
A preliminary version of this paper appears in the proceedings of the 37th International Cryptology Conference
(CRYPTO 2017), c© IACR 2017, DOI: 10.1007/978-3-319-63697-9_22. This is the full version.

PRF-ODH: Relations, Instantiations,

and Impossibility Results

Jacqueline Brendel Marc Fischlin Felix Günther Christian Janson

Cryptoplexity, Technische Universität Darmstadt, Germany
{jacqueline.brendel, marc.fischlin, felix.guenther, christian.janson}@cryptoplexity.de

September 26, 2017

Abstract. The pseudorandom-function oracle-Diffie–Hellman (PRF-ODH) assumption has been
introduced recently to analyze a variety of DH-based key exchange protocols, including TLS 1.2 and the
TLS 1.3 candidates, as well as the extended access control (EAC) protocol. Remarkably, the assumption
comes in different flavors in these settings and none of them has been scrutinized comprehensively yet.
In this paper here we therefore present a systematic study of the different PRF-ODH variants in the
literature. In particular, we analyze their strengths relative to each other, carving out that the variants
form a hierarchy. We further investigate the boundaries between instantiating the assumptions in
the standard model and the random oracle model. While we show that even the strongest variant
is achievable in the random oracle model under the strong Diffie–Hellman assumption, we provide a
negative result showing that it is implausible to instantiate even the weaker variants in the standard
model via algebraic black-box reductions to common cryptographic problems.

1

http://dx.doi.org/10.1007/978-3-319-63697-9_22

Contents

1 Introduction 3

1.1 The PRF-ODH Assumption . 3
1.2 Evaluating the PRF-ODH Assumptions . 3
1.3 Our Results . 4

2 PRF-ODH Definition 7

3 Instantiating the PRF-ODH Assumption 9

3.1 Standard-Model Instantiation of nnPRF-ODH . 9
3.2 Random-Oracle Instantiation of mnPRF-ODH and nmPRF-ODH 10
3.3 Random-Oracle Instantiation of mmPRF-ODH . 11
3.4 On the Relation Between PRF-ODH and Security Against Related-key Attacks 13

4 PRF-ODH Relations 14

4.1 Separations in the Standard Model . 14
4.2 Separations in the Random Oracle Model . 18
4.3 Discussion . 21

5 On the Impossibility of Instantiating PRF-ODH in the Standard Model 22

5.1 Overview . 22
5.2 DDH-augmented Cryptographic Problems . 22
5.3 Algebraic Reductions for the snPRF-ODH Assumption . 23
5.4 Outline of Steps . 24
5.5 Defining the All-powerful Adversary . 24
5.6 Reductions Without Help . 25
5.7 Our Meta-reduction . 26
5.8 Analysis . 27

6 PRF-ODH Security of HMAC 28

6.1 Description of HMAC . 28
6.2 Security of HMAC . 29
6.3 Application to HKDF . 31

7 Conclusion 32

2

1 Introduction

Proposing new cryptographic assumptions is a valid strategy to analyze or design protocols which escape
a formal treatment so far. Yet, the analysis of the protocol, usually carried out via a reduction to the new
assumption, is only the first step. Only the evaluation of the new assumption completes the analysis and
yields a meaningful security claim.

1.1 The PRF-ODH Assumption

In the context of key exchange protocols, a new assumption, called the pseudorandom-function oracle-
Diffie–Hellman (PRF-ODH) assumption has recently been put forward by Jager et al. [JKSS12] for the
analysis of TLS 1.2. It is a variant of the oracle-Diffie–Hellman assumption introduced by Abdalla et
al. [ABR01] in the context of the encryption scheme DHIES. The PRF-ODH assumption basically says
that the function value PRF(guv, x⋆) for a DH key guv looks random, even if given gu and gv and if seeing
related values PRF(Su, x) and/or PRF(T v, x) for chosen values S, T , and x.

The PRF-ODH appears to be a natural assumption for any DH-based key exchange protocol, aiming at
security against man-in-the-middle attacks (see Figure 1). In DH-based protocols both parties, the client
and the server, exchange values gu, gv and locally compute the session key by applying a key derivation
(or pseudorandom) function to the key guv and usually some parts of the transcript. The man-in-the-
middle adversary can now try to attack the server’s session key PRF(guv, . . .) by submitting a modified
value S instead of gv to the client, yielding a related key PRF(Su, . . .) on the client’s side. The PRF-ODH

assumption guarantees now that the server’s key is still fresh.
Note that simple authentication of transmissions does not provide a remedy against the above problem.

The adversary could act under a different, corrupt server identity towards the client, and only re-use the
Diffie–Hellman data, authenticated under the corrupt server’s key. Then the Diffie–Hellman keys in the
executions would still be non-trivially related. This happens especially if keys are used in multiple sessions.
Another problem is that some protocols may derive keys early, before applying signatures, e.g., such as for
handshake encryption as well as in the post-handshake authentication mechanism in TLS 1.3 [Res17].

It therefore comes as no surprise that the PRF-ODH assumption has been used in different protocols
for the security analysis, including the analysis of the TLS 1.2 [DR08] ephemeral and static Diffie–Hellman
handshake modes [JKSS12, KPW13, BFK+14], the TLS 1.3 [Res17] Diffie–Hellman-based and resumption
handshake candidates [DFGS15a, DFGS15b, DFGS16] as well as 0-RTT handshake candidates [FG17], and
a 0-RTT extension of the extended access control (EAC) protocol [BF17], for the original EAC protocol
listed, for example, in Document 9303 of the International Civil Aviation Organization [Int15]. Notably,
these scientific works use different versions of the PRF-ODH assumption, due to the different usages of
the key shares gu, gv. These key shares can be ephemeral (for a single session), semi-static (for a small
number of sessions), or static (for multiple sessions). Therefore, the man-in-the middle adversary may ask
to see no related key for either key share, a single related key, or multiple related keys. For instance, while
Jager et al. [JKSS12] required only security against a single query for one of the two key shares, Krawczyk
et al. [KPW13] modify the original PRF-ODH assumption because they require security against multiple
oracle queries against this key share. In [FG17] an extra query to the other key share has been added, and
[BF17] require multiple queries to both key shares.

1.2 Evaluating the PRF-ODH Assumptions

Consequently, and to capture all of the above assumptions simultaneously, we generally speak of the
lrPRF-ODH assumption, allowing the adversary no (l, r = n), a single (l, r = s), or multiple (l, r = m)
related key queries, for the “left” key gu or the “right” key gv. Such queries are handled by oracles ODHu

3

Client Adversary Server

ephemeral ephemeral
or (semi-)static or (semi-)static
key gu key gv

gu

−−−−−−−→
gu

−−−−−−−→
gv

←−−−−−−−
key derivation

S
←−−−−−−− PRF(guv, . . .)

related key
PRF(Su, . . .)

Figure 1: Origin of the PRF-ODH assumption: Man-in-the-middle attack on DH-based key exchange protocol.

and ODHv, returning the corresponding pseudorandom function value. This results in nine variants, for
each combination l, r ∈ {n, s, m}. We also discuss some more fine-grained distinctions, e.g., if the adversary
learns both keys gu, gv before choosing the input x⋆ for the challenge value PRF(guv, x⋆), or if x⋆ can only
depend on gu.

To evaluate the strengths of the different types of lrPRF-ODH assumptions one can ask how the variants
relate to each other. Another important aspect is the question whether, and if so, to which (well inves-
tigated) Diffie–Hellman problem it possibly relates to, e.g., the computational Diffie–Hellman (CDH), the
decisional Diffie–Hellman (DDH), the strong Diffie–Hellman (StDH), or the even more general Gap-Diffie–
Hellman (GapDH) problem. While the answer to this question may rely on the random oracle model, the
final issue would be to check if (any version of) the assumption can be instantiated in the standard model.

Especially the question whether the PRF-ODH assumption (or which variant) can be instantiated in
the standard model is of utmost interest. Some of the aforementioned works refer to the(ir) PRF-ODH

assumption as a standard-model assumption, since there is no immediate reference to a random oracle. This
would not only apply to the schemes analyzed with respect to the PRF-ODH assumption, but potentially
also to other works where the Gap-DH or related assumptions in the random oracle have been used for the
analysis, yet where the PRF-ODH assumption is a promising alternative for carrying out a proof. Examples
include the QUIC protocol [FG14, LJBN15] and OPTLS [KW16] which forms the base for TLS 1.3.

1.3 Our Results

Figure 2 gives an overview over our results. We explain the details next.

Instantiations. Our first contribution is to discuss instantiation possibilities of the PRF-ODH variants.
We stress that some of these results mainly confirm the expectation: the nnPRF-ODH assumption where
no oracle queries are allowed can be based upon the decisional Diffie–Hellman assumption DDH, and
the one-sided assumptions mnPRF-ODH and nmPRF-ODH where the adversary has (multiple) access to
either oracle ODHu or ODHv can be based on the strong Diffie–Hellman assumption in the random oracle
model. The strong DH assumption (StDH) demands that the adversary solves the computational problem
of computing guv from gu, gv, but having access to a decisional oracle DDH(gu, ·, ·) checking for DH
tuples. Such checks are necessary to provide consistency when simulating the random oracle through lazy

4

snPRF-ODH

mnPRF-ODH

ssPRF-ODH

msPRF-ODH smPRF-ODH

mmPRF-ODH

nsPRF-ODH

nmPRF-ODH

nnPRF-ODH

F1 (4.3) F1 (4.3)

F2 (4.4)

F2 (4.4)

F2 (4.4)

F2 (4.5)

F2 (4.5)

F2 (4.5)

F3 (4.6) F3 (4.6)

FRO (4.7)

FRO (4.8)

FRO (4.9)
FRO (4.9)

DDH + PRFG

StDH + prog. ROM StDH + prog. ROM

StDH + prog. ROM

(3.1)

(3.2) (3.2)

(3.3)

no std-model algebraic
black-box reduction

(5.1)

Figure 2: Relations between the different PRF-ODH variants (in solid-line rounded rectangles) from Definition 2.1 and other
assumptions (in dotted-line rounded rectangles). Solid arrows indicate the trivial implications between PRF-ODH variants,
dashed arrows indicate implications we establish. Struck-out, densely dotted arrows indicate separations in the standard
model via the indicated function Fn ∈ F (cf. Definition 4.1). Struck-out, sparsely dotted arrows indicated separations in the
random-oracle model. The dashed horizontal line demarcates the boundary below which our impossibility result for standard-
model algebraic black-box reductions from Section 5 holds. Numbers in parentheses indicate the respective propositions and
theorems.

sampling, i.e., in the case that random values are only sampled on their first explicit usage. The proofs
for mnPRF-ODH and nmPRF-ODH appear already implicitly in previous work about key exchange, e.g.,
[Kra05, Ust08, DF11, FG14, LJBN15, KW16, LXZ+16], but where the reduction to the StDH problem
in the random oracle model has been carried out by dragging along all the steps of the key exchange
protocols.

Our final instantiation result for the strongest notion mmPRF-ODH holds in the random oracle model
under the strong DH (StDH) assumption. Surprisingly, the proof is less straightforward than one would
expect, since the availability of both oracles ODHu and ODHv imposes the need for further consistency
checks between cross-over calls for the two oracles in the simulation. We show that such consistency checks
can indeed be implemented assuming StDH, but causing a square-root loss in the security reduction to
StDH. This loss is due to the fact that in an intermediate step we go through the square-DH problem
SqDH (given g, gv compute gv2

) to which CDH reduces by making two calls to the square-DH problem
adversary (see, e.g., [Kil01]), effectively squaring the success probability.

The instantiations are shown through the boxes with dotted surrounding lines in Figure 2. We also

5

discuss briefly the relationship to related-key security for pseudorandom functions, where the adversary
can ask to see values for transformed keys φ(K). While similar in spirit at first glance, it seems to us that
the notions differ in technical details which makes it hard to relate them.

Relations. The instantiation results give a sort of general method to achieve any PRF-ODH notion,
leaving open the possibility that one notion may be actually easier to achieve. This is even more relevant in
light of the fact that previous works used different notions. In order to support a better comparison between
the various notions we relate them in terms of strength of the assumption. Some of these relationships,
especially implications, are easy to establish. For example, since the adversary in the mmPRF-ODH game
can always forgo using its ODHv oracle, this immediately implies mnPRF-ODH security. All implications
are marked by solid arrows in Figure 2.

As for separations we are able to rule out a number of implications unconditionally. By this we mean
that we only make the minimal assumption that a secure instantiation exists, and then build one still
satisfying this notion but not the stronger one. These separations are displayed in Figure 2 through dotted
arrows.

We are also able to separate further notions conditionally, using random oracles and a plausible number-
theoretic assumption. Namely, under these assumptions, the notion of snPRF-ODH (with a single call to
ODHu) is strictly stronger than the nmPRF-ODH notion where the adversary can ask the ODHv oracle
multiple times but does not get access to the ODHu oracle. With a similar strategy we can also separate
mnPRF-ODH with multiple ODHu queries from smPRF-ODH, where the adversary can now make one extra
call to ODHu on top of the ODHv queries.

The conditional separations are not symmetric in the sense that they apply to the other oracle as well.
The reason is that these results exploit that the adversary receives gu before gv, such that the converse
does not simply follow. Besides these opposite cases there are also some other cases where we could not
provide a separation, e.g., from mmPRF-ODH to msPRF-ODH. We give more insights within.

Impossibility result. The third important contribution is our impossibility result. We show that
proving security of even the mild snPRF-ODH or nsPRF-ODH notions based on general cryptographic
problems is hard. Besides the common assumption that the reduction uses the adversary only as a black
box, we also assume that the reduction is algebraic. This means that whenever the reduction passes a group
element A to the outside, it knows a representation (α1, α2, . . .) such that A =

∏

gαi

i for the reduction’s
input values g1, g2, This notion of algebraic reductions has been used in other separation works before,
e.g., [BV98, PV05, GBL08]. Unlike generic reductions, algebraic reductions can take advantage of the
representation of group elements.

In detail, we then show via a meta-reduction technique [GMR88, BV98, PV05], that one cannot prove
security of the snPRF-ODH or nsPRF-ODH assumption via algebraic black-box reductions to a class of
cryptographic problems. The problems we rule out are quite general, saying that the adversary receives
some input, can interact multiple times with a challenger in an arbitrary way, and should then provide
a solution. We remark that we also need to augment this problem by a Diffie–Hellman problem in order
to give a reference point for the algebraicity of the reduction. Our result also requires that the decisional
square-DH problem is hard, i.e., that g, gv, gv2

is indistinguishable from g, gv, gz for random v, z.1

In a sense, our negative result, displayed by the dashed horizontal line on top in Figure 2, is optimal
in terms of the relation of PRF-ODH assumptions, as it rules out exactly the notions “one above” the
nnPRF-ODH notion with a standard model instantiation. We still note that the restrictions on the reduc-
tion, and the additional assumption, may allow to bypass our result. This also means that our implications

1While the computational version of the square-DH problem is known to be equivalent to the CDH problem, it is unclear
if the decisional version follows from DDH.

6

and separations between the different notions, established earlier, are not moot.

