborn, T., Montes-

Borrego, M., Susca, L.,  et. al. (2018).  Previsual symptoms of Xylella fastidiosa infection revealed in spectral plant-

trait alterations. Nature Plants

http://dx.doi.org/10.1038/s41477-018-0189-7

 

 

 

 

 

 

 

_____________________________________________________________
  

This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder.

 

Permission for multiple reproductions should be obtained from the original author.

 

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

 

http://www.swansea.ac.uk/library/researchsupport/ris-support/ 

http://cronfa.swan.ac.uk/Record/cronfa40810
http://dx.doi.org/10.1038/s41477-018-0189-7
http://www.swansea.ac.uk/library/researchsupport/ris-support/ 


 

Pre-visual symptoms of Xylella fastidiosa infection revealed in spectral plant-trait 1 
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ABSTRACT 20 

Plant pathogens cause significant losses to agricultural yields, and increasingly threaten 21 

food security1, ecosystem integrity, and societies in general2–5. Xylella fastidiosa (Xf) is one 22 

of the most dangerous plant bacteria worldwide, causing several diseases with profound 23 

impacts on agriculture and the environment6. Primarily occurring in the Americas, its recent 24 

discovery in Asia and Europe demonstrates that Xf’s geographic range has broadened 25 

considerably, positioning Xf as a re-emerging global threat that has caused socio-economic 26 

and cultural damage7,8. Xf can infect over 350 plant species worldwide9, and its early 27 

detection is critical for its eradication8. Here, we show that changes in plant functional traits 28 

retrieved from airborne imaging spectroscopy and thermography can reveal Xf infection in 29 

olive trees before symptoms are visible. We obtained accuracies of disease detection, 30 

confirmed by qPCR, exceeding 80% when high-resolution fluorescence quantified by 3D 31 

simulations and thermal stress indicators were coupled with photosynthetic traits sensitive 32 

to rapid pigment dynamics and degradation. Moreover, we found that the visually 33 

asymptomatic trees originally scored as affected via spectral plant trait alterations 34 

developed Xf symptoms at almost double the rate of the asymptomatic trees classified as 35 

not affected by remote sensing. We demonstrate that spectral plant trait alterations caused 36 

by Xf infection are detectable pre-visually at the landscape scale, a critical requirement to 37 

help eradicate some of the most devastating plant diseases worldwide. 38 

 39 

 40 

Acronyms - Anth: Anthocyanins; Ca+b: Chlorophyll a+b; Cx+c: Carotenoids; CWSI: Crop Water Stress Index; E: 41 

irradiance; Fi: Fluorescence efficiency; Ft: Leaf-level steady-state fluorescence; FP: False Positives; FW1: Intensive field 42 

work 1; FW2: Intensive field work 2; : Kappa coefficient; L: radiance; LDA: Linear Discriminant Analysis; NBHI: 43 

Narrow Band Hyperspectral Indicators; NDVI:  Normalized Difference Vegetation Index; NIR: Near-infrared; NNE: 44 

Neural Network; NPQI: Chlorophyll Degradation Phaeophytinization-based Spectral Trait; OA: Overall Accuracy; PS: 45 

Pigment- and Structure-based Functional Traits; PSFT: Pigment-Structural-Fluorescence-Temperature Plant Functional 46 

Traits; qPCR: Quantitative Polymerase Chain Reaction assay; RGB: Red-Green-Blue; ROC: Receiver Operating 47 

Characteristic analysis; RT: Radiative Transfer; SIF: Solar-induced Fluorescence; SVI:  Spectral Vegetation Indices; 48 

SVM: Support Vector Machine; TN: True Negatives; TR: Training dataset; TS: Testing dataset; V+A+Z: Violaxanthin 49 

(V), Antheraxanthin (A), Zeaxanthin (Z) pool; VHR: Very-High-Resolution; Xf: Xylella fastidiosa. 50 



Xylella fastidiosa (Xf) is considered one of the most dangerous plant pathogens worldwide6. 51 

It can infect over 350 plant species9, causing diseases in several crops and large economic 52 

losses8. In America, this xylem-limited plant pathogenic bacterium is associated with 53 

detrimental diseases in high-value crops, such as Pierce’s disease in grapevines and 54 

variegated chlorosis in citrus10. Its spread has recently gained a global dimension11: already 55 

widely distributed in the Americas and detected in Iran and Taiwan, Xf has been known to 56 

be present in Europe since 2013 after its official identification in Italy12 causing economic 57 

and societal damage8. 58 

 59 

The spread of Xf within Europe has thus far not been contained7. Outbreaks detected in 60 

France and recently in Spain have raised concerns of Xf spreading to the world’s largest 61 

olive-growing area (over 2.5 million hectares) and throughout Mediterranean agriculture8. 62 

The identification of all three main subspecies of Xf (i.e., fastidiosa, multiplex, and pauca) 63 

in Europe broadens the threat to several other crop plants, including almond, citrus, and 64 

grapevine, but also to ornamental trees as well as elms, oaks and sycamores. A major 65 

difficulty for Xf containment arises from its very wide host range, with infections that do 66 

not cause symptoms in some host–strain combinations, despite the infected hosts 67 

continuing to act as inoculum sources9. This threat is further exacerbated because Xf can be 68 

spread via xylem-sap sucking insects without any specific vector relationship8, and due to 69 

increased global trade. 70 

 71 

Alarms have been raised by both the international scientific community8 and the media7, 72 

pointing out that eradication of Xf will require robust monitoring and early detection of 73 

plants that show little to no signs of decline at the early stages of infection. A major 74 

limitation of standard large-scale mapping methods based on red and near-infrared (NIR) 75 

