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Technical Appendix to accompany
Price and leadtime differentiation, capacity strategy and market competition

Appendix A: Proof of Proposition 1

It is well known that at optimality, the two leadtime reliability constraints (7DC) and (8DC) must
be binding (Boyaci and Ray 2003). This implies that the two service rates will be given by:

µic = − ln(1− α)

Lic
+ λic c ∈ {l, h}

As a result, [PLDPDC ] reduces to maximizing (3) with µic as given above. The system stabil-
ity conditions (6DC) are automatically satisfied by the expressions for µic. Upon substituting the
expressions for µic into (3), and taking it partial derivatives with respect to pih and pil gives the
following Hessian for a fixed Lih:

(
−2(βhp + θp + γp) 2θp

2θp −2(βlp + θp + γp)

)

Clearly, the Hessian is negative definite. This shows that the objective function πi(Lih) is strictly
concave for a fixed Lih, and, therefore, has a unique pair of optimal prices pi∗h (Lih) and pi∗l (Lih),
which can be obtained by solving the following system of equations:

∂πi(Lih)

∂pih
= 0;

∂πi(Lih)

∂pil
= 0

Substituting the optimal prices given by (10) and (11) into the objective function, and differenti-
ating it with respect to Lih gives:

∂πi(Lih)

∂Lih
=−

(
βhL + θL + γL

) (
pi∗h (Lih)−mi −Ai

)
+ θL

(
pi∗l (Lih)−mi −Ai

)
− A ln(1− α)

(Lih)2

(A1)

∂2πi(Lih)

∂(Lih)2
=−

(
βhL + θL + γL

)(∂pih(Lih)

∂Lih

)
+ θL

(
∂pil(L

i
h)

∂Lih

)
+

2Ailn(1− α)

(Lih)3
(A2)

∂3πi(Lih)

∂(Lih)3
=− 6Ai ln(1− α)

(Lih)4
(A3)

The the first three derivatives of πi(Lih) suggests that it has the following properties: (i) As Lih →
0+, πi(Lih) → −∞. (ii) πi(Lih) is increasing concave in Lih in the vicinity of Lih = 0+. (iii) As Lih
increases from 0, πi(Lih) changes from concave to convex for some Lih ∈ (0,+∞), and never becomes
concave again. It is clear from the above properties of πi(Lih) that it has a unique maximum and
at most one minimum in [0,+∞). The stationary points are given by the roots of (A1) in [0,+∞),

and the maximum is always the smaller of the two. Further, ∂πi(Li
h)

∂Li
h

∣∣
Li

h=Li
l

< 0 is sufficient to

guarantee that (A1) has only one root in the interval [0, Lil), and that it is the point of maximum.
The condition simplifies to:

K1a
i +K2L

i
l +K3A

i +K4m
i

2(βhpβ
l
p + βhp θp + βlpθp + βhpγp + βlpγp + 2θpγp + γ2

p)
− Ai ln(1− α)

(Lil)
2

< 0 (A4)
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where K1, K2, K3, K4 are functions only of the market parameters (βcp, β
c
L, θp, θL, γp, γL), and

hence are constants. Further,

K1 = −
{

(βlp − βhp )θL + (βhL + γL)(βlp + 2θp + γp)
}

Since βhp < βlp, a necessary condition for (A4) to hold is ai to be high. A sufficiently high value of

ai also guarantees pic > 0, pih > pil and λic > 0.

Appendix B: Matrix Geometric Method

Joint Stationary Queue Length Distribution: If we define Nh(t) and Nl(t) as state variables repre-
senting the number of high and low priority customers in the system at time t, then {N(t)} :=
{Nl(t), Nh(t), t ≥ 0} is a continuous-time two-dimensional Markov chain with state space {n =
(nl, nh)}. The key idea we employ here is that {N(t)} is a quasi-birth-and-death (QBD) process,
which allows us to develop a matrix geometric solution for the joint distribution of the number of
customers of each class in the system. A simple implementation of the matrix geometric method,
however, requires the number of states in the QBD process to be finite. For this, we treat the
queue length of high priority customers (including the one in service) to be of finite size M , but of
size large enough for the desired accuracy of our results. Since high priority customers are always
served in priority over low priority customers, it is reasonable to assume that its queue size will
always be bounded by some large number.