Implications for practical key derivation functions. Since the PRF-ODH assumptions have been
used in connection with applied protocols like TLS, we finally address the question which security guar-
antees we get for practical key derivation functions used in such protocols. We are especially interested
in HMAC [KBC97] on which the key derivation function HKDF [Kra10, KE10] is based upon. Our in-
stantiation results in the random oracle so far treat the key derivation function as a monolithic random
oracle, whereas key derivation functions like HMAC have an iterative structure. At the same time, our
impossibility result tells us that giving a standard-model proof for HMAC, based on say collision-resistance
of the compression function, may be elusive. We thus make the assumption that the compression function
is a random oracle.

We show that HMAC provides the strong notion of mmPRF-ODH security, assuming StDH and that
the compression function is a random oracle. We note that Coron et al. [CDMP05] show that a variant
of HMAC is indifferentiable from a random oracle, and Krawczyk [Kra10] briefly remarks that the result
would carry over to the actual HMAC construction. However, in HKDF the HMAC function is applied in a
special mode in which the key part is hashed first, and it is therefore unclear if our result for the monolithic
random oracle immediately applies. But based on the techniques used in the instantiation part we can
give a direct proof of the security of (the general mode of) HMAC.

2 PRF-ODH Definition

Different variants of the new PRF oracle-Diffie–Hellman (PRF-ODH) assumption have been introduced
and used in the literature in the context of key exchange protocols. In this section we first provide a
generic PRF-ODH assumption definition capturing all different flavors and discuss its relation to previous
occurrences [JKSS12, KPW13, DFGS15b, DFGS16, BF17, FG17].

Definition 2.1 (Generic PRF-ODH assumption). Let G be a cyclic group of order q with generator g. Let
PRF : G×{0, 1}∗ → {0, 1}λ be a pseudorandom function that takes a key K ∈ G and a label x ∈ {0, 1}∗ as
input and outputs a value y ∈ {0, 1}λ, i.e., y ← PRF(K, x).

We define a generic security notion lrPRF-ODH which is parameterized by l, r ∈ {n, s, m} indicating
how often the adversary is allowed to query a certain “left” resp. “right” oracle (ODHu resp. ODHv) where
n indicates that no query is allowed, s that a single query is allowed, and m that multiple (polynomially
many) queries are allowed to the respective side. Consider the following security game GamelrPRF-ODH

PRF,A

between a challenger C and a probabilistic polynomial-time (PPT) adversary A.

1. The challenger C samples u $←− Zq and provides G, g, and gu to the adversary A.

2. If l = m, A can issue arbitrarily many queries to the following oracle ODHu.

ODHu oracle. On a query of the form (S, x), the challenger first checks if S /∈ G and returns ⊥ if
this is the case. Otherwise, it computes y ← PRF(Su, x) and returns y.

3. Eventually, A issues a challenge query x⋆. On this query, C samples v $←− Zq and a bit b $←− {0, 1}
uniformly at random. It then computes y⋆

0 = PRF(guv, x⋆) and samples y⋆
1

$←− {0, 1}λ uniformly
random. The challenger returns (gv, y⋆

b) to A.

4. Next, A may issue (arbitrarily interleaved) queries to the following oracles ODHu and ODHv (de-
pending on l and r).

7

ODHu oracle. The adversary A may ask no (l = n), a single (l = s), or arbitrarily many (l = m)
queries to this oracle. On a query of the form (S, x), the challenger first checks if S /∈ G or
(S, x) = (gv, x⋆) and returns ⊥ if this is the case. Otherwise, it computes y ← PRF(Su, x) and
returns y.

ODHv oracle. The adversary A may ask no (r = n), a single (r = s), or arbitrarily many (r = m)
queries to this oracle. On a query of the form (T, x), the challenger first checks if T /∈ G or
(T, x) = (gu, x⋆) and returns ⊥ if this is the case. Otherwise, it computes y ← PRF(T v, x) and
returns y.

5. At some point, A stops and outputs a guess b′ ∈ {0, 1}.

We say that the adversary wins the lrPRF-ODH game if b′ = b and define the advantage function

AdvlrPRF-ODH
PRF,A (λ) := 2 ·

(

Pr[b′ = b]−
1

2

)

and, assuming a sequence of groups in dependency of the security parameter, we say that a pseudorandom
function PRF with keys from (Gλ)λ provides lrPRF-ODH security (for l, r ∈ {n, s, m}) if for any A the
advantage AdvlrPRF-ODH

PRF,A (λ) is negligible in the security parameter λ.

In the following, if clear from the context, we will omit the group G and sometimes its generator g as
explicit inputs to the adversary.

Relations to previous PRF-ODH assumptions. The above generic and parameterized lrPRF-ODH

definition captures different variants of the PRF-ODH assumption present in the literature. The PRF-ODH

formulation put forward by Jager et al. [JKSS12] is captured by ours in case the parameters are set to
l = s and r = n meaning that only the “left” oracle (querying the DH share gu) can be queried once. Note
that Step 2 is only required if l = m, capturing that Jager et al. first request their challenge before issuing
an oracle query. The same variant, snPRF-ODH, was also used by Dowling et al. [DFGS16]. Krawczyk et
al. [KPW13] modified the PRF-ODH formulation of Jager et al. since they require security against multiple
(“left”) oracle queries against the DH key share. Thus, their variant is captured by ours through setting
the parameters to l = m and r = n, and thus making use of Step 2. Recent works further introduced
an additional query to the other DH key share, due to the fact that the keys are static or semi-static,
respectively. In more detail, Fischlin and Günther [FG17] require an extra single (“right”) oracle query
while still requesting polynomial many queries to the “left” oracle. This is captured by our definition
through setting the parameters to l = m and r = s. Lastly, Brendel and Fischlin [BF17] require to query
both key shares multiple times, which our definition captures as well by choosing the parameters as l = m

and r = m.

Design options. The above generic definition can be refined further, e.g., by enabling the challenger
to provide the value gv to the adversary at the outset in Step 1. This variant was used in the analysis of
earlier TLS 1.3 draft handshakes by Dowling et al. [DFGS15b]. Such change would be accompanied by
giving the adversary in Step 2 also access to the ODHv oracle in case r = m. Another reasonable change
could encompass enabling the adversary in multi-query variants (i.e., l = m or r = m) to also issue multiple
challenge queries in Step 3, for the same value gv or even freshly chosen values gvi in each call. However,
one can show via a standard hybrid argument that both notions (i.e., single challenge query and multiple
challenge query) are polynomially equivalent.

In this work, we focus on the common structure of previously studied PRF-ODH notions [JKSS12,
KPW13, DFGS16, BF17, FG17] which are captured by our generic definition above. Additionally, in
Section 4 we briefly discuss the impact of such changes regarding the analysis of the relations between the
different variants of the assumption.

8

3 Instantiating the PRF-ODH Assumption

We next turn to the question how to instantiate the PRF-ODH assumption. Concretely, we provide instan-
tiations of the two notions that mark both ends of the strength spectrum of the PRF-ODH variants. First,
we show that the weakest PRF-ODH variant, nnPRF-ODH, can be instantiated in the standard model
under well-established assumptions, namely the Decisional Diffie–Hellman (DDH) assumption and (ordi-
nary) PRF security in a group G. Second, we establish that, in the (programmable) random oracle model,
both the strongest one-sided PRF-ODH variants, mnPRF-ODH and nmPRF-ODH, as well as the most
general mmPRF-ODH assumption can be instantiated from the strong Diffie–Hellman assumption (StDH).
We define all these number-theoretic assumptions when discussing the security notions. Furthermore, we
discuss the relation of the PRF-ODH notion to that of PRF security under related-key attacks.

3.1 Standard-Model Instantiation of nnPRF-ODH

We begin with instantiating the nnPRF-ODH assumption in the standard model. For this we speak of a
function F : G×{0, 1}∗ → {0, 1}λ to be PRFG-secure if no efficient adversary which, upon querying x, gets
to see either the function value F(K, x) for a then chosen random key K $←− G, or a random value, can
distinguish the two cases. As in the other games before, the choice of answering genuinely or randomly is
made at random, and we let Adv

PRFG

F,A denote the advantage of algorithm A. Here, we normalize again the

advantage by subtracting the guessing probability of 1
2 and multiplying the result by a factor of 2. Note

that the difference to the nnPRF-ODH assumption is that the adversary does not get to see a pair gu, gv

from which the key is generated.
The underlying DDH assumption says that one cannot efficiently distinguish tuples (g, gu, gv, guv) from

tuples (g, gu, gv, gz) for random u, v, z ∈ Zq. More formally, for an adversary B we define AdvDDH
G,B to be the

probability of B predicting a random bit b, when given g, gu, gv, guv for b = 0 and g, gu, gv, gz for b = 1,
with the usual normalization as above. Alternatively, one may define AdvDDH

G,B to be the advantage in the
nnPRF-ODH game for the function F(K, x) = K.

Theorem 3.1 (DDH + PRFG =⇒ nnPRF-ODH). If a function F : G × {0, 1}∗ → {0, 1}λ is PRFG-secure
and the DDH assumption holds in G, then F is also nnPRF-ODH-secure. More precisely, for any efficient
adversary A against the nnPRF-ODH security of F, there exist efficient algorithms B1 and B2 such that

AdvnnPRF-ODH
F,A ≤ 2 · AdvDDH

G,B1
+ 2 · Adv

PRFG

F,B2
.

We note that the factor 2 is the common loss due to the game-hopping technique, when switching from
indistinguishability for two fixed games to choosing one of the games at random.

Proof. Let A be an efficient adversary against the nnPRF-ODH security of F. We show that A’s advantage
AdvnnPRF-ODH

F,A in winning the nnPRF-ODH game is bounded by B1’s advantage AdvDDH
G,B1

against DDH, and

B2’s advantage Adv
PRFG

F,B2
against the PRFG-security of F. This is done via game-hopping:

Game 0. The original nnPRF-ODH game.

Game 1. As the original game, but we replace the key guv used in computing the challenge value y⋆
0 by

an independent random group element gz ∈ G. We claim that A cannot distinguish Game 0 from Game
1 efficiently with non-negligible advantage, since otherwise there exists an efficient adversary B1 that can
solve DDH with non-negligible advantage. So, assume that A is able to distinguish the two games. Then
B1 is constructed as follows: In the DDH game, B1 receives its challenge, say (g, gu, gv, gz). In order to
decide whether gz = guv or gz $←− G, algorithm B1 runs A as a subroutine on input g, gu. Then B1 answers

9

A’s challenge query x⋆ with (gv, y⋆
b) where y⋆

0 = F(gz, x⋆) and y⋆
1

$←− {0, 1}λ, and the choice b $←− {0, 1} is
made by B1. Eventually, A outputs a bit b′, and B returns 0 if and only if b = b′.

Note, that if A can efficiently distinguish the games, i.e., detect whether gz = guv (Game 0) or not
(Game 1), B1 can also efficiently solve its DDH challenge with the same advantage (times a factor 1

2 for
moving from a random choice of either giving B1 the value guv or a random value gz to fixed games Game
0 and Game 1). Thus, we can bound the advantage by

AdvnnPRF-ODH
F,A ≤ AdvGame1

F,A + 2 · AdvDDH
G,B1

.

Game 2. As the previous game, but this time we replace the challenge value y⋆
0 itself by a uniform

random value, i.e., y⋆
0

$←− {0, 1}λ. We show that if there exists an efficient adversary A that can distinguish
Game 2 from Game 1, then there necessarily exists an efficient algorithm B2 that can break the PRFG

security of F. We construct B2 as follows: To initiate the environment for A, algorithm B2 chooses some
arbitrary group element gu and forwards it to A. At some point, A asks the challenge query x⋆, which
B2 relays to its own challenger, receiving the PRFG-challenge y⋆

b̂
. Algorithm B2 forwards y⋆ along with an

arbitrarily chosen group element gv to A. Eventually, A stops and outputs a bit b′. Algorithm B2 outputs
the same bit as A.

Note that b̂ = 0 corresponds to Game 1, whereas b̂ = 1 corresponds to the environment of Game 2.
Therefore, if A can efficiently distinguish between the two games, B2 can distinguish between PRFG values
and independent random values with the same advantage. Hence, we can bound A’s advantage by

AdvGame1
F,A ≤ AdvGame2

F,A + 2 · Adv
PRFG

F,B2
.

Since both y⋆
0 and y⋆

1 are now drawn independently and at random from {0, 1}λ, A cannot do better than
guessing, i.e., AdvGame2

F,A = 0, which completes the proof.

3.2 Random-Oracle Instantiation of mnPRF-ODH and nmPRF-ODH

Abdalla et al. [ABR01] proved that the oracle DH assumption ODH is implied by the strong Diffie–Hellman
assumption in the random oracle model. Here, we show that our strongest one-sided PRF-ODH variants,
mnPRF-ODH and nmPRF-ODH, can be instantiated under the strong Diffie–Hellman assumption StDH.
The assumption says that, given g, gu, gv and access to a decisional DH oracle for fixed value gu, i.e.,
DDH(gu, ·, ·), it is infeasible to compute guv. Observe that this assumption is implied by the GapDH

assumption, where the adversary can choose the first group element freely, too. Let AdvStDH
G,B denote the

probability of algorithm BDDH(gu,·,·)(g, gu, gv) outputting guv.

Theorem 3.2. In the random oracle model, StDH implies mnPRF-ODH security and nmPRF-ODH security
of F(K, x) = RO(K, x) for random oracle RO. More precisely, for any efficient adversary A against the
mnPRF-ODH or nmPRF-ODH security of F, there exists an efficient algorithms B such that

AdvmnPRF-ODH
F,A ≤ AdvStDH

G,B and AdvnmPRF-ODH
F,A ≤ AdvStDH

G,B .

We prove the following theorem for the case of mnPRF-ODH only; the case nmPRF-ODH follows anal-
ogously, noting that by symmetry of the inputs gu, gv we can assume that the adversary B gets access to
a DDH(gv, ·, ·) oracle.

Proof. The proof is by reduction. We describe the construction of the reduction B from mnPRF-ODH to
StDH. First of all, B obtains group elements g, gu, gv in the StDH game. To initiate the mnPRF-ODH

game environment for A, the StDH-adversary B forwards g and gu to A as input. A now has access to the

10

oracles RO and ODHu, i.e., A may send queries of the form (S, x) to the ODHu oracle, with S ∈ G and
x being some bit string. To provide an appropriate simulation it must be ensured that, if A first queries
some (S, x) to ODHu and then (Su, x) to the random oracle RO, the answer of RO is consistent with the
simulation of ODHu, and vice versa. This can be achieved if B can program the RO and has access to a
DDH(gu, ·, ·) oracle.2 B simulates the two oracles as follows:

Simulation of RO. The answers of the random oracle RO need to be consistent, i.e., if a query is asked
repeatedly, RO returns the same answer. This can be ensured by standard bookkeeping techniques. If a
previously unseen query (K, x) is received, B must consider the case that A has already queried (S, x) with
K = Su to ODHu. Thus, when receiving a call (K, x) to the RO, algorithm B queries its DDH(gu, ·, ·) oracle
on (S, K) for any group element S that has been queried with x to ODHu. If the DDH oracle returns 1 on
any such input then B answers consistently with the corresponding answer from earlier. Else, B assigns a
fresh value y to (K, x) and returns y to A.