(e.g. the Normalized Difference Vegetation Index [NDVI] and its multiple variations 76 

obtained from broadband satellite sensors) is that they are useful only for detecting the 77 

advanced stages of disease damage, i.e. when canopy defoliation, leaf wilting, and chlorosis 78 

are apparent13. Additionally, current hyperspectral satellite sensors lack the spatial 79 

resolution to distinguish individual tree crowns. Accordingly, Xf eradication efforts 80 

involving its early detection necessitate high spatial resolution (i.e. sub-meter) imaging 81 

spectroscopy and thermal data to assess subtle changes in spectral features and traits, a 82 

technology that can be potentially deployed at large scales with airborne platforms14. 83 

 84 

We carried out intensive multi-year in-situ inspections of >7000 trees and airborne  85 

imaging data in 15 olive orchards, finding that physiological alterations caused by Xf 86 

infection at the pre-visual stage were detectable in functional plant traits assessed remotely 87 

by hyperspectral and thermal sensors. We confirmed the presence of Xf infection in all 88 

selected orchards by testing at least two symptomatic trees per plot by quantitative 89 

polymerase chain reaction assay15 (qPCR). Additionally, we sampled one of the olive fields 90 

more extensively for an orchard-level validation of the remote sensing model testing, by 91 

qPCR assays, 67 out of the 157 trees spanning the full range of symptoms, i.e. from 92 

asymptomatic to severely affected. Although quantitative PCR is considered the most 93 

sensitive diagnostic approach, its accuracy under field conditions for the detection of the Xf 94 

in host plants is affected by the period of sampling and the uneven distribution of the 95 

bacterium in the large canopy of the olive trees (especially at the early stage of infection). 96 

Moreover, this type of laboratory assay is time consuming and costly, and requires skilled 97 

and trained personnel. For these reasons, we evaluated non-destructive remote sensing 98 



methods comprising the acquisition of spectroscopy data to build 40 cm radiance and 99 

reflectance scenes in 260 narrow spectral bands (Fig. 1a;b) and in the thermal spectral 100 

region (Fig. 1a;c). The entire flight campaigns covered three areas within the Xf-affected 101 

olive growth region in Southern Italy and scanned ca. 200,000 individual trees in 2016 and 102 

2017, quantifying tree-level physiology-related narrow-band spectral traits, Solar-induced 103 

Fluorescence (SIF) and fluorescence efficiency (Fi) by Monte Carlo 3-D scene generation 104 

(Fig. 1d) that modelled the individual tree fluorescence emissions (Fig. 1e) at the tree 105 

radiance level (Fig. 1f). 106 

 107 

We used a multi-layered functional plant trait scheme to extract the alterations caused by Xf 108 

from a pool of physiology-related narrow-band hyperspectral indicators (NBHI). This pool 109 

included plant physiological traits specifically related to rapid changes in photosynthetic 110 

pigments and leaf processes not simulated by any existing radiative transfer (RT) model, 111 

e.g. the de-epoxidation state of the xanthophyll-cycle pigments via the violaxanthin (V), 112 

antheraxanthin (A), and zeaxanthin (Z) pool16, and chlorophyll degradation via 113 

phaeophytinization17,18 (see Supplementary Table 113). In addition, we assessed traits 114 

sensitive to Xf infection (i.e. anthocyanins and carotenoid / chlorophyll ratios) by a hybrid 115 

wavelet-inverted model inversion method (Supplementary Table 2; Supplementary Fig. 1), 116 

and quantified SIF emission and Fi by a multi-step LUT-based inversion scheme 117 

(Supplementary Table 3, Supplementary Fig. 2).  The inversion of radiative transfer models 118 

enables the simultaneous and independent retrieval of multiple leaf and canopy traits linked 119 

to physiological processes in plants. Thus, compared to single-band and index-based 120 

relationships from radiance or reflectance spectra which simultaneously relate to several 121 

traits (e.g. both photosynthetic pigments and structure), the model-inverted traits space is 122 

more likely to reveal the physiological processes associated with the disease. Furthermore, 123 

the process-based retrieval of traits by physical models increases the potential 124 

transferability of findings to other data sets, diseases, and plant species. Nevertheless, 125 

specific narrow-band spectral indices that track processes currently not simulated by any 126 

radiative transfer simulations can complement model-estimated traits. 127 

 128 

To reveal the gas exchange dynamics associated with Xf symptoms, we incorporated a 129 

functional trait consisting of temperature-based plant stress indicators linked to stomatal 130 

conductance and tree transpiration alterations. Linear, as well as machine- and deep-131 

learning algorithms (linear discriminant analysis, LDA; support vector machine, SVM; 132 

neural network ensemble, NNE, see Methods in Extended Material) fed by the pool of 133 

functional plant traits via receiver operating characteristic (ROC) analysis revealed that the 134 

chlorophyll degradation phaeophytinization-based spectral trait (NPQI)17,18 calculated in 135 

the blue region, and the thermal-based stress trait (CWSI, Crop Water Stress Index) best 136 

distinguished Xf-symptomatic from asymptomatic trees (Fig. 2a) in both years (Fig. 2b), 137 

followed by anthocyanins (Anth), carotenoids (Cx+c) and solar-induced fluorescence. 138 