In the Markov process {N(t)}, a transition can occur only if a customer of either class arrives or
a customer of either class is served. The possible transitions are:

Table 1. Transition rates for the priority queue

From To Rate Condition
(nl, nh) (nl, nh + 1) λih for nl ≥ 0, nh ≥ 0
(nl, nh) (nl + 1, nh) λil for nl ≥ 0, nh ≥ 0
(nl, nh) (nl, nh − 1) µi for nl ≥ 0, nh > 0
(nl, nh) (nl − 1, nh) µi for nl > 0, nh = 0

The infinitesimal generator Q associated with our system description is thus block-tridiagonal:

Q =


B0 A0

A2 A1 A0

A2 A1 A0

. . .
. . .

. . .


where B0, A0, A1, A2 are square matrices of order M +1. These matrices can be easily constructed
using the transition rates described above.

A0 =


λil
λil

. . .
. . .

λil

 ; A2 =


µi

0
. . .

. . .
0

 ; B0 =


∗ λih
µi ∗ λih

µi ∗ λih
. . .

. . .
. . .

µi ∗


where ∗ is such that A0e + B0e = 0. A1 = B0 −A2.
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We denote x as the stationary probability vector of {N(t)}:

x = [x00, x01, . . . , x0M , x10, x11, . . . , x1M , . . . , . . . , xn0, xn1, . . . , xnM , . . . , . . .]

The vector x can be partitioned by levels into sub vectors xn, n ≥ 0, where xn = [xn0, xn1, . . .,
xnM ] is the stationary probability of states in level n (nl = n). Thus, x = [x0,x1,x2,x3, . . . , . . .]. x
can be obtained using a set of balance equations, given in matrix form, by the following standard
relations (Latouche and Ravaswami 1999; Neuts 1981):

xQ = 0; xn+1 = xnR

where R is the minimal non-negative solution to the matrix quadratic equation:

A0 +RA1 +R2A2 = 0

The matrix R can be computed using well known methods (Latouche and Ravaswami 1999; He
2014). A simple iterative procedure often used is:

R(0) = 0 ; R(r + 1) = −
[
A0 +R2(r)A2

]
A−1

1

The probabilities x0 are determined from:

x0(B0 +RA2) = 0

subject to the normalization equation:

∞∑
n=0

xne = x0(I −R)−1e = 1

where e is a column vector of ones of size M + 1.
Estimation of Sil (·): The leadtime W i

l of a low priority customer is the time between its arrival to

the system till it completes service. It may be preempted by one or more high priority customers
for service. So it is difficult to characterize the distribution Sil (·). Ramaswami and Lucantoni (1985)
present an efficient algorithm based on uniformization to derive the complimentary distribution
of waiting times in phase-type and QBD processes. We adopt their algorithm to derive Sil (·), the
distribution of the waiting time plus the time in service of low priority customers.

Consider a tagged low priority customer entering the system. The time spent by the tagged
customer depends on the number of customers of either class already present in the system
ahead of it, and also on the number of subsequent high priority arrivals before it completes its
service. All subsequent low priority arrivals, however, have no influence on its time spent in the
system. The tagged customer’s time in the system is, therefore, simply the time until absorption
in a modified Markov process {Ñ(t)}, obtained by setting λil = 0. Consequently, matrix Ã0,
representing transitions to a higher level, becomes a zero matrix. We define an absorbing state,
call it state 0

′
, as the state in which the tagged customer has finished its service. The infinitesimal

generator for this process can be represented as:

Q̃ =


0 0 0 0 0 · · ·
b0 B̃0 0

0 A2 Ã1 0

0 A2 Ã1 0
...

. . .
. . .

. . .