Simulation of ODHu. Analogously to the simulation of the random oracle, B checks each newly received
request by A against all previous query-response pairs of ODHu and answers consistently in case of repe-
tition. If a previously unseen query (S, x) is received by ODHu, B must further check whether the related
value (Su, x) has been queried to RO before. Similar to the reverse case, B uses its DDH(gu, ·, ·) oracle on
(S, K) on all previous RO queries (K, x) to detect this. If DDH(gu, S, K) = 1 for some K, the simulation
of ODHu answers with the respective output of RO. Otherwise, a response y is drawn uniformly at random
from {0, 1}λ and returned to A (and the tuple (S, x, y) stored for future reference).

At some point, A issues a challenge query x⋆ to its challenger. Algorithm B answers this query with gv

and some value y⋆, drawn uniformly at random from {0, 1}λ. Adversary A can now query ODHu and RO

further, with the limitation that it may not query the pair (gv, x⋆) to ODHu. These queries are simulated
as before. Eventually, A stops and outputs a guess bit b′. Then, B queries DDH(gu, gv, K) on all queries
(K, x⋆) of A to the RO. If DDH(gu, gv, K) = 1 for some RO-query (K, x⋆), then B outputs K in the StDH

game.
If the efficient adversary A wins the mnPRF-ODH game with non-negligible advantage, then B also

outputs the correct value guv with non-negligible probability. To see this, we note that A can only win
the mnPRF-ODH game in the random oracle model with non-negligible advantage if guv appears in one
of its RO queries. Assume that this is not the case. Then A expects y⋆ to be either y0 = RO(guv, x⋆) or
y1

$←− {0, 1}λ. By the nature of random oracles, y0 and y1 are indistinguishable for A since both are drawn
uniformly at random from {0, 1}λ. This holds even if A could correctly determine the value guv, since it
cannot compute y0 without querying the random oracle to compare with the received challenge.

Thus, A must necessarily query guv to the random oracle in order to distinguish y0 and y1. If this
happens in the actual attack (with a “genuine” random oracle) with non-negligible probability, then it
must also happen in the simulation above with non-negligible probability, because B provides a perfectly
sound simulation of a random oracle. But if A makes such a query (in the simulation) then B finds the
DH value in the list of queries and correctly outputs it. Furthermore, B is efficient, since A is efficient and
asks at most polynomially many (in the security parameter) queries to each oracle.

3.3 Random-Oracle Instantiation of mmPRF-ODH

We next look at the case that the adversary can make queries to both oracles, ODHu and ODHv. Inter-
estingly, this does not follow straightforwardly from the StDH assumption as above. The reason is that,
there, we have used the DDH-oracle with fixed element gu to check for consistency of ODHu queries with

2We remark that this is the reason why, in the given scenario, the computational DH assumption is not sufficient.

11

random oracle queries. In the most general mmPRF-ODH case, however, we would also need to check
consistency across ODHu and ODHv queries. In particular, a simulator would need to be able to check for
queries (S, x) to ODHu and (T, x) to ODHv if they result in the same key Su = K = T v, but the simulator
is given only S, T, g, gu, and gv. Such a test cannot be immediately performed with the DDH(gu, ·, ·) oracle
as in the StDH case, and not even with the more liberal DDH(·, ·, ·) oracle as in the GapDH case.

Suppose that we take the StDH problem and augment it by another oracle which allows to check
for “claws” S, T with Su = T v. Call this the claw-verifying oracle Claw and the problem the ClawStDH

problem. For pairing-friendly groups G we get this oracle for free via the bilinear map e as Claw(S, T) =
[e(gu, S) = e(gv, T)?]. Next, we show that for general groups the claw-verifying oracle can be implemented
in the StDH game, too, but at the cost of a loose security reduction to StDH.

The idea of representing the oracle Claw is as follows. Suppose that, in addition to g, gu and gv

we would also receive the value gu/v (where we assume here and in the following that v 6= 0, since the
case v = 0 is trivial to deal with). Then we can run the check for claws via the stronger DDH oracle
by calling DDH(gu/v, S, T), checking that Su/v = T and therefore Su = T v. The question remains if the
computational problem of computing guv given gu/v (in the presence of a DDH oracle) becomes significantly
easier, and if we can relax the requirement to a DDH(gu, ·, ·) oracle. Switching to the square DH problem
in an intermediate step, we show that this is not the case, although the intermediate step causes a loose
security relationship.

Assume that we have an algorithm A which (given oracle access to DDH(gu, ·, ·), DDH(gv, ·, ·), and the
claw-verifying oracle Claw) on input (g, gu, gv) is able to compute guv. Then we show that we can use
this algorithm to build an algorithm B for the square-DH problem (given g, gv compute gv2

) relative to
a DDH(gv, ·, ·) oracle. For this, algorithm B for input g, gv picks r $←− Zq and sets gu = (gv)r. With this
choice, gu/v = gr can be easily computed with the knowledge of r, allowing to implement the claw-verifying
oracle for free. Similarly, we have DDH(gu, ·, ·) = DDH(gv, (·)r, ·), giving us the “mirrored” oracle for free.
Algorithm B now runs A on input (g, gu, gv) and answers all oracle requests of A during the computation
with the help of its DDH(gv, ·, ·) oracle. Suppose that the adversary A eventually outputs K. Then, B
returns K1/r which equals gv2

for a correct answer K = guv = grv2
of A.

Next, we show that from a solver for the square-DH problem (with DDH(gv, ·, ·) oracle) we can build a
solver for the StDH problem. Going from the square-DH problem to the CDH problem is already known.
Interestingly, though, the common strategies in the literature [MW96, BDZ03, Gal12] require three calls
to the square-DH solver, basically to compute the square g(u+v)2

= gu2+2uv+v2
and then to divide out gu2

and gv2
. Fortunately, two calls are sufficient, see for example [Kil01], yielding a tighter security bound.

So suppose we have a square-DH algorithm (with oracle DDH(gv, ·, ·)) then we call this algorithm once
on g, gu+v and once on g, gr(u−v) for randomizer r $←− Zq. Since both inputs are random and independent,

we get two valid answers gu2+2uv+v2
and gr2(u2−2uv+v2) with the product of the square-DH algorithm’s

success probability. Note that these two executions at most double the number of oracle queries to the
DDH oracle. Dividing out the exponent r2 from the second term by raising it to the power 1/r2, and then
dividing the two group elements we obtain g4uv from which we can easily compute guv.

Overall, we can show that solving the problem in presence of the decisional oracles for gu and gv, and
an additional claw-verifying oracle, is implied by the StDH assumption, albeit with a security loss. More
precisely, for any efficient adversary A against ClawStDH we get an efficient adversary B (making at most
twice as many calls to its StDH oracle as A) such that

AdvClawStDH
G,A ≤

√

AdvStDH
G,B .

We can now give our security proof for mmPRF-ODH, implying also security of msPRF-ODH and smPRF-ODH,
of course:

12

Theorem 3.3. In the random oracle model, ClawStDH (resp. StDH) implies mmPRF-ODH security of
F(K, x) = RO(K, x) for random oracle RO. More precisely, for any efficient adversary A against the
mmPRF-ODH security of F, there exist efficient algorithms B1,B2 such that

AdvmmPRF-ODH
F,A ≤ AdvClawStDH

G,B1
≤
√

AdvStDH
G,B2

Proof. The proof is almost identical to the one for mnPRF-ODH, only that we here simulate the other
oracle ODHv as the oracle ODHu, and for each query to either of the oracles also check via the help of
Claw consistency between ODHu and ODHv evaluations. This provides a sound simulation of the random
oracle. It follows as before that the adversary A can only distinguish genuine y⋆ from random ones if it
queries the random oracle about guv (in the sound simulation), in which case B1 finds this value in the list
of queries.

3.4 On the Relation Between PRF-ODH and Security Against Related-key Attacks

The PRF-ODH assumption demands the output of a PRF to be indistinguishable from random even when
given access to PRF evaluations under a related (group-element) key, sharing (at least) one exponent of
the challenge key. On a high level, this setting resembles the concept of related-key attack (RKA) security
for pseudorandom functions as introduced by Bellare and Kohno [BK03]. This raises the question if the
PRF-ODH assumption can be instantiated from RKA-secure PRFs (or vice versa).

Related-key attack security of a PRF f : K × D → R with respect to a set Φ of related-key-deriving
(RKD) functions is defined as the indistinguishability of two oracles F(·,K)(·) and G(·,K)(·) for a randomly
chosen key K $←− K. The distinguishing adversary A may query the oracles on inputs (φ, x) ∈ Φ × D on
which the oracles respond as F(φ,K)(x) := f(φ(K), x) and G(φ,K)(x) := g(φ(K), x) for a function g drawn
uniformly at random from the set FF(K,D,R) of all functions K×D → R. Formally, the advantage of A
against the RKA-PRF security of f with respect to set Φ is defined as

Adv
RKA-PRF,Φ
f,A := Pr

[

AF(·,K)(·) = 1 | K $←− K
]

− Pr
[

AG(·,K)(·) = 1 | K $←− K, g $←− FF(K,D,R)
]

.

Intuitively, one should now be able to relate RKA-PRF security to PRF-ODH security by considering two
correlated sets of RKD functions corresponding to the PRF-ODH oracles ODHu and ODHv with respect
to a group G with generator g and two exponents u, v ∈ Zq:

ΦODHu
:= {φODHu,S | S ∈ G \ {gv}} where φODHu,S(K) := (K1/v)logg(S),

ΦODHv
:= {φODHv ,T | T ∈ G \ {gu}} where φODHv ,T (K) := (K1/u)logg(T).

Insurmountable hurdles however seem to remain when trying to relate PRF-ODH notions and RKA-
PRF security (for according sets Φ) via implications. In the one direction, the adversary in the PRF-
ODH setting is provided with the DH shares gu and gv forming the (challenge) PRF key while such side
information on the key is not given in the RKA-PRF setting. Hence, in a reduction of PRF-ODH security
to some RKA-PRF notion, even for an appropriate RKD function set a simulation always lacks means to
provide the PRF-ODH adversary with these shares. In the other direction, the RKA-PRF challenge can
be issued on any related key φ(K) for an admissible RKD function φ while the PRF-ODH challenge is,
for the case of the real PRF response, always computed on the key guv. A reduction would hence need to
map the RKA-PRF challenge for an arbitrary, related key onto the fixed PRF-ODH challenge key.

Though on a high level capturing a relatively similar idea, the relation between PRF-ODH and RKA-
PRF security hence remains an open question.

13

4 PRF-ODH Relations

In this section we study the relations of different PRF-ODH variants spanned by our generic Definition 2.1.
The relationships are also illustrated in Figure 2.

Let us start with observing the trivial implications (indicated by solid arrows in Figure 2) which are
induced by restricting the adversary’s capabilities in our definition. That is, by restricting the access to
one of the oracles ODHu and ODHv (from multiple queries to a single query or from a single query to no
query) for a notion from Definition 2.1, we obtain a trivially weaker variant. The more interesting question
is which of these implications are strict, i.e., for which of two PRF-ODH variant pairs one notion is strictly
stronger than the other. For a majority of these cases we can give separations which only require the
assumption that the underlying primitive exists at all, for some separations we rely on the random oracle
model (and a plausible number-theoretic assumption).

4.1 Separations in the Standard Model

For our standard model separations we introduce the following family of functions F .

Definition 4.1 (Separating function family F). Let G : G × {0, 1}∗ → {0, 1}λ. We define the family of
functions F = {Fn}n∈N with Fn : G× {0, 1}∗ → {0, 1}λ as follows:

Fn(K, x) :=

{

G(K, 1)⊕ . . .⊕ G(K, n) if x = 0

G(K, x) otherwise.

As a warm-up, let us first consider the (in)security of functions Fn ∈ F in the standard PRF setting.
It is easy to see that no function Fn ∈ F can satisfy the (regular) security notion for pseudorandom
functions: for any function Fn, querying the PRF oracle on x0 = 0, . . . , xn = n yields responses y0, . . . ,
yn for which the combined XOR value y = y0 ⊕ . . .⊕ yn, in case the oracle computes the real function Fn,
is always 0 whereas otherwise it is 0 only with probability 2−λ. However, in a restricted setting where the
PRF adversary A is allowed to query the oracle only a limited number of times (at most n queries for
function Fn), we can indeed establish the following, restricted PRF security for functions Fn ∈ F .

Proposition 4.2 (F is restricted-PRF-secure). If G is an (ordinary) secure pseudorandom function, then
each Fn ∈ F from Definition 4.1 is an n-restricted secure pseudorandom function in the sense that it
provides PRF security against any adversary that is allowed to query the PRF oracle at most n times.

Proof (informal). Fix a function Fn ∈ F . First, we replace G in the definition of Fn by a truly random
function G′. The introduced advantage difference for adversary A by this step can be bounded by the
advantage of an adversary B against the PRF security of G, simulating the (restricted) PRF game for A
using its own PRF oracle for G.

After this change, the output values of Fn on inputs x > 0 are independent random values and the
output on x = 0 is the XOR of the outputs on x = 1, . . . , n. In contrast, for a truly random function,
the outputs on all inputs (incl. x = 0) are independent and random. However, any adversary A that is
allowed to query the PRF oracle on at most n inputs cannot distinguish these two cases, bounding its
success probability at this point by 0.

Let us now turn to the more involved PRF-ODH setting. Equipped with the function family F , we can
establish separations between various PRF-ODH variants, as illustrated in Figure 2. The key insight for
these separations is similar to the one in the standard PRF setting: an adversary with a limited number of
n queries (including the challenge query in the PRF-ODH setting) cannot distinguish (a challenge under) Fn

from (a challenge under) a truly random function. As subsequent propositions establish, this allows us to

14

separate the notion nnPRF-ODH (with only one challenge query) from snPRF-ODH and nsPRF-ODH (with
two queries, the challenge and one to an ODH oracle) via function F1. Furthermore, the notions snPRF-ODH

and nsPRF-ODH (with two queries) are separated from mnPRF-ODH, ssPRF-ODH, and nmPRF-ODH (with
three or polynomially many queries) via F2. Finally, we establish that the notion ssPRF-ODH (three
queries) can be separated from mnPRF-ODH and nmPRF-ODH (multiple queries) using function F3. Note
that functions Fn ∈ F cannot provide a separation between two notions that both allow polynomially many
queries (e.g., mnPRF-ODH and msPRF-ODH). To keep the propositions compact, the given separations
constitute the minimal spanning set; recall that if a notion A implies another notion B, separating a
notion C from B also separates C from A.

We begin with separating nnPRF-ODH from snPRF-ODH and nsPRF-ODH security.

Proposition 4.3 (nnPRF-ODH 6=⇒ snPRF-ODH, nsPRF-ODH). If G from Definition 4.1 is nnPRF-ODH-
secure, then F1 ∈ F is nnPRF-ODH-secure, but neither snPRF-ODH- nor snPRF-ODH-secure. More pre-
cisely, for any efficient adversary A against the nnPRF-ODH security of F1, there exists an efficient algo-
rithm B such that

AdvnnPRF-ODH
F1,A ≤ AdvnnPRF-ODH

G,B ,

but there exist algorithms A1, A2 with non-negligible advantage AdvsnPRF-ODH
F1,A1

= AdvnsPRF-ODH
F1,A2

= 1− 2−λ.