Notably, the importance of the functional traits varied as a function of Xf-symptom 139 

severity: NPQI and CWSI most reliably distinguished symptomatic from asymptomatic 140 

material (Fig. 2a, left-side bars), but were of lesser importance to discriminate between 141 

initial and advanced stages of the disease. For these symptomatic trees, solar-induced 142 

fluorescence was the most sensitive functional trait to detect the severity of Xf symptoms 143 

(Fig. 2a, right-side bars). 144 

 145 

 



 

 

 

 
  

Fig. 1. Imagery acquisition and plant-trait fluorescence retrievals. a, Strips of airborne 146 

images of 40-cm hyperspectral radiance collected at the O2-A band, reflectance at 415 nm 147 

(used to calculate NPQI), and temperature (in K). Subsets of the very-high-resolution 148 

(VHR) hyperspectral (b) and thermal imagery (c) enable the identification of single trees to 149 

extract tree-crown radiance (L), reflectance (R) and temperature. d, Monte Carlo simulation 150 

modelled solar-induced fluorescence (SIF) emission via 3-D scenes generated with 151 

FluorFLIGHT (e) from tree radiance (L) and irradiance (E) (f) to quantify fluorescence 152 

efficiency (Fi) by radiative transfer. 153 

       



 
Fig. 2. Contribution of remote sensing plant traits to pre-visual Xf symptom detection. 154 

a, ROC analysis from the pool of hyperspectral and thermal plant functional traits used to 155 

detect asymptomatic vs. Xf-symptomatic trees (left bars) and for initial vs. advanced Xf-156 

symptomatic trees (right bars). b, The robustness across years of the functional traits for 157 

asymptomatic vs. Xf-symptomatic trees. The ROC analysis was performed using the 158 

training data set (TR, n=5,852 trees). 159 

 160 

The sensitivity of these physiology-based remote-sensed plant traits to pre-visual and early 161 

stages of the Xf-infection is supported in the literature by work that shows the 162 

photoprotective role of carotenoids (Cx+c) and the protection from damage induced by 163 

environmental stresses and plant pathogens provided by flavonoids such as anthocyanins 164 

(Anth)
19. These compounds accumulate in Xf-infected plant material20 and are produced by 165 

the degradation of the chlorophyll molecule into phaeophytin under stress conditions17,18. In 166 

addition, the alterations in stomatal regulation21 and photosynthesis caused by plant–167 

pathogen interactions22 lead to decreased fluorescence13,23 and transpiration24, and produce 168 

phenolic plant-defense compounds25. 169 

The alterations of plant functional traits we detected remotely were highly consistent with 170 

Xf-induced leaf physiological changes measured in-situ. In particular, the changes we 171 

observed in the in-situ Anth, steady-state fluorescence Ft, and temperature leaf traits (Fig. 172 

3a; Supplementary Fig. 3) were in line with the alterations observed in the corresponding 173 

traits quantified from the imagery, such as Anth (Supplementary Fig. 1), SIF and CWSI 174 

(Fig. 3d). These traits differed significantly between asymptomatic and symptomatic 175 

leaves, even when symptoms were mild (Tukey's HSD test, P<0.05) (Supplementary Fig. 176 

3). Moreover, the high-resolution images revealed between- and within-tree-crown patterns 177 

of the functional traits associated with Xf infection (Fig. 3b;c). Although widely used in 178 

global monitoring of vegetation, NDVI did not differ significantly between asymptomatic 179 

and symptomatic trees (Fig. 3d), and was therefore unable to detect non-visual symptoms 180 

of Xf infection. We found that the reflectance changes in the blue region consistently 181 

tracked early and initial Xf symptoms, in particular the 415 and 435 nm spectral bands used 182 

to calculate the chlorophyll degradation phaeophytinization-based spectral trait NPQI17,18, 183 

which was the NBHI indicator most sensitive to Xf infection. The SIF calculated from the 184 

airborne radiance imagery and CWSI calculated from the remotely sensed tree crown 185 

temperature, showed statistically-significant (P<0.001) and consistent trends for early Xf 186 

symptoms. 187 



 
Fig. 3. Relationships between remote-sensed functional plant traits and Xf disease 188 

severity levels at leaf and canopy levels. a, Temperature (T, n=922 leaves), fluorescence 189 

(Ft, n=1,197 leaves) and anthocyanins (Anth, n=939 leaves), as well as hourly Ft (n=2,863 190 

leaves), measured in asymptomatic (Xf severity = 0) and increasingly symptomatic leaves 191 

of Xf-infected olive trees. b, Mean tree-crown reflectance for trees with increasing severity 192 

of Xf symptoms in the red-NIR region (n=923 trees), blue region (n=923 trees), O2-A 193 

radiance region for SIF quantification (n=923 trees), and temperature (n=1,493 trees). The 194 

standard deviation for the tree-crown T data is represented as shaded. c, Respective 195 

associated maps of NDVI, NPQI, SIF and CWSI, showing the within-crown variation of 196 

traits in asymptomatic, initial, and low Xf-symptomatic trees. d, Trait values across the 197 

entire sample of trees for NDVI, NPQI and SIF (n=1,493 trees) and CWSI (n=1,446 trees). 198 