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where, B̃0 = B0 +A0; Ã1 = A1 +A0; and b0 = [µi 0 · · · 0]TM+1. The first row and column in

Q̃ corresponds to the absorbing state 0́. The time spent in system by the tagged customer, which
is the time until absorption in the modified Markov process with rate matrix Q̃, depends on the
prices (pih and pil), through the arrival rates (λih and λil), and the service rate µi. For given prices
(pikh , pikl ) and service rate µik, the distribution of the time spent by a low priority customer in

the system is Sikl (y) = 1 − Sikl (y), where Sikl (y) is the stationary probability that a low priority

customer spends more than y units of time in the system. Further, let Skln(y) denote the conditional
probability that a tagged customer, who finds n low priority customers ahead of it, spends a time
exceeding y in the system. The probability that a tagged customer finds n low priority customers

is given, using the PASTA property, by xn = x0R
n. Sikl (y) can be expressed as:

Sikl (y) =

∞∑
n=0

xnSikln(y)e (B1)

Sikln(y) can be computed more conveniently by uniformizing the Markov process {Ñ(t)} with a
Poisson process with rate γ, where

γ = max
0≤m≤M

(−Ã1)mm = max
0≤m≤M

− (A0 +A1)mm

so that the rate matrix Q̃ is transformed into the discrete-time probability matrix:

Q̂ =
1

γ
Q̃+ I =


1 0 0 0 0 · · ·
b̂0 B̂0 0

0 Â2 Â1 0

0 Â2 Â1 0
...

. . .
. . .

. . .


where Â2 = A2

γ , Â1 = Ã1

γ + I, b̂0 = b0
γ . In this uniformized process, points of a Poisson process are

generated with a rate γ, and transitions occur at these epochs only. The probability that r Poisson

events are generated in time y equals e−γy (γy)r

r! . Suppose the tagged customer finds n low priority
customers ahead of it. Then, for its time in system to exceed y, at most n of the r Poisson points
may correspond to transitions to lower levels (i.e., service completions of low priority customers).
Therefore,

Sikln(y) =

∞∑
r=0

e−γy
(γy)r

r!

n∑
v=0

G(r)
v e, n ≥ 0 (B2)

where, G
(r)
v is a matrix such that its entries are the conditional probabilities, given that the sys-

tem has made r transitions in the discrete-time Markov process with rate matrix Q̂, that v of
those transitions correspond to lower levels (i.e., service completions of low priority customers).

Substituting the expression for Sikln(y) from (B2) into (B1), we obtain:

Sikl (y) =

∞∑
r=0

dre
−γy (γy)r

r!
(B3)
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where, dr is given by:

dr =

∞∑
n=0

x0R
n

n∑
v=0

G(r)
v e, r ≥ 0 (B4)

Now,

∞∑
n=0

Rn
n∑
v=0

G(r)
v e

=

r+1∑
n=0

Rn
n∑
v=0

G(r)
v e +

∞∑
n=r+2

Rn
r∑

v=0

G(r)
v e

(
since G(r)

v = 0 for v > r
)

=

r+1∑
v=0

r+1∑
n=v

RnG(r)
v e + (I −R)−1Rr+2e

(
since

r∑
v=0

G(r)
v e = e

)

=

r+1∑
v=0

(I −R)−1(Rv −Rr+2)G(r)
v e + (I −R)−1Rr+2e

=

r∑
v=0

(I −R)−1RvG(r)
v e + (I −R)−1Rr+1G

(r)
r+1e

(
since

r+1∑
v=0

G(r)
v e = e

)

=

r∑
v=0

(I −R)−1RvG(r)
v e

(
since G(r)

v = 0 for v > r
)

= (I −R)−1Hre r ≥ 0

where, Hr =
∑r

v=0R
vG

(r)
v . Therefore,

Sikl (Lil) = 1− Sikl (Lil) =

∞∑
r=0

e−γLl
(γLl)

r

r!
x0(I −R)−1Hre (B5)

Hr can be computed recursively as:

Hr+1 = HrÂ1 +RHrÂ2; H0 = I

Therefore, for given prices (pikh , pikl ) and service rate (µik), Sikl (·) in (16) can be computed using
(B5).