Proof. First, observe the following snPRF-ODH-adversary A1 and nsPRF-ODH-adversary A2 are successful
(except with negligible probability). Both first challenge F1 on x⋆ = 0 (obtaining as y⋆ either y⋆

0 = G(guv, 1)
or y⋆

1
$←− {0, 1}λ), then query (gv, 1) resp. (gu, 1) to their ODHu resp. ODHv oracle, obtaining a value y =

G(guv, 1). They distinguish the challenge by outputting 0 if y⋆ = y and 1 otherwise and win except if
coincidentally y⋆

1 = y, which happens with probability 2−λ.
To see that F1 is nnPRF-ODH-secure if G is, consider an algorithm B that simply relays its obtained

value gu to A and the challenge query of A to its challenger unmodified if x⋆ 6= 0, but for x⋆ = 0 asks its
challenge query on 1. Forwarding the response and outputting the same bit b′ as A outputs, B provides a
correct simulation for A and, moreover, wins if A does.

We continue with the separation of snPRF-ODH from mnPRF-ODH, ssPRF-ODH, and nmPRF-ODH

security.

Proposition 4.4 (snPRF-ODH 6=⇒ mnPRF-ODH, ssPRF-ODH, nmPRF-ODH). If G from Definition 4.1
is mnPRF-ODH-secure, then F2 ∈ F is snPRF-ODH-secure, but neither mnPRF-ODH-, nor ssPRF-ODH-,
nor nmPRF-ODH-secure. More precisely, for any efficient adversary A against the snPRF-ODH security
of F2, there exist efficient algorithms B1, . . . , B4 such that

AdvsnPRF-ODH
F2,A ≤ AdvmnPRF-ODH

G,B1
+ 4 · AdvmnPRF-ODH

G,B2
+ 4 · AdvmnPRF-ODH

G,B3
+ AdvmnPRF-ODH

G,B4
,

but there exist algorithms A1, . . . , A3 with non-negligible advantage AdvmnPRF-ODH
F2,A1

= AdvssPRF-ODH
F2,A2

=

AdvnmPRF-ODH
F2,A3

= 1− 2−λ.

Proof. It is immediate to see that F2 is not mnPRF-ODH-, ssPRF-ODH-, or nmPRF-ODH-secure. For this,
consider respective adversaries A1, A2, A3 which first query the challenge x⋆ = 0, obtaining, besides, g, gv,
a value y⋆ which equals either y⋆

0 = F2(guv, 0) = G(guv, 1) ⊕ G(guv, 2) or y⋆
1

$←− {0, 1}∗. Then, A1 issues
two queries (gv, 1) and (gv, 2) to its ODHu oracle while A2 issues (gv, 1) to its ODHu oracle and (gu, 2)
to its ODHv oracle, and A3 issues queries (gu, 1) and (gu, 2) to its ODHv oracle, all of them obtaining
values y′ = G(guv, 1) and y′′ = G(guv, 2). The adversaries then check whether y⋆ = y′ ⊕ y′′. If so, they
output 0, else 1. Hence, A1, A2, and A3 always win the mnPRF-ODH, ssPRF-ODH, resp. nmPRF-ODH

game for F2, except when y⋆
1 = y′ ⊕ y′′, which happens with negligible probability 2−λ.

15

We can now focus on showing that F2 is snPRF-ODH-secure if G is mnPRF-ODH-secure. For this,
we separately consider the two distinct cases that A issues a challenge query for x⋆ > n and the case
that x⋆ ≤ n.

In case x⋆ > n, we can bound A’s advantage, denoted as Adv
snPRF-ODH,x⋆>n
F2,A , by the advantage of an

adversary B1 against the mnPRF-ODH security of G as follows. Algorithm B1 provides its initially obtained
values g, gu as the initial input to A. When A queries x⋆, B1 relays the challenge to its own challenge
oracle, and forwards the obtained response (gv, y⋆) back to A. When A issues its (sole) ODHu query (S, x),
B1 simply relays query and response in case x 6= 0. In case x = 0, B1 instead queries its ODHu oracle
on (S, 1) and (S, 2) and returns the combined XOR to A. Finally, when A outputs its guess b′, B1 stops
and outputs the same guess b′. Observe that B1 is efficient (issuing 3 queries where A issues 2 queries)
and provides a sound simulation for A. Note in particular that, as x⋆ > n, all of B1’s ODHu queries (in
particular on x ≤ n) are permissible. As the challenge bit b coincides for B1’s mnPRF-ODH game and the
simulated snPRF-ODH game for A, B1 wins if A does, hence Adv

snPRF-ODH,x⋆>n
F2,A ≤ AdvmnPRF-ODH

G,B1
.

In case x⋆ ≤ n, we first modify the snPRF-ODH game for A by changing the function F2 to a function F′
2

which, for a truly random function R, the snPRF-ODH challenge group elements gu, gv, and some random,
but fixed i $←− {1, 2} and j ∈ {1, 2} s.t. j 6= i, is defined as follows:

F′
2(K, x) :=

F2(K, x) if K 6= guv

R(i)⊕ G(K, j) if K = guv and x = 0

R(i) if K = guv and x = i

G(K, x) if K = guv and x /∈ {0, i}

The difference inA’s advantage introduced by this step can be bounded by the advantage of an adversary B2

against the mnPRF-ODH security of G as follows. Algorithm B2 obtains gu and begins by picking b∗ ∈ {0, 1}
and i $←− {1, 2} at random. It asks x⋆′ = i as its challenge and obtains (gv, y⋆′) where y⋆′ equals either
y⋆′

0 = G(guv, i) or y⋆′
1

$←− {0, 1}λ. It then provides A with gu and responds to A’s queries as follows,
dependent on A’s challenge query:

1. A asks the challenge x⋆ = 0. In this case, B2 queries (gv, j), obtains y as response and computes y⋆
0 =

y⋆′⊕ y and y⋆
1

$←− {0, 1}λ. It returns y⋆
b∗ to A.3 For A’s ODHu query, we let B2 respond with y⋆′ if A

queries (gv, i) and have B2 relay the query to its own ODHu oracle otherwise.

2. A asks a challenge x⋆ 6= 0. We let B2 abort if x⋆ = i (which happens with probability at most 1
2).

Otherwise we know x⋆ = j and let B2 query (gv, x⋆) to its own ODHu oracle, obtaining y. It sets
y⋆

0 = y and y⋆
1

$←− {0, 1}λ and returns y⋆
b∗ to A.4 For A’s ODHu query, B2 simply relays queries (S, x)

with S 6= gv or x /∈ {0, i}. In case A queries (gv, 0), B2 asks its own ODHu query on (gv, j), obtaining
y′, and returns y⋆′ ⊕ y′ to A. In case A queries (gv, i), B2 responds with y⋆′.

When A stops and outputs its guess b′, B2 stops as well and outputs 0 if b∗ = b′ and 1 otherwise.
Let us see why B2 correctly simulates the snPRF-ODH game either for function F2 (in case b = 0 in

B2’s mnPRF-ODH game) or for function F′
2 (in case b = 1). Through using y⋆′, if b = 0 (and hence y⋆′ =

y⋆′
0 = G(guv, i)) B2 computes F2(guv, 0) = G(guv, i) ⊕ G(guv, j) in the challenge and ODHu responses for

x⋆ = 0 resp. x = 0, otherwise it computes F′
2(guv, 0) = R(i) ⊕ G(guv, j). Similarly, B2 responds to ODHu

queries on (gv, i) with either G(guv, i) or R(i), depending on y⋆′. Furthermore, by picking b∗ $←− {0, 1} on
its own and aborting on x⋆ = i, algorithm B2 also correctly provides A with a real-or-random challenge
response in both cases.

3Here, including y⋆′ (which is either y⋆′

0 or y⋆′

1) makes the response represent either F2 or F
′

2. Further, the bit b∗ chosen
by B2 renders the response real-or-random in either case.

4This makes the response to A real-or-random.

16

We can determine the advantage of B2 against the mnPRF-ODH security of G as follows (informally
denoting by, e.g., “B2 → 0” the event that B2 outputs 0).

AdvmnPRF-ODH
G,B2

=
∣

∣

∣Pr[B2 → b]− 1
2

∣

∣

∣ =
∣

∣

∣

1
2 · (Pr[B2 → 0 | b = 0] + Pr[B2 → 1 | b = 1])− 1

2

∣

∣

∣

= 1
2 · |Pr[B2 → 0 | b = 0]− Pr[B2 → 0 | b = 1]|

= 1
4 · |Pr[B2 → 0 | b = 0 ∧ ¬abort]− Pr[B2 → 0 | b = 1 ∧ ¬abort]|

≥ 1
4 ·
∣

∣

∣Adv
snPRF-ODH,x⋆≤n
F2,A − 1

2 − Adv
snPRF-ODH,x⋆≤n
F′

2,A + 1
2

∣

∣

∣

= 1
4 ·
∣

∣

∣Adv
snPRF-ODH,x⋆≤n
F2,A − Adv

snPRF-ODH,x⋆≤n
F′

2,A

∣

∣

∣

Hence, the advantage difference for A introduced by switching from F2 to F′
2 is bounded as

∣

∣

∣Adv
snPRF-ODH,x⋆≤n
F2,A − Adv

snPRF-ODH,x⋆≤n
F′

2,A

∣

∣

∣ ≤ 4 · AdvmnPRF-ODH
G,B2

.

In a second step, we similarly modify the snPRF-ODH game for A by switching from F′
2 to a function F′′

2

which now also replaces values G(K, j) by the output of a random function:

F′′
2(K, x) :=

F2(K, x) if K 6= guv

R(1)⊕R(2) if K = guv and x = 0

R(x) if K = guv and x ∈ {1, 2}

G(K, x) if K = guv and x > 2

As before, this change can be bounded by the advantage of an algorithm B3 against the mnPRF-ODH

security of g. Much like the reduction B2, B3 encodes its challenge on x⋆′ = i $←− {1, 2} as the value
representing G(guv, i) in F′

2 resp. R(i) in F′′
2. For inputs x = j, i 6= j ∈ {1, 2}, B3 samples a random

value R(j) $←− {0, 1}λ on its own. Following the same analysis as for the switch from F2 to F′
2, we can

bound the advantage difference introduced by this change as
∣

∣

∣Adv
snPRF-ODH,x⋆≤n
F′

2,A − Adv
snPRF-ODH,x⋆≤n
F′′

2 ,A

∣

∣

∣ ≤ 4 · AdvmnPRF-ODH
G,B3

.

Finally, in the snPRF-ODH game for F′′
2, the values F′′

2(guv, 1) and F′′
2(guv, 2) are independent, uni-

formly random values and F′′
2(guv, 0) their XOR combination. The advantage of A in this game can hence

immediately be reduced to the advantage B4 in a mnPRF-ODH game against G.5 For this, B4 replies to
all (challenge and ODHu) queries on (guv, x) for x ∈ {0, 1, 2} on its own with R(x) (for x ∈ {1, 2}) resp.
R(1) ⊕ R(2) (for x = 0), picking random values R(1), R(2) $←− {0, 1}λ itself. Note that, as A can pose at
most two queries (one challenge and one ODHu query), these responses are consistent even though B4 does
respond with distinct real (R(x)) or random values. Beyond that, B4 can simply relay all other queries to
its own (challenge and ODHu) oracles.

This finally determines the advantage of A against F′′
2 as

Adv
snPRF-ODH,x⋆≤n
F′′

2 ,A = AdvmnPRF-ODH
G,B4

.

Combining the above advantage bounds yields the overall bound.

In a similar way as for Proposition 4.4 we now also separate nsPRF-ODH security from mnPRF-ODH,
ssPRF-ODH, and nmPRF-ODH security.

5We remark that in this reduction, B4 actually only needs to issue a single ODHv query to its oracle for the simulation,
hence the reduction would also apply to the snPRF-ODH security of G.

17

Proposition 4.5 (nsPRF-ODH 6=⇒ mnPRF-ODH, ssPRF-ODH, nmPRF-ODH). If G from Definition 4.1
is nmPRF-ODH-secure, then F2 ∈ F is nsPRF-ODH-secure, but neither mnPRF-ODH-, nor ssPRF-ODH-,
nor nmPRF-ODH-secure. More precisely, for any efficient adversary A against the nsPRF-ODH security
of F2, there exist efficient algorithms B1, . . . , B4 such that

AdvnsPRF-ODH
F2,A ≤ AdvnmPRF-ODH

G,B1
+ 4 · AdvnmPRF-ODH

G,B2
+ 4 · AdvnmPRF-ODH

G,B3
+ AdvnmPRF-ODH

G,B4
,

but there exist algorithms A1, . . . , A3 with non-negligible advantage AdvmnPRF-ODH
F2,A1

= AdvssPRF-ODH
F2,A2

=

AdvnmPRF-ODH
F2,A3

= 1− 2−λ.

Proof. In Proposition 4.4 we have already established that F2 provides no nmPRF-ODH, ssPRF-ODH

and mnPRF-ODH security given the respective algorithms A1, A2, and A3. For the proof that F2 is
nsPRF-ODH-secure, observe that applying the mirrored proof that F2 is snPRF-ODH-secure from Propo-
sition 4.4 establishes the desired bound. I.e., via algorithms B1, . . . , B4 with multiple right-side (ODHv)
oracle queries we can reduce the security to the nmPRF-ODH security of G.

We now consider the separation of ssPRF-ODH from mnPRF-ODH and nmPRF-ODH.

Proposition 4.6 (ssPRF-ODH 6=⇒ mnPRF-ODH, nmPRF-ODH). If G from Definition 4.1 is msPRF-ODH-
secure, then F3 ∈ F is ssPRF-ODH-secure, but neither mnPRF-ODH- nor nmPRF-ODH-secure. More
precisely, for any efficient adversary A against the ssPRF-ODH security of F3, there exist efficient algo-
rithms B1, . . . , B5 such that

AdvssPRF-ODH
F3,A ≤ AdvmsPRF-ODH

G,B1
+ 3 · AdvmsPRF-ODH

G,B2
+ 3 · AdvmsPRF-ODH

G,B3
+ 3 · AdvmsPRF-ODH

G,B4
+ AdvmsPRF-ODH

G,B5
,

but there exist algorithms A1, A2 with non-negligible advantage AdvmnPRF-ODH
F3,A1

= AdvnmPRF-ODH
F3,A2

= 1− 2−λ.

Proof. As for the previous separations, it is apparent that F3 cannot provide security in the sense of
mnPRF-ODH or nmPRF-ODH. An adversary querying the three values F3(guv, i), i ∈ {1, 2, 3}, through
its ODHu resp. ODHv oracle can distinguish the real value F3(guv, 0) from a random value, except with
negligible probability 2−λ.