The disease severity at leaf and canopy levels was compared by one-sided Tukey’s HSD 199 

test at 5%. Severity levels with same letter are not significantly different (Tukey HSD test, 200 

p-value <0.05). In the box plots, the black line represents the median, and the top and 201 

bottom are the 75th and 25th quartiles. The whiskers are the upper and lower limits based on 202 

the interquartile ranges (Q±1.5xIQR). Average values are shown with a blue point. The 203 

outliers (circles), are the values out of the upper and lower limits. a.u.: arbitrary units.A 204 



pool of plant functional traits comprising pigment and structural traits, together with a flux-205 

based fluorescence trait and temperature (PSFT) obtained the best overall accuracy (OA) 206 

and kappa coefficient  () for Xf detection through the SVM algorithm, yielding OA = 207 

80.9% and  = 0.61 (Fig. 4a; Supplementary Tables 4 and 5). By contrast, models built 208 

without SIF and temperature traits (i.e. the Pigment- and Structure-based Functional Traits, 209 

PS model), and particularly one limited to standard red-green-blue (RGB)-NIR spectral 210 

vegetation indices (SVI) commonly found in satellite sensors (NDVI, and blue / green / red 211 

ratios; SVI model), obtained the lowest accuracies (OA=65.4%; =0.29). We obtained 212 

these results through validation with visual inspection data collected by plant pathologists 213 

from 1,332 trees per year in 15 fields, generating a large dataset with statistical robustness 214 

and ample variability in disease severity levels, tree structure and age, and agronomic 215 

management of the orchards within the Xf-infested zone. 216 

 217 

We evaluated the accuracies of the remote sensing-based SVM-PSFT disease detection 218 

model and the visual inspections using quantitative PCR assay data obtained in a selected 219 

olive orchard. The assessment of the orchard-level remote sensing model validated with the 220 

tree-level qPCR dataset yielded OA=94.03% and =0.88. The performance of the visual 221 

inspection against qPCR (OA=77.62% and =0.55) showed the validity of the evaluations 222 

by the plant pathologists, but reflected a lower performance than that using remote sensing 223 

methods due to the impossibility of visually detecting the asymptomatic infections that 224 

were detected by qPCR. The validation of the remote-sensing model with qPCR data 225 

enabled the generation of a spatial map of disease incidence prediction by remote sensing, 226 

revealing infected asymptomatic trees that were missed by the visual evaluations (Fig. 5a) 227 

but detected by remote sensing (Fig. 5b). Among all trees measured in this particular 228 

orchard by qPCR (n=67), those visually considered asymptomatic by plant pathologists 229 

(n=40) but proven infected via qPCR (n=11) were detected as infected by remote sensing 230 

with 91% accuracy. When the analysis was extended to eight orchards where the 231 

qPCR-sampled trees were visible in the imagery (n=100), the accuracy of the remote 232 

sensing model validated with the tree-level qPCR dataset yielded OA=96% and =0.92, 233 

whereas the performance of the visual inspection against qPCR remained at the same level 234 

as the orchard-level analysis (OA=77% and =0.54). Moreover, the remote sensing 235 

SVM-PSFT model detected 92.9% of the infected asymptomatic trees (qPCR=1; DS=0) 236 

that were missed by visual assessment (Supplementary Table 6). 237 

 238 

These results obtained by remote sensing and validated with qPCR data suggested the 239 

existence of trees in the very early stage of the disease that were missed by the visual 240 

evaluations. To explore whether our remote sensing model fed by plant functional traits 241 

actually detected the early symptoms at a pre-visual stage, a temporal dimension was added 242 

in the analysis. Indeed, a critical finding of this study arose from further investigation of the 243 

trees seemingly wrongly considered symptomatic by remote sensing (i.e. those initially 244 

considered ‘false positives’ based on examination by plant physiologists) over the course of 245 

two years through periodic field revisits. False-positive cases may arise from: i) error and 246 

uncertainty inherent to the remote sensing model used for detecting affected trees; and ii) 247 

trees that were indeed affected by Xf but did not yet display the typical visible symptoms 248 

upon which plant pathologists rely. Thus, we revisited in situ (Fig. 4b; Supplementary 249 

Table 7) the trees identified as symptomatic by the remote-sensing plant functional trait 250 

model applied to the 2016 image data (F1) but classified at the time as asymptomatic by 251 



plant pathologists based on the absence of visible symptoms (false positives, FP; n=178 by 252 

SVM). 253 

 254 

During these field revisits conducted four (indicated as R1), eight (R2), eleven (R3), and 255 

twelve months (R4) after the flight at the F1 date, we recorded the development of visible 256 

Xf symptoms on 1,700 out of the 3,328 trees initially evaluated. Four months after F1, 61% 257 

of the false positives had developed symptoms, while only 39% of the asymptomatic trees 258 

classified as unaffected by the remote sensing-driven PSFT model had (true negatives, TN, 259 

n=818, two-sided t-test: P < 0.001). This difference in visible symptom development was 260 

maintained throughout the one-year post-flight evaluations (R1, R2, R3 and R4), with FP 261 

trees consistently developing symptoms sooner than TN trees.  These results obtained in the 262 

multitemporal revisit scheme and via qPCR confirmed that the remote sensing-driven PSFT 263 

model based on plant functional traits was able to detect Xf symptoms earlier than standard 264 

visual inspections by plant pathologists. The ability to detect pre-visual infections is 265 

particularly relevant given the threat of infected but asymptomatic trees contributing to the 266 

Xf epidemics, as plants artificially infected with Xf and maintained in controlled 267 

environmental conditions take 10 to 12 months to start developing visible symptoms8,12. 268 