Appendix C: Estimation of the Gradient of Si
l (·)

There are several methods available in the literature to compute the gradients of Sil (·). We
use a finite difference method as it is probably the simplest and most intuitive, and can be
easily explained (Atlason, Epelman and Henderson 2004). Using the finite difference method, the
gradients can be computed as:

5
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∂Sikl (·)
∂pih

=
Sil (·)

∣∣
(pikh +dpih,p

i
l ,µ

i)
− Sikl (·)

∣∣
(pikh −dpih,pil ,µi)

2dpih

∂Sikl (·)
∂pil

=
Sikl (·)

∣∣
(pih,p

ik
l +dpil ,µ

i)
− Sikl (·)

∣∣
(pih,p

ik
l −dpil ,µi)

2dpil

∂Sikl (·)
∂µi

=
Sikl (·)

∣∣
(pih,p

i
l ,µ

ik+dµi)
− Sikl (·)

∣∣
(pih,p

i
l ,µ

ik−dµi)

2dµi

where dpih, dpil and dµi (referred to as step sizes) are infinitesimal changes in the respective variables.

Appendix D: The Cutting Plane Algorithm

We now describe the cutting plane algorithm to solve [PDP(K)]. The algorithm fits the framework
of Kelley’s cutting plane method (Kelley 1960). It differs from the traditional description of the
algorithm in that we use the matrix geometric method to generate the cuts and evaluate the function
values instead of having an algebraic form for the function and using analytically determined
gradients to generate the cuts. Figure 1 shows a flowchart of the cutting plane algorithm. The
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Given , compute   

Is   ? Stop 
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No 
   Add a cut to  

  k = k + 1 

Start 

k = 0, i.e., constraint set (19) is initially 

empty. 

Compute gradients  

using finite difference method. Generate 

a cut of the form (19). 

Figure 1. Cutting Plane Algorithm

algorithm works as follows: We start with an empty constraint set (19), which results in a simple
QPP, and obtain an initial solution k0 := (pi0h , pi0l , µi0). We use the matrix geometric method to

compute the distribution Sik0l (·) of W i
l . If Sik0l (·) meets the leadtime reliability constraint α, we stop

with an optimal solution to [PDP i(K)], else we add to (19) a linear constraint/cut generated using

the finite difference method. The new cut eliminates the current solution but does not eliminate
any feasible solution to [PDP i(K)]. This procedure repeats until the leadtime reliability constraint

6



February 6, 2016 International Journal of Production Research Prod˙Diff˙compet˙appendix˙IJPR˙Accepted

is satisfied within a sufficiently small tolerance limit ε such that
∣∣Sil (·)− α∣∣ ≤ ε. The method has

been proved to converge (Atlason, Epelman and Henderson 2004).
The success of the cutting plane algorithm relies on the concavity of Sil (·). We have already

demonstrated, using computational results obtained by the matrix geometric method, that Sil (·)
is concave in (pih, pil) and separately concave in µi. However, it is difficult to establish the joint
concavity of Sil (·) in (pih, pil, µ

i). If the concavity assumption is violated, then the algorithm may
cut off parts of the feasible region and terminate with a solution that is suboptimal. We include a
test to ensure the concavity assumption is not violated. This is done by ensuring that a new point,
visited by the cutting plane algorithm after each iteration, lies below all the previously defined
cuts, and that all previous points lie below the newly added cut. The test, however, cannot ensure
that Sil (·) is concave unless it examines all the points in the feasible region. Still, it does help ensure
that the concavity assumption is not violated at least in the region visited by the algorithm. Details
of the test can be found in Atlason, Epelman and Henderson (2004).

Appendix E: Proof of Proposition 3

The equilibrium prices are given by the simultaneous solution of the 4 linear equations given by
(10) and (11) for i ∈ {1, 2}. The system of equations in matrix notation is given by Ax = b.