For proving that F3 is ssPRF-ODH-secure if G is msPRF-ODH-secure, we apply the same proof strategy
applied in the proof of Proposition 4.4 for showing snPRF-ODH security of F2 based on the mnPRF-ODH

security of G, but with two modifications. The first difference we have to take into account is that an
ssPRF-ODH adversary A may (beyond its challenge and one ODHu query) also issue a (single) ODHv query
for a value T 6= gu. While such a query does not interfere with our proof steps, we cannot relay such a query
to an ODHu oracle and hence need that G is msPRF-ODH-secure, providing the reductions with a (single)
ODHv oracle call. The other change is that we replace values G(guv, i) by the outputs R(i) of a random
function R for three (i ∈ {1, 2, 3}) instead of two labels and in each step abort if A asks a challenge x⋆ = i
for our guessed i, which now happens with probability at most 1

3 . Accounting for the modified factor, this
yields the three intermediary advantage bounds of 3 · AdvmsPRF-ODH

G,Bj
for j ∈ {1, 2, 3}.

4.2 Separations in the Random Oracle Model

In the following we use the following problem of computing non-trivial v-th roots in G for implicitly given
v. That is, consider an algorithm A which outputs some group element x ∈ G with x 6= 1 (and some state
information), then receives gv for random v $←− Zq, and finally outputs y given gv and the state information,
such that yv = x. Denote by AdviiDH

G,A the probability that A succeeds in this interactive inversion DH
problem.

Note that the problem would be trivial if x = 1 was allowed (in which case y = 1 would provide a
solution), or if x can be chosen after having seen gv (in which case x = gv and y = g would trivially work).

18

Excluding these trivial cases, in terms of generic or algebraic hardness the problem is equivalent to the
CDH problem. Namely, assume A “knows” α ∈ Zq such that x = gα. Since x is chosen before seeing gv

the adversary can only compute it as a power of g and, in addition, x 6= 1 implies α 6= 0. Therefore, for
any valid solution y the value y1/α would be a v-th root of g, because (y1/α)v = x1/α = g. This problem of
computing g1/v from g, gv, however, is known as the inversion-DH (iDH) problem; it is equivalent to the
CDH problem with a loose reduction [BDZ03].

For our separation result we still need a slightly stronger version here where, in the second phase, the
adversary also gets access to a decision oracle which, on input two group elements A, B ∈ G outputs 1
if and only if Av = B. We call this the strong interactive-inversion DH problem and denote it by siiDH.
Note that for example for a pairing-based group such an oracle is given for free, while computing a v-th
root of g (or, equivalently, solving the DH problem may still be hard).

Proposition 4.7 (nmPRF-ODH 6=⇒ snPRF-ODH). In the random oracle model, and assuming StDH

and siiDH, there exists a function FRO which is nmPRF-ODH-secure but not snPRF-ODH-secure. More
precisely, for any efficient adversary ARO against the nmPRF-ODH security of FRO, there exist efficient
algorithms B1,B2, such that

AdvnmPRF-ODH

FRO,ARO ≤ AdvStDH
G,B1

+ h · AdvsiiDH
G,B2

+
h

q
+ 2−λ,

for the at most h queries to the random oracle, but there exists an algorithm ARO with non-negligible
advantage AdvsnPRF-ODH

FRO,A ≥ 1− 2−λ+1.

Proof. Consider the function FRO : G× (G× {0, 1}λ)→ {0, 1}λ defined as:

FRO(K, (x, y)) =

{

y if RO(Kx−1, (x, 0λ)) = y and x 6= 1

RO(K, (x, y)) else

We first argue that this function is easy to attack in the snPRF-ODH sense, when given an ODHu oracle
which can be queried once after having learned the challenge values. To this end let ARO, on input g, gu,
use x⋆ = (gu, 0λ) in the challenge query. This yields (gv, y⋆). If gu = 1 then our adversary can compute
the key guv = gv and verify y⋆ directly via RO, outputting 0 if the challenge value matches the computed
value. Otherwise, in the single query to the ODHu oracle let the adversary forward (gv+1, (gu, y⋆)) to get
the value y′. Output 0 if and only if this answer y′ matches y⋆.

Note that if y⋆ has been generated as the output PRF(guv, (gu, 0λ)) then our adversary always returns
0. For gu = 1 this is straightforward, and in the other case the key in the query to ODHu equals guv+v

such that the exception is satisfied. If y⋆ is random, then we have a match with probability at most 2−λ+1:
either the random y⋆ accidentally matches the actual pseudorandom value, or the random oracle output
RO(guv+u, (gu, y⋆)) coincides with y⋆. Both events happen with probability at most 2−λ.

For the security in the nmPRF-ODH sense recall that now the adversary has “only” access to an
ODHv oracle for multiple queries, after having received the challenge value y⋆ for challenge query x⋆. We
first argue that the adversary can never ask the random oracle about the DH key guv used during the
attack. This step will be discussed more thoroughly for the more general case in the instantiation proof
of nmPRF-ODH under the StDH assumption, so we skip it here. We emphasize that this also provides a
sound simulation of the random oracle answers without explicit knowledge of u, v in the attack.

Next, note that we can assume that the adversary with its challenge query x⋆ = (x′, y′) does not
trigger the exceptional event of having the function output y′ = RO(guv(x′)−1, x′, 0λ), since v is only
picked after the adversary has submitted x′. Hence, the probability that any previous random oracle
query was about this key, is at most h

q . Else, y′ matches this previously not queried random oracle value

19

only with probability 2−λ. Hence, the adversary receives the value y⋆ as either RO(guv, (x′, y′)) or as a
random value.

Since queries (gu, x⋆) to the ODHv oracle are prohibited and the adversary never asks the random oracle
about the key guv, the only possibility to distinguish a random challenge y⋆ from an actual random oracle
answer, is to trigger the exceptional case in the function evaluation for the challenge data. So assume that
the adversary queries its ODHv oracle about (T, (x, y)) such that T vx−1 = guv, x⋆ = (x, 0λ) for x 6= 1,
and y matches RO(T vx−1, x, 0λ). In this case we have x = (Tg−u)v and therefore Tg−u is a v-th root of
x 6= 1. This can now be straightforwardly turned into an attack against the (strong) interactive inversion
assumption.

The reduction to the siiDH problem is as follows. Simulate the attack in the random oracle model
by picking u and by using the decisional oracle to answer consistently (as in the reduction to the StDH

problem).6 Use x from the adversary’s challenge as the element in the interactive game, receiving then
gv and guessing the right ODHv query (T, (x, y)) of the adversary and outputting Tg−u as the v-th root.
This breaks the siiDH assumption, with a loss qv in the number of queries to the ODHv oracle.

Given that the adversary never makes a “bad” query to the ODHv oracle it cannot distinguish the two
cases at all.

The idea can now be transferred to the case that we still allow one oracle query to ODHu, basically by
“secret sharing” the reply in the exceptional case among two queries:

Proposition 4.8 (smPRF-ODH 6=⇒ mnPRF-ODH). In the random oracle model, and assuming StDH

and siiDH, there exists a function FRO which is smPRF-ODH-secure but not mnPRF-ODH-secure. More
precisely, for any efficient adversary ARO against the smPRF-ODH security of FRO, there exist efficient
algorithms B1,B2, such that

AdvsmPRF-ODH

FRO,ARO ≤
√

AdvStDH
G,B1

+ h · AdvsiiDH
G,B2

+
h

q
+ 2−λ,

for the at most h queries to the random oracle, but there exists an algorithm ARO with non-negligible
advantage AdvmnPRF-ODH

FRO,ARO ≥ 1− 2−λ+1.

In fact, in the negative result for mnPRF-ODH the adversary only needs to ask two queries to the ODHu

oracle after receiving the challenge query. Since the function is still secure for a single ODHu query, this
is optimal in this regard.

Proof. Consider the function FRO : G× (G× {0, 1}λ)→ {0, 1}λ defined as:

FRO(K, (x, y)) =

y ⊕ RO(K, K, 0λ) if RO(Kx−1, (x, 0λ)) = y and x 6= 1

RO(K, K, 0λ) if RO(Kx−1, (x, 0λ)) = 1λ ⊕ y and x 6= 1

RO(K, (x, y)) else

We first show again that this function is easy to attack in the mnPRF-ODH case. The adversary is very
similar to the one in Proposition 4.7. Namely, our adversary asks the challenge query x⋆ = (gu, 0λ) to
receive y⋆, then asks its ODHu oracle about (gv+1, gu, y⋆) and (gv+1, gu, y⋆⊕1λ), and adds the answers and

6This, however, requires some more careful argument here in the simulation of the random oracle without knowledge
of gv. Since gv is not given from the beginning we cannot simulate in a sound way the adversary’s random oracle queries
before making the challenge query (in which case we output x and only then receive gv in the interactive-inversion problem).
However, the probability that the adversary has made such a query earlier is at most h

q
, since v is chosen at random in Zq,

and we have already accounted for such cases for the event that the adversary has not triggered the exceptional event in the
challenge query.

20

compares them to y⋆. If and only if the values match it outputs 0. In case gu = 1 it can again compute
the reply directly. Overall, it always outputs 0 if y⋆ is the function value, and only with probability at
most 2−λ+1 if it is random.

Arguing again that an algorithm with multi-query access to ODHv and single-query access to ODHu

cannot succeed with non-negligible probability is also very close to the previous case in Proposition 4.7.
For this we first note that we can substitute the answer for the exceptional cases of the single ODHu query
by simply returning an independent random answer. This is a valid simulation strategy as the adversary
cannot make a further ODHu query, nor a direct random oracle query about RO(guv, guv, 0λ) because
this would violate the StDH assumption (as before). Also, the adversary cannot trigger the exceptional
evaluation(s) in the ODHv oracle, since this would violate the siiDH assumption (as before). Furthermore,
the adversary cannot make the “regular” function evaluation in an ODHv call evaluate on RO(guv, guv, 0λ)
because for this it would need to call about x = (guv, 0λ), embedding the DH key already. (Formally we can
assume that the adversary always calls the random oracle about (x′, x′, 0λ) before making a query (x′, 0λ)
to the ODHv oracle, such that this would again violate the StDH assumption with a loose reduction.)
Hence, providing a random answer yields a consistent simulation from the adversary’s point of view.

Moreover, the adversary cannot make a call (gv, x⋆) to the ODHu oracle such that any call either
returns a random oracle value at a different point, or a now independently generated answer. This means
that the adversary does not have the possibility to distinguish random challenge values from genuine ones
anymore.

Corollary 4.9 (nmPRF-ODH 6=⇒ smPRF-ODH and smPRF-ODH 6=⇒ mmPRF-ODH). Since it holds
that smPRF-ODH =⇒ ssPRF-ODH =⇒ snPRF-ODH, the separation nmPRF-ODH 6=⇒ snPRF-ODH

from Proposition 4.7 immediately also establishes nmPRF-ODH 6=⇒ smPRF-ODH.
Similarly, as mmPRF-ODH =⇒ msPRF-ODH =⇒ mnPRF-ODH, the separation smPRF-ODH 6=⇒

mnPRF-ODH from Proposition 4.8 immediately also establishes smPRF-ODH 6=⇒ mmPRF-ODH.

4.3 Discussion

Let us close this section with some remarks about the separations.

Remark. Our separating function family (cf. Definition 4.1) establishes quite a number of separations,
but cannot be used in order to separate the remaining variants. This is due to the fact that our func-
tion family cannot separate between notions that both allow polynomial many queries as for example
nmPRF-ODH and smPRF-ODH. Thus, we have turned to the random oracle model to establish further
separations. Using this model is alleviated by the result about the implausibility of instantiating the
PRF-ODH assumption in the standard model.

In the random oracle model we have shown that it is crucial if the adversary has access to the ODHu

oracle or not (or how many times). This uses some asymmetry in the two oracles, namely, that gu is given
before the challenge query, and gv only after. Our separations take advantage of this difference, visualized
via the interactive-inversion DH problem which is only hard if x⋆ is chosen before receiving gv.

It is currently open if the other notions are separable. Beyond the asymmetry that gu is already
available before the challenge, it is unclear how to “encode” other distinctive information into the input
to the “memoryless” PRF which one oracle can exploit but the other one cannot.

Remark. In case our generic PRF-ODH assumption (cf. Definition 2.1) would provide the adversary
additionally with the share gv in the initialization phase (cf. step 1) then Figure 2 would symmetrically
“collapse” along the vertical axis in the middle. In other words, this would result in equivalences of
the notions snPRF-ODH and nsPRF-ODH, mnPRF-ODH and nmPRF-ODH, as well as msPRF-ODH and

21

smPRF-ODH. Note that this is not a contradiction to our separation results among those notions, as they
only work if (and exploit that) gv is not given in advance.

5 On the Impossibility of Instantiating PRF-ODH in the Standard Model

In this section we show that there is no algebraic black-box reduction R which reduces the snPRF-ODH

assumption (and analogously the nsPRF-ODH assumption) to a class of hard cryptographic problems,
called DDH-augmented abstract problems. With these problems one captures reductions to the DDH
problem or to some general, abstract problem like collision resistance of hash functions.

5.1 Overview

The idea is to use the meta-reduction technique. Assume that we have an algebraic reduction R from the
snPRF-ODH assumption which turns any black-box adversary into a solver for a DDH-augmented problem.
Then we in particular consider an inefficient adversary A∞ which successfully breaks the snPRF-ODH

assumption with constant probability. The reduction, with black-box access to A∞, must then solve the
DDH-augmented problem. For this it can then either not take any advantage of the infinite power of
A∞—in which case we can already break the DDH-augmented problem—or it tries to elicit some useful
information from A∞. In the latter case we build our meta-reduction by simulating A∞ efficiently. This
is accomplished by exploiting the algebraic property of the reduction and “peeking” at the internals of the
reduction’s group element choices. Our meta-reduction will then solve the decisional square-DH problem,
saying that (g, ga, ga2

) is indistinguishable from (g, ga, gb) from random a, b.
Our impossibility result works for pseudorandom functions PRF, which take as input arbitrary bit

strings and maps them to λ bits. We stick with this convention here, but remark that our negative result
also holds if the input length is 1 only, and the output length is super-logarithmic in λ. Similarly, we assume
that PRF is a nnPRF-ODH, although it suffices for our negative result that the function PRF for a random
group element (and some fixed input, say 1) is pseudorandom, i.e., that PRF(X, 1) is indistinguishable from
random for a uniformly chosen group element X $←− G (without giving any “Diffie–Hellman decomposition”
of X).

Theorem 5.1. Assume that there is an efficient algebraic black-box reduction R from the snPRF-ODH (or
nsPRF-ODH) assumption to a DDH-augmented problem. Then either the DDH-augmented problem is not
hard, or the decisional square-DH problem is not hard.

If one assumes vice versa that both the underlying augmented-DDH problem and decisional square-DH
problem are hard, then this means that there cannot be a reduction as in the theorem to show security of
the nsPRF-ODH or snPRF-ODH assumption.

5.2 DDH-augmented Cryptographic Problems

DDH-augmented problems are cryptographic problems in which the adversary either solves a DDH problem
or some abstract (and independent) problem in which it receives some instance inst, can make oracle queries
about this instance, and then generates a potential solution sol. The adversary can decide on the fly which
of the two problems to solve. In terms of our setting here we build a reduction against such DDH-augmented
problems, capturing for example the case that one aims to show security of the PRF-ODH assumption by
assembling a scheme out of several primitives, including the DDH assumption, and giving reductions to
each of them.