 269 

Notably, our analysis was not based just on single spectral bands or indices to feed the 270 

model. Instead, we used radiative-transfer to independently quantify physiological traits 271 

linked to photosynthesis, pigment degradation, and structural changes of trees undergoing 272 

early stress caused by Xf infection. This methodology permits generalization and transfer to 273 

other plant species or diseases, since the retrieved traits are closely or even directly linked 274 

to the physiological changes occurring in affected vegetation. The relative importance of 275 

these traits for disease detection will differ among pathogens and host plants, depending on 276 

the physiological effects associated with the disease. Operational remote-sensing based 277 

detections of pathogen infections should thus rely on the spectral bandsets enabling the 278 

retrieval of the most sensitive plant traits linked with a particular disease. In our case, 279 

aircraft payloads imaging <10 narrow bands (e.g. 10 nm or less) in the visible-near infrared 280 

region in tandem with a broad-band thermal sensor would reach overall accuracies 281 

exceeding 70%. As global trade increasingly exposes natural and agricultural systems to 282 

exotic pathogens, such advanced large-scale physiology-focused remote sensing methods 283 

relying on plant functional traits could prove critical to prevent and manage plant disease 284 

epidemics worldwide. 285 

 

 

 

 

 

 

 

 

 

 

 



 
Fig. 4. Remote sensing model performance and re-visit analysis results. a, Overall 286 

accuracy (bars) and kappa coefficient (, bullets) of linear discriminant analysis (LDA), 287 

neural network (NNE) and support vector machine (SVM) algorithms distinguishing 288 

asymptomatic from Xf-symptomatic trees using as inputs standard vegetation indices 289 

calculated from RGB-NIR bands (SVI), Pigment- and Structure-based Functional Traits 290 

(PS), and Pigment-, Structure-, Fluorescence and Temperature-based Functional Traits 291 

(PSFT). Statistics are shown separately for the data (n=7,315 trees) used in training (TR, 292 

n=5,852 trees) and testing (TS, n=1,463 trees) for each of the three algorithms. b, Fraction 293 

of trees that were asymptomatic in June 2016 but showed visible symptoms during later 294 

revisits, for trees classified as non-symptomatic (n=818 trees for SVM, n=588 trees for NN 295 

and n=534 trees for LDA) and symptomatic (n=178 trees for SVM, n=408 trees for NN and 296 

n=462 trees for LDA) by remote sensing (true negatives, TN, and false positives, FP, 297 

respectively). F1 and F2 indicate the dates of the airborne imaging campaigns, which 298 

corresponded with intensive field work (FW1 and FW2). The field revisits conducted are 299 

indicated as R1, R2, R3 and R4. The dotted blue and red lines represent the cumulative sum 300 

of the fraction of trees that were identified as TN and FP by the three algorithms. In the box 301 

plots, the black line within the box represents the median of the predictions of the three 302 

algorithms, and the top and bottom of the box are the 75th and 25th quartiles, respectively. 303 

The whiskers represent the upper and lower limits based on the difference with the 304 

interquartile ranges (Q±1.5xIQR). The average percentage predicted by the three 305 

algorithms is shown with a white point within the boxplot. 306 



 
Fig. 5. Field evaluation, qPCR tests and remote sensing spatial predictions. a, Map of 307 

an olive orchard imaged by thermal and hyperspectral remote sensing showing the visual 308 

evaluation by plant pathologists in the field. b, Remote sensing PSFT model used to detect 309 

Xf-affected trees. The visually asymptomatic trees assessed as affected by qPCR (shown 310 

with red border) in (a) and therefore missed in the field evaluations by plant pathologists 311 

were detected by remote sensing using functional traits (b) with 91% accuracy. Background 312 

in stronger blue tones shows the areas more affected by Xf. 313 

 314 

 315 

 316 

Methods 317 

 318 

Field data collection. We assessed incidence and disease severity (DS) of Xf-induced 319 

symptoms in the field in June 2016 and July 2017 in 15 orchards in the Xf-infected area of 320 

Puglia, Southern Italy. Planting density and overall orchard management were highly 321 

variable within the selected area. We evaluated DS by visually inspecting every tree for 322 

symptoms of canopy desiccation and assessing it on a 0–4 rating scale according to the 323 

percentage of canopy affected by the disease symptoms; 0 indicated the absence of visually 324 

detectable symptoms (asymptomatic) and 4 referred to trees showing canopies with a 325 

prevalence of dead branches. In total, we evaluated 3,328 trees in 2016 [1,442 (DS = 0), 326 

762 (DS = 1), 802 (DS = 2), 250 (DS = 3), and 72 (DS = 4)] and 3,987 trees in 2017 [2,607 327 

(DS = 0), 687 (DS = 1), 555 (DS = 2), 122 (DS = 3), and 15 (DS = 4)]. Most of the olive 328 

orchards sampled had old trees (>50 years old) of cultivars Ogliarola Salentina and Cellina 329 

di Nardò, the native and widespread cultivars in the area. These cultivars have been shown 330 

to be highly susceptible to the CoDiRO strain associated with the Italian Xf epidemic. Xf-331 

infected trees of both cultivars typically show severe desiccation that rapidly encompasses 332 

the entire canopy (within 2–3 years), and causes complete canopy die-back. Only one olive 333 

orchard consisted of trees of the Leccino cultivar (ca. 35 years old), which has genetic traits 334 



of resistance to Xf, as demonstrated by the lower bacterial concentrations in trees of this 335 

cultivar and the milder symptoms in infected trees26. 336 

 337 

During the field campaigns, we conducted different physiological measurements on leaves 338 