A =


1 0

−(βl
p+θp+γp)γp

2D
−θpγp

2D

0 1 −θpγp
2D

−(βh
p +θp+γp)γp

2D
−(βl

p+θp+γp)γp
2D

−θpγp
2D 1 0

−θpγp
2D

−(βh
p +θp+γp)γp

2D 0 1

 (E1)

where D = βh
pβ

l
p + βh

p θp + βl
pθp + βh

p γp + βl
pγp + 2θpγp + γ2p

x =
(
p1∗
h p1∗

l p2∗
h p2∗

l

)T
and b is a 4x1 matrix of constants. A is symmetric and strictly diagonally dominant since we have
Aij = Aji ∀i, j and

∑
j 6=i |Aij | < Aii ∀i. Hence, A is positive definite (Horn and Johnson 1985).

This implies that A is full-rank, and hence the system of linear equations Ax = b has a unique
solution. This proves the uniqueness of the equilibrium.

Further, when the firms are identical, they have the same operating parameter values (a1 = a2;
m1 = m2; A1 = A2; α1 = α2; L1

l = L2
l ; L

1
h = L2

h). Denote the equilibrium solution by the 2-tuple
(s1∗(Lh), s2∗(Lh)), where si∗(Lh):= (pi∗h (Lh), pi∗l (Lh)). Assume the contrary that the equilibrium
solution is not symmetric, i.e., s1∗(Lh) 6= s2∗(Lh). Since the two firms are identical, this implies
that (s2∗, s1∗) must also be a Nash Equilibrium, which contradicts the uniqueness of the Nash
Equilibrium. Hence, s1∗(Lh) = s2∗(Lh). Substituting p1∗

h (Lh) = p2∗
h (Lh) = p∗h(Lh) and p1∗

l (Lh) =
p2∗
l (Lh) = p∗l (Lh) in the expressions for the best response prices, given by (10) and (11), and solving

the resulting system of 2 equations in 2 unknown gives (E2) and (E3).

p∗h(Lh) =
(2βl

p + 4θp + γp)a− {βh
L(2βl

p + 2θp + γp) + (2βl
p + γp)θL}Lh

D1

+{(2βl
p + γp)θL − 2βl

Lθp}Ll

D1

+(2βh
pβ

l
p + 2βh

p θp + βh
p γp + 2βl

pθp + 2βl
pγp + 4θpγp + γ2p)(A+m)

D1
(E2)

7
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p∗l (Lh) =
(2βh

p + 4θp + γp)a+ {(2βh
p + γp)θL − 2βh

Lθp}Lh

D1

−{βl
L(2βh

p + 2θp + γp) + (2βh
p + γp)θL}Ll

D1

+(2βl
pβ

h
p + 2βl

pθp + βl
pγp + 2βh

p θp + 2βh
p γp + 4θpγp + γ2p)(A+m)

D1
(E3)

where D1 = 4βh
pβ

l
p + 4βh

p θp + 2βh
p γp + 4βl

pθp + 2βl
pγp + 4θpγp + γ2p .

Appendix F: Proof of Proposition 4

The duopoly prices under pure price competition are given by (E2) and (E3). The monopolist prices
can be obtained from (E2) and (E3) by substituting γp = γL = 0. Comparing the monopolist prices
with the duopoly prices, we get:

pDD∗h (Lh)

∣∣∣∣
duopoly

− pDC∗h (Lh)

∣∣∣∣
monopoly

=
−γp

{
Kh

1 a+Kh
2Lh +Kh

3Ll +Kh
4 (A+m)

}
4βhpβ

l
p + 4βhp θp + 4βlpθp + 2βhpγp + 2βlpγp + 4θpγp + γ2

p

(F1)

pDD∗l (Lh)

∣∣∣∣
duopoly

− pDC∗l (Lh)

∣∣∣∣
monopoly

=
−γp

{
K l

1a+K l
2Lh +K l

3Ll +K l
4(A+m)

}
4βhpβ

l
p + 4βhp θp + 4βlpθp + 2βhpγp + 2βlpγp + 4θpγp + γ2

p

(F2)