We next define cryptographic problems in a general way, where it is convenient to use the threshold
of 1

2 for decisional games to measure the adversary’s advantage. We note that we can “lift” common

22

computational games where the threshold is the constant 0 by outputting 1 if the adversary succeeds or
if an independent coin flip lands on 1. Formally, a cryptographic problem consists of three probabilis-
tic polynomial-time algorithms P = (P.Gen, P.Ch, P.Vf) such that for any probabilistic polynomial-time
algorithm A we have

AdvProb
P,A (λ) := 2 ·

(

Prob

[

P.Vf(secret, sol) = 1 :
(inst, secret) $←− P.Gen(1λ),
sol $←− AP.Ch(secret,·)(1λ, inst)

]

−
1

2

)

is negligible.
A DDH-augmented cryptographic problem PDDH for some group G (or, more precisely, for some se-

quence of groups) based on a problem P, consists of the following algorithms:

• P.GenDDH(1λ) runs (inst, secret) $←− P.Gen(1λ), picks x, y, z $←− Zq and b $←− {0, 1}, and outputs
instDDH = (gx, gy, gxy+bz, inst) and secretDDH = (b, secret).

• P.ChDDH(secretDDH, ·) runs P.Ch(secret, ·).

• P.VfDDH(secretDDH, solDDH) checks if solDDH = (′′DDH′′, b′) and, if so, outputs 1 if and only if b = b′

for bit b in secretDDH. If solDDH = (′′P′′, sol) then the algorithm here outputs P.Vf(secret, sol). In
any other case it returns 0.

5.3 Algebraic Reductions for the snPRF-ODH Assumption

Algebraic reductions have been considered in [BV98] and abstractly defined in [PV05]. The idea is that the
reduction can only perform group operations in the pre-defined way, e.g., by multiplying given elements.
As a consequence, whenever the reduction on input group elements g1, g2, . . . generates a group element
A ∈ G one can output a representation (α1, α2, . . .) such that A =

∏

gαi

i . In [PV05] this is formalized by
assuming the existence of an algorithm which, when receiving the reduction’s input and random tape, can
output the representation in addition to A.

In order to simplify the presentation here, we simply assume that the reduction, when forwarding some
group element to the adversary, outputs the representation itself. The base elements g1, g2, . . . for the
representation are those which the reduction has received so far, as part of the DDH-part of the input or
from the interaction with the adversary. The representation is hidden from the adversary in the simulation,
of course, but our meta-reduction may exploit this information.

We consider (algebraic) reductions R which use the adversary A in a black-box way. The reduction
may invoke multiple copies of the adversary, possibly rewinding copies. We use the common technique
of derandomizing our (unbounded) adversary in question by assuming that it internally calls a truly
random function on the communication so far, when it needs to generate some randomness. Note that the
truly random function is an integral part of the adversary, and that we view the adversary being picked
randomly from all adversaries with such an embedded function. Since the reduction is supposed to work
for all successful adversaries, it must also work for such randomly chosen adversaries.

It is now convenient to enumerate the adversary’s instances which the reduction invokes as Ai for
i = 1, 2, Since our adversary in question is deterministic we can assume that the reduction “abandons”
a copy Ai forever, if it starts the next copy Ai+1. This is without loss of generality because the reduction
can re-run a fresh copy to the state where it has left the previous instance. This also means that the
reduction can effectively re-set executions with the adversary.

The reduction receives as input a triple (gx, gy, gz) and some instance inst and should decide if gz = gxy

or gz is random, or provide a solution sol to inst with the help of oracle P.Ch. We stress that the reduction is
algebraic with respect the DDH-part of the DDH-augmented problem. In particular, encasing a PRF-ODH-
like assumption into the general P problem and providing a trivial reduction to the problem itself is not

23

admissible. The group elements (and their representations) handed to the adversary in the reduction are
determined by the DDH-part of the input. Finally, we note that we only need that, if R interacts with an
adversary against snPRF-ODH with advantage 1− 2−λ, then R solves the DDH-augmented problem with
a non-negligible advantage.

5.4 Outline of Steps

Our negative result proceeds in three main steps:

1. We first define an all-powerful adversary A∞ which breaks the snPRF-ODH assumption by using its
infinite power. This adversary will, besides receiving the challenge at point x⋆ = 0, ask the ODHu

oracle to get the value at (S, 1) for random S = gs, where the random value s is generated via the
integral random function. It then uses its power to compute the Diffie–Hellman key guv, verifies the
answer of oracle ODHu with the help of s, and only if this one is valid, gives the correct answer
concerning the challenge query. In any other case, the adversary aborts.

2. We then show that the algebraic reduction R, potentially spawning many black-box copies of our ad-
versary A∞, must answer correctly to the ODHu query in one copy and use the input values gx, gy, gz

non-trivially, or else we can already break the underlying DDH-augmented problem efficiently.

3. Next we show that, if the reduction answers correctly and non-trivially in one of the copies, then
we can —using the algebraic nature of the reduction— replace the adversary A∞ by an efficient
algorithm, the meta-reduction M, and either break the decisional square-DH assumption or refute
the pseudorandomness of PRF for a fresh random group element.

The decisional square-DH assumption says that it is infeasible to distinguish (g, ga, ga2
) from (g, ga, gb)

for random a, b. It implies the DDH assumption, but is only known to be equivalent to classical DH problem
in the computational case [BDZ03]. More formally, we will use the following variation: (g, ga, ga2

, ga2b, gb, gab)
is indistinguishable from (g, ga, ga2

, ga2b, gb, gc) for random a, b, c.
We briefly argue that the above decision problem follows from the decisional square-DH assumption.

The latter assumption implies that we can replace ga2
and ga2b in these tuples by group elements gd, gdb

for random d, using knowledge of b to compute the other elements. Then, by the DDH assumption, we
can replace gab in such tuples by a random group element gc, using knowledge of d to compute the other
group elements gd, gbd. In the last step we can re-substitute gd, gdb again by ga2

and ga2b, using knowledge
of b and c to create the other group elements.

5.5 Defining the All-powerful Adversary

Let us define our adversary A∞ (with an internal random function f : {0, 1}∗ → Zq) against snPRF-ODH

formally:

1. Adversary A∞ receives g, gu as input.

2. It then asks the challenge oracle about x⋆ = 0 to receive y⋆ and gv. We call this the challenge step.

3. It computes s = f(gu, gv, y⋆) and S = gs and asks the ODHu oracle about (S, 1) to get some yt. We
call this the test step.

4. It computes Su = (gu)s and, using its unbounded computational power, also guv.

5. If yt 6= PRF(Su, 1) then A∞ aborts.

24

6. Else, A∞ outputs 0 if and only if y⋆ = PRF(guv, 0), and 1 otherwise.

Note that the probability that A∞ outputs the correct answer in an actual attack is 1 − 2−λ and thus
optimal; the small error of 2−λ is due to the case that the random y⋆ may accidentally hit the value of the
PRF function.

5.6 Reductions Without Help

Ideally we would now first like to conclude that any reduction which does not provide a correct answer
for the test step in any of the copies, never exploits the adversary’s unlimited power and would thus
essentially need to immediately succeed, without the help of A∞. We can indeed make this argument
formal, simulating A∞ efficiently by using lazy sampling techniques for the generation of s and always
aborting in Step 5 if reaching this point. However, we need something slightly stronger here.

Assume that the reduction provides some gu in one of the copies for which it knows the discrete
logarithm u, i.e., it is not a non-trivial combination of the input values gx, gy, gz for unknown logarithms.
Then the reduction can of course answer the adversary’s test query (S, 1) successfully by computing Su

and PRF(Su, 1). Yet, in such executions it can also compute the reply to the challenge query itself, even
if it does not know the discrete logarithm of gv. In this sense the reduction cannot gain any knowledge
about its DDH input, and we also dismiss such cases as useless.

Formally, we call the j-th run of one of the adversary’s copies useless if either the instance aborts in (or
before) Step 5, or if the representation of the adversary’s input gu in this copy in the given group elements
g, gx, gy, gz and the challenge query values S1, S2, . . . , Sj−1 so far, i.e.,

gu = (gx)α(gy)β(gz)γgδ ·
∏

i<j

Sσi

i ,

satisfies xα + yβ + zγ = 0 mod q. Note that the reduction may form gu with respect to all externally
provided group elements, including the Si’s, such that we also need to account for those elements. We
will, however, always set all of them to Si = gsi for some known si, such that we are only interested in the
question if combination of the DDH input values gx, gy, gz vanishes.

Let uselessj be the event that the j-th instance is useless in the above sense. For such a useless
copy we can efficiently simulate adversary A∞, because it either aborts early enough, or the algebraic
reduction outputs some gu with its representation from which we can compute the discrete logarithm
u = δ +

∑

i<j siσi mod q and thus execute the decision and test steps of A∞. Let useless be the event that
all executions of A∞ of the reduction are useless. We next argue that, if the event useless happens with
overwhelming probability, then we can solve the DDH-augmented problem immediately.

The claim holds as we can emulate the all-powerful adversary A∞ easily, if the reduction essentially
always forgoes to run the adversary till the very end or uses only trivial values gu. Let (gx, gy, gz, inst) be
our input and pass this to the reduction. We simply emulate all the copies of the adversary efficiently by:

• using lazy sampling to emulate the random function f ,

• for each invocation check at the beginning that (gx)α(gy)β(gz)γ = 1 for the representation received
with the input gu for that instance, in which case we can use the discrete logarithm u = δ +
∑

i<j siσi mod q to run this copy of A∞, and

• else always abort after having received y in Step 3.

25

Denote this way of simulating each copy by adversary Appt (even though, technically, the copies share state
for the lazy sampling technique and should be thus considered as one big simulated adversary). Then

Prob

[

P.Vf(secret, sol) = 1 :
(inst, secret) $←− P.Gen(1λ),
sol $←− RP.Ch(secret,·),A∞(1λ, inst)

]

≤Prob

[

P.Vf(secret, sol) = 1 :
(inst, secret) $←− P.Gen(1λ),
sol $←− RP.Ch(secret,·),Appt(1λ, inst)

]

+ Prob
[

useless
]

The latter probability for event useless is negligible by assumption. We therefore get an efficient algorithm
RAppt which breaks the DDH-augmented problem with non-negligible advantage.

5.7 Our Meta-reduction

We may from now on thus assume that Prob
[

useless
]

6≈ 0 is non-negligible. This implies that the reduction

answers at least in one copy of A∞ of the at most polynomial number q(λ) in the test queries in Step 3 with
the correct value yt for some non-trivial input gu, with non-negligible probability. Our meta-reduction will
try to guess the first execution k where this happens and to “inject” its input ga, ga2

, ga2b, gb, gc into that
execution in a useful way. More precisely, it will insert these values into gx, gy, gz and Sk such that the
expected key K for evaluating PRF for the test query equals a function of gab if gc = gab, but is random
if gc is random. In the latter case predicting y is infeasible for the reduction, though, because the PRF is
evaluated on a fresh and random key. This allows to distinguish the two cases.

The meta-reduction’s injection strategy captures two possible choices of the reduction concerning the
equation xα + yβ + zγ 6= 0 mod q in the (hopefully correctly guessed) k-th execution. One is for the case
that xα + yβ 6= 0 mod q, the other one is for the case that xα + yβ = 0 mod q and thus zγ 6= 0 mod q
according to the assumption xα+yβ+zγ 6= 0 mod q. The meta-reduction will try to predict (via a random
bit e) which case will happen and inject the values differently for the cases. This is necessary since the
gz-value, if it is not random, should contain the DH value of the other two elements.

Our meta-reduction M works as follows:

1. The meta-reduction receives ga, ga2
, ga2b, gb, gc as input and should decide if gc = gab. If a = 0 then

we can decide easily, such that we assume that a 6= 0 from now on.

2. The meta-reduction picks an index k $←− {1, 2, . . . , q(λ)} for the polynomial bound q(λ) of adversarial
copies the reduction R runs with A∞. It also picks x′, y′, z′ $←− Z

∗
q , s1, . . . , sk−1

$←− Zq, e, d $←− {0, 1},
and samples (inst, secret) $←− P.Gen(1λ).

3. For the first injection strategy, e = 0, it sets

gx = (ga)x′

, gy = (ga)y′

, gz = (ga2
)x′y′

for d = 0 resp. gz = (ga2
)z′

for d = 1.

For the other injection strategy, e = 1, it sets

gx = (ga)x′

, gy = gy′

, gz = (ga)x′y′

for d = 0 resp. gz = gaz′

for d = 1.

4. It invokes the reduction R on input gx, gy, gz as well as inst.

5. The meta-reduction simulates the interactions of R with P.Ch and A∞ as follows:

• Each oracle query to P.Ch is answered by running the original algorithm P.Ch for secret.

• Use lazy sampling to emulate the random function f .

26

• For each of the first j < k invocations of A∞ check at the beginning that (gx)αj (gy)βj (gz)γj = 1
for the representation received with the input guj for that instance, in which caseM can use the
discrete logarithm uj = δj +

∑

i<j siσi mod q to efficiently run this copy of A∞, using Sj = gsj

for the test query.

• Otherwise, if (gx)αj (gy)βj (gz)γj 6= 1, for the j-th invocation of an adversarial copy of A∞ for
j < k, up to Step 3, efficiently simulate A∞ using Sj = gsj for the test query, and immediately
abort after this step.

6. For the k-th invocation simulate A∞ by using Sk = gb. If M receives a reply yt from R, do the
following. Let guk be the input value of this adversary’s copy. Since the reduction is algebraic it has
also output values αk, βk, γk, δk, σ1, . . . , σk−1 ∈ Zq such that

guk = (gx)αk(gy)βk(gz)γkgδk ·
∏

i<k

Sσi

i .

Note that all the base elements, up to this point, only depend on g, ga (and ga2
in case of strategy

e = 0) of M’s inputs ga, ga2
, ga2b, gb, gc, because guk is output before seeing Sk = gb.7

7. If strategy e = 0 is used and we have a(x′αk + y′βk) 6= 0 mod q (which can be checked for a 6= 0
by consulting the known values x′, αk, y′, βk), then the meta-reduction decides as follows. From the
value ga2b it can compute gbzγk = (ga2b)x′y′γk resp. (ga2b)z′γ for both cases d ∈ {0, 1} and can then
set

K = (gc)x′αk+y′βkgbzγk(gb)δk+
∑

i<k
siσi .

It immediately outputs 0 if yt = PRF(K, 1), else it continues.

8. If strategy e = 1 is used and we have ax′αk + y′βk = 0 mod q (which can be checked by verifying
that (ga)x′αkgy′βk = 1), then the meta-reduction computes the key as

K =

(gc)x′y′γk(gb)δk+
∑

i<k
siσi for d = 0 and

(gc)z′γk(gb)δk+
∑

i<k
siσi for d = 1

and immediately outputs 0 if yt = PRF(K, 1); else it continues.

9. In any other case, if the reduction aborts prematurely or if the insertion strategy has been false, i.e.,
the choice of e does not match the condition on x′αk + y′βk 6= 0 mod q, then output a random bit.

5.8 Analysis

For the analysis assume for the moment that our meta-reduction has actually chosen the index k of the
first correct and non-trivial answer yt, i.e., where xαk + yβk + zγk 6= 0 mod q. Additionally, assume that
(xαk + yβk) 6= 0 mod q. Then e = 0 with probability at least 1

2 . This holds since the reduction remains
perfectly oblivious about the choice of e, because all values in the interaction have the same distributions
in both cases for e. Then the actual key for answering the test query is

(guk)b = (gab)x′αk+y′βk(gbz)γk(gb)δk+
∑

i<k
siσi .