(Fig. 3a; Supplementary Fig. 3). Flavonoid (FLAV) concentration, chlorophyll content, 339 

anthocyanin content index, nitrogen balance index (NBI), and leaf temperature were 340 

measured on 15/25 asymptomatic/symptomatic leaves per tree using a leaf clip Dualex 4 341 

(Force-A, Orsay, France). On the same leaves, the steady-state leaf fluorescence yield (Ft) 342 

and the leaf reflectance within the visible and near-infrared regions were measured with a 343 

FluorPen FP100 and PolyPen RP400, respectively (Photon Systems Instruments, Brno, 344 

Czech Republic), calculating leaf NPQI. We conducted a revisit assessment of disease 345 

severity in October 2016 and February, June, and July of 2017, re-evaluating 1,700 of the 346 

3,328 trees originally evaluated in June 2016.  In the 15 olive orchards selected for 347 

symptom scoring, we confirmed the presence of Xf infections by sampling and testing at 348 

least two symptomatic trees per plot. Diagnostic tests were performed using a quantitative 349 

PCR  (qPCR) assays15 in all orchards under study. In addition, one of the orchards was 350 

selected for a more extensive testing by qPCR assay, using 67 out of the 157 trees of this 351 

orchard. This qPCR dataset was used to validate the remote sensing and the visual 352 

evaluation methods. Based on the qPCR assays, the trees were categorized as positive 353 

(presence of infection) or negative (no bacterial infection detected) based on the resultant 354 

quantification cycle (Cq) values. Clear-cut values were consistently obtained for the trees, 355 

both symptomatic and asymptomatic, categorized as qPCR-positive (i.e. Cq ranging from 356 

23 to 28; a positive result is considered if Cq < 35 and a clear exponential fluorescence 357 

curve is observed). Conversely, no fluorescence (Cq=0) was detected in the trees 358 

categorized as qPCR-negative. We used the data from eight orchards where the 359 

qPCR-sampled trees were visible in the imagery (n=100) for further statistical analysis. In 360 

particular, we evaluated the detection by the SVM-PSFT remote sensing model of the 361 

Xf-infected trees (n=58), splitting them into infected symptomatic (qPCR=1; DS≥1; n=44) 362 

and infected asymptomatic trees (qPCR=1; DS=0; n=14) as assessed by qPCR in the 363 

laboratory. 364 

 365 

Hyperspectral and thermal image data collection and processing. We acquired imagery 366 

on 28 June 2016 and 5 July 2017 over 1,200 ha within the Xf-infected area using a 367 

hyperspectral sensor and a thermal camera on board a manned aircraft. Both cameras were 368 

flown 500 m above ground level (AGL) at midday, acquiring hyperspectral and thermal 369 

imagery at 40 cm and 60 cm pixel resolution, respectively. We covered the visible and 370 

near-infrared regions with a micro-hyperspectral imager (VNIR model, Headwall 371 

Photonics, Fitchburg, MA, USA) operating in the spectral mode of 260 bands acquired at 372 

1.85 nm/pixel and 12-bit radiometric resolution, yielding 6.4 nm full-width at half-373 

maximum (FWHM) with a 25-micron slit in the 400–885 nm region. We set the frame 374 

storage rate on board the aircraft to 50 frames per second with 18 ms integration time. The 375 

8-mm focal length lens yielded an instantaneous field of view (IFOV) of 0.93 mrad and an 376 

angular field of view (FOV) of 49.82°. We calibrated the hyperspectral sensor 377 

radiometrically in the laboratory with an integrating sphere (CSTM-USS-2000C Uniform 378 

Source System, LabSphere, North Sutton, NH, USA) using coefficients derived from a 379 

calibrated uniform light source at four illumination and six integration times. Atmospheric 380 

correction enabled the conversion of radiance values to reflectance using total incoming 381 

irradiance simulated with the SMARTS model27,28. In addition, we measured aerosol 382 



optical depth in the field at 550 nm with a Micro-Tops II Sunphotometer model 540 (Solar 383 

LIGHT Co., Philadelphia, PA, USA) during the flight. We ortho-rectified the hyperspectral 384 

imagery with PARGE (ReSe Applications Schläpfer, Wil, Switzerland), using inputs from 385 

an inertial measuring unit (IMU) (IG500 model, SBG Systems, France) installed onboard 386 

and synchronized with the micro-hyperspectral imager. Due to the high spatial resolution 387 

collected (40 cm) and the large size of most of the trees studied (>5 m) spatial binning was 388 

applied to increase the signal-to-noise ratio (SNR) of the instrument. In addition, we 389 

applied spectral binning due to the large number of spectral bands collected with 390 

oversampling (260 bands @ 1.85 nm sampling interval). After performing both spatial and 391 

spectral binning, SNR increased to values >300:1, showing radiance spectra with absence 392 

of noise (Fig. 1f) and in the reflectance spectra (Fig. 3b). The thermal camera (FLIR 393 

SC655, FLIR Systems, USA) had a resolution of 640×480 pixels and was equipped with a 394 

24.6 mm f/1.0 lens connected to a computer via the GigaE protocol. This camera has a 395 

spectral response in the range of 7.5-14 μm and operates with a thermoelectric cooling 396 

stabilization, yielding high sensitivity below 50 mK. We calibrated the camera in the 397 

laboratory using a blackbody (model P80P, Land Instruments, Dronfield, UK) at varying 398 

target and ambient temperatures, and in the field through vicarious calibrations using 399 

surface temperature measurements obtained following Calderon et al.13.  400 

 401 

The high-resolution hyperspectral and thermal imagery acquired over the orchard allowed 402 

single-tree identification using automatic object-based crown detection algorithms. The 403 

algorithms were used to calculate mean temperature and hyperspectral reflectance for pure 404 

crowns. We used image segmentation procedures as described in Calderón et al.29. In this 405 

study, we applied four image segmentation methods to the thermal and hyperspectral 406 

images to extract temperature, radiance, and reflectance spectra from each pure tree crown. 407 