(
pDD∗h (Lh)− pDD∗l (Lh)

) ∣∣∣∣
duopoly

−
(
pDC∗h (Lh)− pDC∗l (Lh)

) ∣∣∣∣
monopoly

=
−γp

{
Kd

1a+Kd
2Lh +Kd

3Ll +Kd
4 (A+m)

}
4βhpβ

l
p + 4βhp θp + 4βlpθp + 2βhpγp + 2βlpγp + 4θpγp + γ2

p

(F3)

where, Kd
i = Kh

i − K l
i , and Kh

i and K l
i for i ∈ {1, 4} are some functions of system parameters,

and hence Clearly, when γp = 0, pDD∗h (Lh)

∣∣∣∣
duopoly

= pDC∗h (Lh)

∣∣∣∣
monopoly

and pDD∗l (Lh)

∣∣∣∣
duopoly

=

pDC∗l (Lh)

∣∣∣∣
monopoly

. For, γp > 0, (F1), (F2) and (F3) are dictated mainly by Kh
1 and K l

1 and Kd
1 ,

respectively since a is assumed to be large. Further,

Kh
1 = 2(βlp)

2 + 2βhp θp + 6βlpθp + 8θ2
p + βlpγp + 2θpγp > 0

K l
1 = 2(βhp )2 + 6βhp θp + 2βlpθp + 8θ2

p + βhpγp + 2θpγp > 0

Kd
1 = (βlp − βhp )γp + 2{(βlp)2 − (βhp )2}+ 4(βlp − βhp )θp > 0

8
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Therefore, Kh
1 > 0, K l

1 > 0 and Kd
1 > 0⇒ (F1) < 0, (F2) < 0 and (F3) < 0, respectively if γp > 0.

This shows that pure price competition decreases both the express and regular prices as well as
the price differentiation. Further, it clearly follows from the expressions for Kh

1 , K l
1 and Kd

1 that
the effects are more pronounced when θp > 0, i.e., in presence of product substitution.

Appendix G: Proof of Proposition 5

Given the strategy of firm j ∈ {1, 2}, the best response express leadtime of firm i = 3− j satisfies:

∂πi

∂Lih
= 0

Taking the total derivative of the above relation with respect to the express leadtime Ljh of firm j,
we get:

d

dLjh

(
∂πi

∂Lih

)
=

∂

∂Ljh

(
∂πi

∂Lih

)
+

∂

∂pjh

(
∂πi

∂Lih

)
∂pjh

∂Ljh

+
∂

∂pjl

(
∂πi

∂Lih

)
∂pjl

∂Ljh
+

∂

∂Lih

(
∂πi

∂Lih

)
dLih

dLjh
= 0

⇒
dLih

dLjh
=
−
[

∂2πi

∂Lj
h∂L

i
h

+ ∂2πi

∂pjh∂L
i
h

∂pjh
∂Lj

h

+ ∂2πi

∂pjl∂L
i
h

∂pjl
∂Lj

h

]
∂2πi

∂(Li
h)2

For a DD setting, the above relation simplifies to:

dLih

dLjh
=

−
[
γp

{(
∂pjh
∂Lj

h

)2
+
(
∂pjl
∂Lj

h

)2
}

+ γL

(
∂pjh
∂Lj

h

)]
∂2πi

∂(Li
h)2

(G1)

We know that for Lh ≤ L∗h:

∂2πi

∂(Lih)2
< 0

The numerator in RHS of (G1) consists of terms that are functions only of the market parameters,
and hence is a constant for a given parameter setting. Further,

γp


(
∂pjh

∂Ljh

)2

+

(
∂pjl

∂Ljh

)2
 > 0 and γL

(
∂pjh

∂Ljh

)
< 0
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Therefore, we have:

dLih

dLjh
≥ 0 if γp


(
∂pjh

∂Ljh

)2

+

(
∂pjl

∂Ljh

)2
 ≥ γL

(
∂pjh

∂Ljh

)
(G2)

dLih

dLjh
< 0 if γp


(
∂pjh

∂Ljh

)2

+

(
∂pjl

∂Ljh

)2
 < γL

(
∂pjh

∂Ljh

)
(G3)