This implies that the meta-reduction’s input gc yields the same key K if gc = gab and hence equality for
the PRF value. Yet, it yields a random value if gc is random (since the exponent x′αk + y′βk does not

7The same is true for gvk generated in the challenge query before, such that the result applies to the nsPRF-ODH assumption
accordingly.

27

vanish). In the latter case, since the value gc is at no point used in the simulation before the reduction
outputs yt, the probability that yt predicts PRF(K, 1) for the fresh random key, is negligible. This final
step in the argument can be formalized straightforwardly.

Assume next that, besides the correct prediction of index k, we have e = 1 and ax′αk +y′βk = 0 mod q.
Then, since ax′αk + y′βk + zγk 6= 0 mod q, we must have that zγk 6= 0 mod q and therefore also x′y′γk 6=
0 mod q for d = 0 resp. z′γk 6= 0 mod q for d = 1. The same argument as in the previous case applies
now. Namely, for gc = gab the meta-reduction computes the expected key, whereas for random gc the
contribution to the computed value K is for a non-zero exponent, such that equality for the PRF value
only holds with negligible probability.

Putting the pieces together, for gc = gab our algorithm correctly outputs 0 if the reduction uses the

adversary’s help (with non-negligible probability Prob
[

useless
]

), if the prediction k is correct (with non-

negligible probability 1
q(λ)), and if the insertion strategy is correct (with probability at least 1

2). Let

ǫ(λ) ≥
1

2q(λ)
· Prob

[

useless
]

denote the non-negligible probability that the meta-reduction outputs 0 early. It also outputs 0 with
probability 1

2 in any other case, such that the probability of outputting 0 for gc = gab is at least

ǫ(λ) +
1

2
· (1− ǫ(λ)) ≥

1

2
+

ǫ(λ)

2
.

In case that gc is random, our meta-reduction only outputs 0 if the PRF value matches yt for the random key
K, or if the final randomly chosen bit equals 0. The probability of this happening is only negligibly larger
than 1

2 . This conversely means that the meta-reduction correctly outputs 1 in this case with probability
at least 1

2 − negl(λ) for some negligible function negl(λ).
Overall, the probability of distinguishing the cases is at least

1

2
·

(

1

2
+

ǫ(λ)

2

)

+
1

2
·

(

1

2
− negl(λ)

)

≥
1

2
+

ǫ(λ)

4
−

negl(λ)

2
,

which is non-negligibly larger than 1
2 for non-negligible ǫ(λ).

6 PRF-ODH Security of HMAC

In this section we examine the PRF-ODH security of HMAC [KBC97], augmenting previous results on
the PRF security of HMAC [CDMP05, Kra10, BL15]. We show that HMAC(K, X) as well as its dual-
PRF [Bel06] usage HMAC(X, K), as encountered in TLS 1.3 (see below), are mmPRF-ODH secure, which
is our strongest notion of PRF-ODH security.

6.1 Description of HMAC

The basic construction of HMAC is illustrated in Figure 3. Let h : {0, 1}c × {0, 1}b → {0, 1}c be a
compression function and let H : {0, 1}⋆ → {0, 1}c be the cryptographic hash function associated with h.
The iterated compression function is denoted by h⋆ : {0, 1}c × B+ → {0, 1}c with B+ the set of all bit
strings of length n · b with n ∈ N

+. On input key L and message M̃ = m1m2 . . . mn of b-bit blocks, the
output of h⋆ is an computed as

a0 = L, a1 = h(a0, m1), . . . an = h(an−1, mn).

28

iv
h

k1

✲

✲❅
❅❅

h

k2

✲

✲❅
❅❅

h

k3

✲

✲❅
❅❅

h

km

✲

✲❅
❅❅

✲ L := H(K)

iv
h

L̃⊕ ipad

✲

✲❅
❅❅

h

x1

✲

✲❅
❅❅

h

x2

✲

✲❅
❅❅

h

xn

✲

✲❅
❅❅

h

L̃⊕ opad

iv ✲

✲❅
❅❅

h✲

✲❅
❅❅

✲ t

Figure 3: Illustration of Merkle-Damgård computation of t := HMAC(K, X) with key K = k1k2 . . . km of size m · b and label
X = x1x2 . . . xn of size n · b.

With the above convention we have H(M) = h⋆(IV, M̃), where IV ∈ {0, 1}c is the initialization vector
fixed by the description of H and M̃ ∈ B+ the message M padded to a multiple of the block size b. Finally,
for key K ∈ {0, 1}b and label X, HMAC is defined as HMAC(K, X) := H(K ⊕ opad||H(K ⊕ ipad||X)),
where opad and ipad are fixed (distinct) constants in {0, 1}b. In terms of the iterated compression function
we have

HMAC(K, X) = h⋆(IV, K ⊕ opad||h⋆(IV, K ⊕ ipad||X||padding)||padding).

HMAC is in general also defined for keys whose lengths differs from the block size b. The minimal require-
ments from a security point of view is a length of c bits, i.e., the output length of the underlying hash
function H. Keys of this minimal length are simply padded to the correct length. Shorter keys are not
recommended from a security perspective. Longer keys K are first hashed down to H(K) ∈ {0, 1}c and
then padded. For ease of notation, we introduce the auxiliary function HMAC′ that takes as input keys
of length greater than b and is defined as HMAC′(K, X) := HMAC(L̃, X) where L := H(K) and L̃ is the
padded value of L (cf. Figure 3).

6.2 Security of HMAC

Theorem 6.1. Assume that the underlying compression function h : {0, 1}c × {0, 1}b → {0, 1}c of HMAC

is a random oracle. Then HMAC is mmPRF-ODH-secure under the StDH assumption. More precisely, for
any efficient adversary A against the mmPRF-ODH security of HMAC, there exists an efficient algorithm
B such that

AdvmmPRF-ODH
HMAC,A ≤

√

AdvStDH
G,B + (qRO + (qODHu

+ qODHv
) · ℓODH + 1)2 · 2−c

where q with the respective index denotes the maximal number of the according oracle queries, and ℓODH

the maximal number of oracle calls to h in each evaluation of any ODH oracle call.

Proof. Let the compression function h underlying HMAC be modeled as a random oracle RO. We note
that we can assume each output of the compression function (genuine or simulated, as below) to be

29

unique and to never hit the initialization vector IV. This assumption is reflected in the loss of the factor
(qRO + (qODHu

+ qODHv
) · ℓODH + 1)2 · 2−c in the above security statement, applying the birthday bound to

the maximal number of queries (adding 1 for IV) and noting that in the simulation we simulate the same
number of random oracle evaluations as in the actual attack.

A key insight for unique outputs of the compression function is that we can determine evaluation chains
in a list of random oracle queries and answers. That is, starting from any input/output pair of the random
oracle, we can try to go backwards along the HMAC iteration via the unique pre-images in the table, to
check if we end up at a value (IV, L′) for the hash function’s initialization vector IV. Since we assume that
no random oracle evaluation yields IV we can easily identify the beginning of such a chain. This holds
for both the inner and outer branch of the HMAC evaluation such that we can check if a value has been
derived as a full HMAC evaluation, for the key value L. From there on we can also check if we have a full
evaluation chain of the key (if the key is larger than the block size). To distinguish the two cases we call
the former an HMAC evaluation chain for key value L, and the latter a complete HMAC evaluation chain.
They coincide for keys which fit into the block size.

For evaluation chains we can also extract the input string (and possibly the key input). In particular, at
any point during the simulation we can take any entry in the simulated random oracle table and determine
if there is an evaluation chain for this entry. This implies that we can determine all existing evaluation
chains at any point in time. For some of such completed chains, we will only know an implicit presentation
[Q, R] of the key K with DDH(Q, R, K) = 1, as in the proof of Theorem 3.3.

We now show that if there exists an adversary A against the mmPRF-ODH-security of HMAC, then
there necessarily also exists an adversary B that can break StDH with the corresponding advantage. In
the following we discuss the case where the group G is such that its canonical bit string representation
exceeds b bits and we use upstream hashing of the key. The cases concerning keys from groups with block
sized representations (or even shorter) can be proven analogously.

The StDH-adversary B simulates the mmPRF-ODH environment for A and programs the random oracle.
In addition to the DDH(gu, ·, ·) oracle we assume that B has a claw-verifying oracle Claw which for inputs
S, T checks that Su = T v, and that it can simulate the DDH(gv, ·, ·) oracle. These extra oracles are
accounted for as in the monolithic random oracle case by using the square root of the advantage against
StDH.

Once B has obtained its challenge (g, gu, gv), it runs the mmPRF-ODH-adversary A as a sub-routine
on input (g, gu). Adversary A then has access to the oracles RO and ODHu (and later also ODHv).
Here, the random oracle RO corresponds to the compression function h and thus takes inputs of the form
(A, x) ∈ {0, 1}c × {0, 1}b. Oracle ODHu takes as input (A, X) ∈ G × {0, 1}⋆ and is supposed to return
HMAC(Au, X). B must provide sound simulations of these oracles. This is done as follows:

Simulation of ODHm
u . Repeated queries (S, X) to ODHm

u are answered consistently by returning the
same value as before. Thus, in the following we can assume that the received query of the form (S, X) has
not been queried to ODHm

u beforehand.
Else, algorithm B first checks if there already exists a evaluation chain for a pair (K, X) such that

K = Su; this can be verified with the DDH oracle. If this is the case, B answers consistently with the final
output of the evaluation chain.

If not, it verifies if there is an implicit key K = [Q, R] with Q = gu and R = S, or with Q = gv and
Rv = Su, where the former can be checked directly and the latter can be verified with the help of oracle
Claw.

• If B finds a matching key according to one of the cases above, it looks up the corresponding key
value L as before.

30

• If there is no (explicitly or implicitly) matching key then B sets H([gu, S]) ← L to a uniformly
random value L ∈ {0, 1}c. It stores the implicit key [gu, S] with the value L for future use.

B then iterates the HMAC computation to get the return value y with key L by calling its (simulated) oracle
RO an all values. More precisely, B computes y := RO⋆(IV, L̃⊕opad||RO⋆(IV, L̃⊕ipad||X||padding)||padding),
where L̃ = L||padding, and B then returns y as response. Note that, if the evaluation chain had already
been computed before, the outcome of this evaluation is consistent with the previous result.

Simulation of ODHm
v . Analogously to ODHm

u .

Simulation of RO. Outputs of RO for equal input queries are answered consistently. If a previously un-
seen query, say, (Ã, x̃) is received, then B must consider if RO(Ã, x̃) completes an H([gu, S]) (or H([gv, S]))
computation for only implicitly known key K = Su (or K = Sv) that has been set beforehand to a uni-
formly random value, say, L (see the simulation of oracle ODHu or ODHv). This can be checked again
with the DDH oracle. If this is the case, then the reduction answers the query consistently with value L.
Otherwise, a response y is drawn uniformly at random from {0, 1}c and returned.

At some point, A issues a challenge query x⋆. The reduction emulates the challenger by replying with
gv and some value y⋆, drawn uniformly at random from {0, 1}c. A can now query ODHm

u and RO further,
with the sole limitation that it may not query the pair (gv, x⋆) to ODHm

u . Additionally, A acquires access
to the ODHm

v oracle which is simulated analogously to the ODHm
u oracle and may not be queried with

(gu, x⋆). Eventually, A stops and outputs a guess bit b′. If DDH(gu, gv, K̃) = 1 for some completed chain
of RO queries with associated key K̃, B outputs K̃ in the StDH game.

The rest of the proof is as before, given that the simulation of all oracle queries is sound. That is, B
outputs the correct value guv with high probability if A wins mmPRF-ODH with non-negligible advantage.
We show this by arguing that A can win the mmPRF-ODH game in the random oracle model with non-
negligible advantage if and only if guv is an input key of a completed chain of RO queries with input
(padded) label x⋆. To this end note that A expects y⋆ to be either y0 := HMAC(guv, x⋆) or y1

$←− {0, 1}c.
By the nature of random oracles, y0 and y1 are indistinguishable for A since both are drawn uniformly
at random from {0, 1}c. Even if A can correctly determine the value guv, it cannot compute y0 by itself
to compare with the received challenge. Thus, A must iteratively query RO on the full HMAC(guv, x⋆)
computation, including the key guv, in order to distinguish y0 and y1. Furthermore, B is efficient, since A
is efficient and asks at most polynomially many queries to each oracle.

6.3 Application to HKDF

As mentioned earlier, one specific use case of the PRF-ODH assumption arises in the setting of TLS 1.3.
Here, the HKDF scheme [Kra10, KE10] is adapted for key derivation. In particular, the function HKDF.Extract

is used to derive an internal key K ′ as

K ′ ← HKDF.Extract(X, K) := HMAC(X, K),

where an adversarially known value X is used as the HMAC key while the secret randomness source in
the form of a DH shared secret K = guv is used as the label. At a first glance, this swapping of inputs
may seem odd. However, the specified purpose of HKDF.Extract is to extract uniform randomness from its
second component.

One way to prove that K ′ is indeed a random key (as long as guv is not revealed to the adversary) is to
model HKDF.Extract(X, ·) as a random oracle. An alternative approach is pursued in [DFGS15b, DFGS16,
FG17] where the authors prove the statement under the assumption that HKDF.Extract(XTS , IKM) =
HMAC(XTS , IKM) is PRF-ODH secure when understood as a PRF keyed with IKM ∈ G (i.e., when the

31

key is the second input). In this light, it is beneficial to show that HMAC(X, K) remains PRF-ODH secure
for key K ∈ G and X ∈ {0, 1}⋆.8 Fortunately, our general treatment of HMAC(K, X) in Theorem 6.1 with
arbitrarily long keys allows us to conclude the analogous result for HMAC(X, K) with swapped key and
label.

Corollary 6.2. Let h : {0, 1}c × {0, 1}b → {0, 1}c be the underlying compression function of HMAC. If h
is modeled as a random oracle, then HMAC′(K, X) := HMAC(X, K) is mmPRF-ODH secure under StDH.

Alternatively, one may wish to prove Theorem 6.1 along the results established by Coron et al.
[CDMP05]. In more detail, Coron et al. showed that if the compression function h is modeled as a
random oracle then a variant of HMAC can be shown to be indifferentiable from a random oracle in the
sense of Maurer et al. [MRH04]. Krawczyk [Kra10] mentions that the above result can also immediately
be applied to the unmodified plain HMAC design. However, we believe that providing a detailed proof
of Theorem 6.1 is beneficial since it enables us to argue in a straightforward manner that the “reversed”
result presented in Corollary 6.2, i.e., HMAC(X, K) with swapped label and key as inputs, also holds. Else
one would need to check if HMAC with a hashed key would also be a random oracle.

In recent developments initiated by the NIST hash function competition it has been established that
sponge-based constructions can be used to build cryptographic hash functions. We are confident that the
proof of Theorem 6.1 can be adapted to achieve the same result for HMAC if the underlying cryptographic
hash function H is replaced by a sponge-based construction such as SHA-3 with the random permutation π
modeled as a random oracle.9 This proof can also be established along the lines of Bertoni et al. [BDPV08]
who provide results showing that the sponge construction is indifferentiable from a random oracle when
being used with a random transformation or a random permutation.