The very high-resolution imagery acquired enabled the identification and delineation of 408 

each tree crown independently in the thermal and hyperspectral datasets, minimizing 409 

background and within-crown shadow effects at the border pixels of each tree crown. The 410 

object-based image segmentation methods selected for the results reported here were 411 

Niblack’s thresholding method30 and Sauvola’s binarization techniques31 to separate tree 412 

crowns from the background. Next, we applied a binary watershed analysis using the 413 

Euclidean distance map for each object32 to automatically separate trees with overlapping 414 

crowns. We calculated narrow-band spectral indices for each tree crown from the 260 415 

spectral bands extracted by image segmentation. The spectral index-based traits explored in 416 

this study are closely related to specific features of leaf physiology, and therefore 417 

potentially sensitive predictors of the disease13. Thus, according to the effects of Xf 418 

infection in olive trees, we selected spectral indices from the plant-trait functional groups 419 

related to chlorophyll, carotene and xanthophyll pigments.  420 

 421 

Model inversion methods. The derivation of canopy structural parameters and leaf 422 

biochemical constituents from each individual tree was performed by inversion of the 423 

radiative transfer model PROSAIL for the pure-vegetation pixels extracted from each tree 424 

crown. The model couples the leaf reflectance PROSPECT model, accounting for leaf 425 

properties such as pigment concentrations, and the canopy reflectance model SAIL, which 426 

accounts for canopy structural properties, such as leaf inclination and the sun-observer 427 

geometry. The versions used in the present study were PROSPECT-D33 and 4SAIL34, 428 

respectively. The inversion of PROSAIL was performed using a Look-up-Table (LUT) 429 

approach, in which randomized input parameters (Supplementary Table 2) are used to 430 



simulate canopy reflectance data, which was then compared to the acquired airborne 431 

spectra. To reduce the complexity and thus alleviate the ill-posed problem of the LUT 432 

inversion, we fixed several parameters by assuming that their variation is relatively low for 433 

the canopies under investigation or that the spectral range considered (400-885 nm) is not 434 

affected by these parameters. The variable parameters considered comprised chlorophyll 435 

content, carotenoid content, anthocyanin content, mesophyll structure, leaf area index and 436 

the average leaf angle. For the LUT generation, the values for these parameters were 437 

sampled from a uniform distribution within a range that is plausible for the assessed plant 438 

canopies (Supplementary Table 2). Previous studies demonstrated that wavelet analysis 439 

improved radiative transfer model inversions35–37. It decomposes the reflectance spectra 440 

into frequency components of different scales and thus spectral characteristics, such as 441 

absorption features of plant pigments. Accordingly, the correspondence in terms of RMSE 442 

between simulated spectra and airborne spectra was measured using a transformation of the 443 

reflectance spectra into 6 continuous wavelets derived by a Gaussian kernel. The estimates 444 

for each trait were derived by selecting the 1% of the LUT entries and respective spectra 445 

that resulted in the smallest RMSE. The parameter values of these LUT entries were 446 

subsequently weighted by their RMSE and averaged. A summary of the traits retrieved for 447 

each severity level is given in Supplementary Fig. 1.  448 

 449 

We retrieved sun-induced chlorophyll fluorescence (SIF) emission throughout the leaf and 450 

canopy using the 3-D model FluorFLIGHT38. The model is based on existing theory of 451 

radiative transfer by coupling the leaf fluorescence model FLUSPECT39 and the 3-D ray-452 

tracing model FLIGHT40,41 to account for the canopy components. Input data required to 453 

run the models are described in Supplementary Table 3. FluorFlight was used to i) estimate 454 

Fi independently from other confounding factors (LAI, Ca+b), and ii) to evaluate the Fi 455 

estimation from the O2-A in-filling FLD method with a 6.4 nm FWHM sensor. We used 456 

FluorFLIGHT in a multi-step LUT-based inversion scheme38 to retrieve full crown SIF and 457 

Fi from a complex scene accounting for the influence of scene structure and composition. 458 

Fi was quantified based on the FLD2 calculation from the airborne image using the LUT 459 

derived from FluorFLIGHT. As a prior step, we quantified the optimal parameter 460 

combination of N, Ca+b, Cx+c and LAI using PROSAIL42,43. The model was originally 461 

developed at 1 nm FWHM. For comparisons with the airborne hyperspectral imagery, we 462 

used model simulations convolved to 6.5 nm FWHM to match the spectral resolution of the 463 

radiance imagery acquired by the hyperspectral airborne sensor, evaluating the effects of 464 

the bandwidth on the Fi vs. SIF relationship (Supplementary Fig. 2). 465 

 466 

Statistical analysis. We used multivariate analyses based on classification and machine 467 

learning algorithms to classify disease incidence and severity. We assessed the ability of 468 

various selections of spectral indices to estimate disease severity (DS) using support vector 469 

machine (SVM), neural networks (NN) and linear discriminant analysis (LDA). We tested 470 

these modelling approaches for three different objectives, assessing the separation between: 471 