This suggests that if the market parameters are such that (G2) holds, firm i always increases
(decreases) its express leadtime Lih in response to a corresponding increase (decrease) in firm j′s

express leadtime Ljh. We let pih(n), pil(n) and Lih(n) be the best response decisions of firm i at the

nth iteration of the procedure. If Lih(0) = 0, then Lih(n) ≥ Lih(0) for all n. We will show that if (G2)
holds, Lih(n) is increasing in n for i ∈ {1, 2}. As Lih is bounded above (Lih < Ll), for i ∈ {1, 2},
this will establish that the iterative procedure converges. We prove the convergence by induction
as follows:

(1) (Step n = 1): We know that Lih(1) ≥ Lih(0) for i ∈ {1, 2}.
(2) (Step n− 1): Assume that Lih(n− 1) ≥ Lih(n− 2) for i ∈ {1, 2}.
(3) (Step n): Given the inductive assumption from Step n−1, (G2) implies that Lih(n) ≥ Lih(n−1)

for i ∈ {1, 2}.

This completes our induction. In case (G3) holds, convergence of the algorithm can proved similarly
by letting L1

h(0) = Ll and L2
h(0) = 0 and by showing that L1

h(n) is decreasing in n while L2
h(n) is

increasing in n.

Appendix H: Proof of Proposition 6

The effect of competition on the express leadtime when firms use dedicated capacities is given by:

∂π(Lh)

∂Lh

∣∣∣∣
duopoly

− ∂π(Lh)

∂Lh

∣∣∣∣
monopoly

=
−{K1a+K2Lh +K3Ll +K4(A+m)}

2(4βhpβ
l
p + 4βhp θp + 4βlpθp + 2βhpγp + 2βlpγp + 4θpγp + γ2

p)(βhpβ
l
p + βhp θp + βlpθp)

(H1)

where, K1, K2, K3 and K4 are some functions only of the system parameters, and hence are
constants. For large a, (H1) is dictated mainly by K1, which is given by:

K1 =
{

4βhp (βlp)
2 + 4(βlp)

2θp + 8βhp θ
2
p + 8βlpθ

2
p + 12βhpβ

l
pθp

}
γL

−
{
βhLβ

l
p + 2βhLθp + [(βlp)

2 − (βhp )2]θL

}
γ2
p

−
{

2βhpβ
h
Lθp + 2(βlp)

2βhL + 4βlpθL + 8βhLθ
2
p

}
γp

−
{

[6βlpβ
h
L − 4βhp θL]θp + 2[(βlp)

2 − (βhp )2]θL

}
γp

+2
{
βhpβ

l
p + βhp θp + βlpθp

}
γLγp (H2)

Clearly, the effect of competition on Lh, and hence on leadtime differentiation, depends on the
relative intensities of price competition (γp) and leadtime competition (γL), as well as other demand
parameters. γp = 0 and γL > 0 results in (H2) > 0, and hence (H1) < 0. Further, π(Lh) is increasing
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concave in Lh for Lh ≤ LDC∗h (see Appendix A). This, together with (H1) < 0, implease that:

L∗h|duopoly := {Lh|duopoly :
∂π(Lh)

∂Lh

∣∣∣∣
duopoly

= 0} < L∗h|monopoly := {Lh|monopoly :
∂π(Lh)

∂Lh

∣∣∣∣
monopoly

= 0}

This implies that Lh is smaller under competition when γp = 0. Further, (F1), (F2) and (F3)
suggest that for a given Lh, the equilibrium prices as well as the price differentiation coincide with
the monopolist prices and price differentiation for γp = 0. However, a smaller Lh under monopoly
compared to duopoly results in a larger price differentiation for γp = 0. γp > 0 and γL = 0, on
the other hand, results in (H2) < 0, and hence (H1) > 0. Thus, Lh is larger under competition. A
larger Lh results in a smaller price differentiation.
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