7 Conclusion

To the best of our knowledge, this is the first systematic study of the relations between different variants of
the PRF-ODH assumption which is prominently being used in the realm of analyzing major real-world key
exchange protocols. We provide a generic definition of the PRF-ODH assumption subsuming those different
variants and show separations between most of the variants. Our results give strong indications that
instantiating the PRF-ODH assumption without relying on the random oracle methodology is a challenging
task, even though it can be formalized in the standard model. In particular, we show that it is implausible
to instantiate the assumption in the standard model via algebraic black-box reductions to DDH-augmented
problems.

Despite our negative result, we emphasize that using the PRF-ODH assumption still provides some
advantage over the StDH assumption in the random oracle model. Namely, it supports a modular approach
to proving key exchange protocols to be secure, shifting the heavy machinery of random-oracle reductions
to StDH in the context of complex key exchange protocols to a much simpler assumption. As the PRF-ODH

naturally appears in such protocols and enables simpler proofs, it is still worthwhile to use the assumption
directly.

Acknowledgments

We thank the anonymous reviewers for valuable comments. This work has been co-funded by the DFG
as part of project S4 within the CRC 1119 CROSSING and as part of project D.2 within the RTG 2050

8Though formally defined for arbitrary length, recall that the minimal recommended length is c bits
9
SHA-3 is part of the Keccak sponge function family [BDPA11]. It has been standardized in the FIPS Publication 202

[NIS15], wherein it is explicitly approved for usage in HMAC.

32

“Privacy and Trust for Mobile Users”.

References

[ABR01] Michel Abdalla, Mihir Bellare, and Phillip Rogaway. The oracle Diffie-Hellman assumptions
and an analysis of DHIES. In David Naccache, editor, Topics in Cryptology – CT-RSA 2001,
volume 2020 of Lecture Notes in Computer Science, pages 143–158, San Francisco, CA, USA,
April 8–12, 2001. Springer, Heidelberg, Germany. (Cited on pages 3 and 10.)

[BDPA11] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. The Keccak SHA-3 submission.
Submission to NIST (Round 3), 2011. (Cited on page 32.)

[BDPV08] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. On the indifferen-
tiability of the sponge construction. In Nigel P. Smart, editor, Advances in Cryptology –
EUROCRYPT 2008, volume 4965 of Lecture Notes in Computer Science, pages 181–197, Is-
tanbul, Turkey, April 13–17, 2008. Springer, Heidelberg, Germany. (Cited on page 32.)

[BDZ03] Feng Bao, Robert H. Deng, and Huafei Zhu. Variations of Diffie-Hellman problem. In Sihan
Qing, Dieter Gollmann, and Jianying Zhou, editors, ICICS 03: 5th International Conference
on Information and Communication Security, volume 2836 of Lecture Notes in Computer Sci-
ence, pages 301–312, Huhehaote, China, October 10–13, 2003. Springer, Heidelberg, Germany.
(Cited on pages 12, 19, and 24.)

[Bel06] Mihir Bellare. New proofs for NMAC and HMAC: Security without collision-resistance. In
Cynthia Dwork, editor, Advances in Cryptology – CRYPTO 2006, volume 4117 of Lecture
Notes in Computer Science, pages 602–619, Santa Barbara, CA, USA, August 20–24, 2006.
Springer, Heidelberg, Germany. (Cited on page 28.)

[BF17] Jacqueline Brendel and Marc Fischlin. Zero round-trip time for the extended access control
protocol. Cryptology ePrint Archive, Report 2017/060, 2017. http://eprint.iacr.org/

2017/060. (Cited on pages 3, 7, and 8.)

[BFK+14] Karthikeyan Bhargavan, Cédric Fournet, Markulf Kohlweiss, Alfredo Pironti, Pierre-Yves
Strub, and Santiago Zanella Béguelin. Proving the TLS handshake secure (as it is). In Juan A.
Garay and Rosario Gennaro, editors, Advances in Cryptology – CRYPTO 2014, Part II, vol-
ume 8617 of Lecture Notes in Computer Science, pages 235–255, Santa Barbara, CA, USA,
August 17–21, 2014. Springer, Heidelberg, Germany. (Cited on page 3.)

[BK03] Mihir Bellare and Tadayoshi Kohno. A theoretical treatment of related-key attacks: RKA-
PRPs, RKA-PRFs, and applications. In Eli Biham, editor, Advances in Cryptology – EURO-
CRYPT 2003, volume 2656 of Lecture Notes in Computer Science, pages 491–506, Warsaw,
Poland, May 4–8, 2003. Springer, Heidelberg, Germany. (Cited on page 13.)

[BL15] Mihir Bellare and Anna Lysyanskaya. Symmetric and dual PRFs from standard assumptions:
A generic validation of an HMAC assumption. Cryptology ePrint Archive, Report 2015/1198,
2015. http://eprint.iacr.org/2015/1198. (Cited on page 28.)

[BV98] Dan Boneh and Ramarathnam Venkatesan. Breaking RSA may not be equivalent to factoring.
In Kaisa Nyberg, editor, Advances in Cryptology – EUROCRYPT’98, volume 1403 of Lecture
Notes in Computer Science, pages 59–71, Espoo, Finland, May 31 – June 4, 1998. Springer,
Heidelberg, Germany. (Cited on pages 6 and 23.)

33

http://eprint.iacr.org/2017/060
http://eprint.iacr.org/2017/060
http://eprint.iacr.org/2015/1198

[CDMP05] Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya. Merkle-
Damgård revisited: How to construct a hash function. In Victor Shoup, editor, Advances
in Cryptology – CRYPTO 2005, volume 3621 of Lecture Notes in Computer Science, pages
430–448, Santa Barbara, CA, USA, August 14–18, 2005. Springer, Heidelberg, Germany. (Cited

on pages 7, 28, and 32.)

[DF11] Özgür Dagdelen and Marc Fischlin. Security analysis of the extended access control protocol for
machine readable travel documents. In Mike Burmester, Gene Tsudik, Spyros S. Magliveras,
and Ivana Ilic, editors, ISC 2010: 13th International Conference on Information Security,
volume 6531 of Lecture Notes in Computer Science, pages 54–68, Boca Raton, FL, USA,
October 25–28, 2011. Springer, Heidelberg, Germany. (Cited on page 5.)

[DFGS15a] Benjamin Dowling, Marc Fischlin, Felix Günther, and Douglas Stebila. A cryptographic analy-
sis of the TLS 1.3 handshake protocol candidates. In Indrajit Ray, Ninghui Li, and Christopher
Kruegel:, editors, ACM CCS 15: 22nd Conference on Computer and Communications Secu-
rity, pages 1197–1210, Denver, CO, USA, October 12–16, 2015. ACM Press. (Cited on page 3.)

[DFGS15b] Benjamin Dowling, Marc Fischlin, Felix Günther, and Douglas Stebila. A cryptographic
analysis of the TLS 1.3 handshake protocol candidates. Cryptology ePrint Archive, Report
2015/914, 2015. http://eprint.iacr.org/2015/914. (Cited on pages 3, 7, 8, and 31.)

[DFGS16] Benjamin Dowling, Marc Fischlin, Felix Günther, and Douglas Stebila. A cryptographic anal-
ysis of the TLS 1.3 draft-10 full and pre-shared key handshake protocol. Cryptology ePrint
Archive, Report 2016/081, 2016. http://eprint.iacr.org/2016/081. (Cited on pages 3, 7, 8,

and 31.)

[DR08] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2. RFC
5246 (Proposed Standard), August 2008. Updated by RFCs 5746, 5878, 6176, 7465, 7507,
7568, 7627, 7685, 7905, 7919. (Cited on page 3.)

[FG14] Marc Fischlin and Felix Günther. Multi-stage key exchange and the case of Google’s QUIC
protocol. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM CCS 14: 21st Con-
ference on Computer and Communications Security, pages 1193–1204, Scottsdale, AZ, USA,
November 3–7, 2014. ACM Press. (Cited on pages 4 and 5.)

[FG17] Marc Fischlin and Felix Günther. Replay attacks on zero round-trip time: The case of the
TLS 1.3 handshake candidates. In 2017 IEEE European Symposium on Security and Privacy.
IEEE, April 2017. (Cited on pages 3, 7, 8, and 31.)

[Gal12] Steven D. Galbraith. Mathematics of Public Key Cryptography. Cambridge University Press,
2012. (Cited on page 12.)

[GBL08] Sanjam Garg, Raghav Bhaskar, and Satyanarayana V. Lokam. Improved bounds on security
reductions for discrete log based signatures. In David Wagner, editor, Advances in Cryptology
– CRYPTO 2008, volume 5157 of Lecture Notes in Computer Science, pages 93–107, Santa
Barbara, CA, USA, August 17–21, 2008. Springer, Heidelberg, Germany. (Cited on page 6.)

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM J. Comput., 17(2):281–308, 1988. (Cited on

page 6.)

34

http://eprint.iacr.org/2015/914
http://eprint.iacr.org/2016/081

[Int15] International Civil Aviation Organization (ICAO). Machine Readable Travel Documents, Part
11, Security Mechanisms for MRTDs. Doc 9303, 2015. Seventh Edition. (Cited on page 3.)

[JKSS12] Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. On the security of TLS-DHE
in the standard model. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in
Cryptology – CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science, pages 273–
293, Santa Barbara, CA, USA, August 19–23, 2012. Springer, Heidelberg, Germany. (Cited on

pages 3, 7, and 8.)

[KBC97] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for Message Authentication.
RFC 2104 (Informational), February 1997. Updated by RFC 6151. (Cited on pages 7 and 28.)

[KE10] Hugo Krawczyk and Pasi Eronen. HMAC-based Extract-and-Expand Key Derivation Function
(HKDF). RFC 5869 (Informational), May 2010. (Cited on pages 7 and 31.)

[Kil01] Eike Kiltz. A tool box of cryptographic functions related to the Diffie-Hellman function. In
C. Pandu Rangan and Cunsheng Ding, editors, Progress in Cryptology - INDOCRYPT 2001:
2nd International Conference in Cryptology in India, volume 2247 of Lecture Notes in Com-
puter Science, pages 339–350, Chennai, India, December 16–20, 2001. Springer, Heidelberg,
Germany. (Cited on pages 5 and 12.)

[KPW13] Hugo Krawczyk, Kenneth G. Paterson, and Hoeteck Wee. On the security of the TLS protocol:
A systematic analysis. In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology
– CRYPTO 2013, Part I, volume 8042 of Lecture Notes in Computer Science, pages 429–
448, Santa Barbara, CA, USA, August 18–22, 2013. Springer, Heidelberg, Germany. (Cited on

pages 3, 7, and 8.)

[Kra05] Hugo Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol. In Victor Shoup,
editor, Advances in Cryptology – CRYPTO 2005, volume 3621 of Lecture Notes in Computer
Science, pages 546–566, Santa Barbara, CA, USA, August 14–18, 2005. Springer, Heidelberg,
Germany. (Cited on page 5.)

[Kra10] Hugo Krawczyk. Cryptographic extraction and key derivation: The HKDF scheme. In Tal
Rabin, editor, Advances in Cryptology – CRYPTO 2010, volume 6223 of Lecture Notes in
Computer Science, pages 631–648, Santa Barbara, CA, USA, August 15–19, 2010. Springer,
Heidelberg, Germany. (Cited on pages 7, 28, 31, and 32.)

[KW16] Hugo Krawczyk and Hoeteck Wee. The OPTLS protocol and TLS 1.3. In 2016 IEEE European
Symposium on Security and Privacy, pages 81–96. IEEE, March 2016. (Cited on pages 4 and 5.)

[LJBN15] Robert Lychev, Samuel Jero, Alexandra Boldyreva, and Cristina Nita-Rotaru. How secure and
quick is QUIC? Provable security and performance analyses. In 2015 IEEE Symposium on
Security and Privacy, pages 214–231, San Jose, CA, USA, May 17–21, 2015. IEEE Computer
Society Press. (Cited on pages 4 and 5.)

[LXZ+16] Xinyu Li, Jing Xu, Zhenfeng Zhang, Dengguo Feng, and Honggang Hu. Multiple handshakes
security of TLS 1.3 candidates. In IEEE Symposium on Security and Privacy, SP 2016, San
Jose, CA, USA, May 22-26, 2016, pages 486–505. IEEE Computer Society, 2016. (Cited on

page 5.)

[MRH04] Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability, impossibility
results on reductions, and applications to the random oracle methodology. In Moni Naor,

35

editor, TCC 2004: 1st Theory of Cryptography Conference, volume 2951 of Lecture Notes
in Computer Science, pages 21–39, Cambridge, MA, USA, February 19–21, 2004. Springer,
Heidelberg, Germany. (Cited on page 32.)

[MW96] Ueli M. Maurer and Stefan Wolf. Diffie-Hellman oracles. In Neal Koblitz, editor, Advances
in Cryptology – CRYPTO’96, volume 1109 of Lecture Notes in Computer Science, pages 268–
282, Santa Barbara, CA, USA, August 18–22, 1996. Springer, Heidelberg, Germany. (Cited on

page 12.)

[NIS15] NIST. Federal Information Processing Standard 202, SHA-3 Standard: Permutation-Based
Hash and Extendable-Output Functions, Aug 2015. (Cited on page 32.)

[PV05] Pascal Paillier and Damien Vergnaud. Discrete-log-based signatures may not be equivalent to
discrete log. In Bimal K. Roy, editor, Advances in Cryptology – ASIACRYPT 2005, volume
3788 of Lecture Notes in Computer Science, pages 1–20, Chennai, India, December 4–8, 2005.
Springer, Heidelberg, Germany. (Cited on pages 6 and 23.)

[Res17] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3 – draft-ietf-tls-tls13-
20. https://tools.ietf.org/html/draft-ietf-tls-tls13-20, April 2017. (Cited on page 3.)

[Ust08] Berkant Ustaoglu. Obtaining a secure and efficient key agreement protocol from (H)MQV and
NAXOS. Des. Codes Cryptography, 46(3):329–342, 2008. (Cited on page 5.)

36

https://tools.ietf.org/html/draft-ietf-tls-tls13-20

	Introduction
	The PRF-ODH Assumption
	Evaluating the PRF-ODH Assumptions
	Our Results

	PRF-ODH Definition
	Instantiating the PRF-ODH Assumption
	Standard-Model Instantiation of nnPRF-ODH
	Random-Oracle Instantiation of mmPRF-ODH and nmPRF-ODH
	Random-Oracle Instantiation of mmPRF-ODH
	On the Relation Between PRF-ODH and Security Against Related-key Attacks

	PRF-ODH Relations
	Separations in the Standard Model
	Separations in the Random Oracle Model
	Discussion

	On the Impossibility of Instantiating PRF-ODH in the Standard Model
	Overview
	DDH-augmented Cryptographic Problems
	Algebraic Reductions for the snPRF-ODH Assumption
	Outline of Steps
	Defining the All-powerful Adversary
	Reductions Without Help
	Our Meta-reduction
	Analysis

	PRF-ODH Security of HMAC
	Description of HMAC
	Security of HMAC
	Application to HKDF

	Conclusion