(i) Case A: asymptomatic (AS) vs. symptomatic trees (AF; affected), and (ii) Case B: Initial 472 

Xf-symptoms (IN, DS=1) vs. advanced Xf-symptoms (AD, DS = 2, 3, and 4) severity levels. 473 

We validated the selected models by partitioning the data set into two samples: the training 474 

sample (TR), containing 80% of the data collected over two years (2016 and 2017) for each 475 

disease severity class selected at random, and the testing or validation sample (TS), with the 476 

remaining 20%. We fitted each model using the training sample and validated it by using 477 

the testing sample to assess its classification accuracy. In a first step, we performed a 478 



variable reduction based on variance inflation factor (VIF) analysis for each of the two 479 

objectives described (Cases A and B) on the training set. This was done to avoid 480 

multicollinearity among predictor variables (i.e. plant traits). The variables with a VIF 481 

lower than 10 were retained for model development. Variables used to build the different 482 

models evaluated were i) single reflectance bands, for operational purposes we assessed the 483 

10 most sensitive wavelengths related to the disease; ii) spectral indices listed in 484 

Supplementary Table 1, with which we found the indices most sensitive to the disease to be 485 

NPQI, CWSI, PRI∙CI, PRIn SIF, BF1, PRIM1, CRI700m, BF2, PRIM4, DCabxc,VOG2, 486 

and TCARI/OSAVI; and iii) plant traits estimated by model inversion (Fig. 2) using the 487 

radiative transfer models indicated above. Wilks’ lambda method44 was used to identify the 488 

variables with the greatest contribution. Then, we used the data retained through VIF 489 

analysis in the three classification methods (SVM, NN and LDA). We performed the SVM 490 

analysis using R software (version 3.4.0; R Development Core Team, Vienna, Austria) with 491 

the “e1071” package45. We applied a non-linear SVM classification method using the radial 492 

basis function kernel. We built the NN using the “nnet” package46 in R, based on feed-493 

forward networks with a single hidden layer. To reach the best performance of the NN, 494 

guaranteeing the maximization of its algorithm, we trained 500 NNs for each objective and 495 

selected the one with the highest classification accuracy. In addition, we set the NN 496 

parameter size, the number of units in the hidden layer, and the weight decay for the 497 

quantification of the penalty of misclassification errors using a cross-validation approach 498 

within the “caret” package47 in R. We also conducted LDA using the “caret” package in R 499 

to generate a discriminant function capable of determining the classification accuracy of the 500 

dataset, based on the pooled covariance matrix and the prior probabilities of the 501 

classification groups44.  We assessed the classification accuracies of three different sets of 502 

plant traits: 1) Pigment-, Structure-, Fluorescence and Temperature-based Functional Traits 503 

(PSFT); 2) Pigment- and Structure-based Functional Traits (PS); and 3) Standard RGB-NIR 504 

bandset (SVI) by calculating the overall accuracy (OA, in %) and the kappa coefficient (), 505 

which provides an overall accuracy assessment for the classification based on commission 506 

and omission errors for all classes48.  507 

 508 

We applied non-linear SVM classification models using the radial basis function with a 509 

leave one out cross validation (LOOCV) and a stochastic gradient boosting machine to test 510 

the remote sensing-based PSFT model with qPCR assay data obtained in: i) one field with 511 

trees affected by Xf and asymptomatic trees (n = 67 trees tested; total number of trees in the 512 

orchard = 157); and ii) trees tested with qPCR (n=100) located within eight olive orchards 513 

throughout the study area. Training of the SVM model was performed using an iterative 514 

procedure implemented with the “caret” package47 in R. In a first step, balance techniques 515 

were performed to minimize unbalanced data effects; then, we conducted 50 iterations of 516 

non-linear SVM classification methods to predict the quantitative PCR data using the using 517 

the remote sensing-based PSFT model. In the next step, a sequential stochastic gradient 518 

boosting was trained using an ensemble model obtained from 50 SVM predictions. We 519 

fitted each non-linear SVM model and ensemble model to assess its classification accuracy. 520 

We assessed the classification accuracies of the proposed remote sensing SVM-PSFT 521 

disease detection model and the visual evaluation performed by plant pathologists against 522 

qPCR assay data obtained at the orchard level. 523 

 524 

In October 2016, February, June, and July 2017 we revisited 1,700 out of the 3,328 trees 525 

evaluated in June 2016 to assess the potential of the remote sensing-based methods to 526 



detect trees affected by Xf before symptoms become visible. We selected the revisited plots 527 

to cover a wide range of initial disease incidence and severity values. The revisit study 528 

focused on calculating the confusion matrix for each model to predict disease severity for 529 

the trees evaluated in June and re-evaluated in October 2016. We used this confusion 530 

matrix to calculate the percentage of true negatives (TN, i.e. trees classified as 531 

asymptomatic by remote sensing and field assessment in June) and false positives (FP, i.e. 532 

trees classified as symptomatic by remote sensing but showing no visual symptoms in the 533 

field assessment in June) that developed symptoms in October. In total, the 1700 evaluated 534 

trees in the revisit consisted of 818 (TN), 412 (True Positives, TP), 178 (FP), and 292 535 

(False Negatives, FN). The results for the studied cases (A, B) and all classification 536 

methods (SVM, NN, and LDA) are shown in Supplementary Tables 4 and 5, the results  of 537 

the qPCR data analysis across eight orchards are shown in Supplementary Table 6, and the 538 

revisit study for the SVM method is displayed in Supplementary Table 7. 539 

 540 
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