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Price and quantity competition
in a differentiated duopoly
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and

Xavier Vives**

This article analyzes the duality of prices and quantities in a differentiated duopoly. It is
shown that if firms can only make two types of binding contracts with consumers, the
price contract and the quantity contract, it is a dominant strategy for each firm to choose
the quantity (price) contract, provided the goods are substitutes (complements).

1. Introduction

• Two classical models in the theory of oligopoly are those of Coumot (1838) and
Bertrand (1883). In both models the equilibrium concept is the noncooperative equilibrium
of Nash (1950). In the former firms set quantities. In the latter prices are the strategy
variables. In a duopoly situation where firms produce a homogeneous good and marginal
costs are constant and equal for both firms, the Bertrand price equals marginal cost and
the Coumot price is above it. With differentiated products, Bertrand prices are above
marginal cost. In this case Coumot competition is still viewed as more "monopolistic"
than Bertrand competition.'

We consider first a differentiated duopoly proposed by Dixit (1979). The demand
stmcture is linear and allows the goods to be substitutes or complements. Firms have
constant marginal costs and there are no fixed costs and no capacity limits. In this setup
Coumot and Bertrand equilibria are unique. We show that Bertrand competition is more
efficient than Coumot competition, in the sense that in equilibrium consumer surplus
and total surplus are higher in the former regardless of whether the goods are substitutes
or complements. Furthermore, profits are larger, equal, or smaller in Coumot than in
Bertrand competition, according to whether the goods are substitutes, independent, or
complements.
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' This is not the case if one considers supergame equilibria. Price-setting supergame equilibria may support
higher prices than quantity-setting equilibria for either homogeneous or differentiated products. See Brock and
Scheinkman (1981) and Deneckere (1983).
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Suppose now that each firm can make only two types of binding contracts with
consumers: the price contract and the quantity contract. If a firm chooses the price
contract, this means that it will have to supply the amount the consumers demand at a
predetermined price, whatever action the competitor takes. If a firm chooses the quantity
contract, it is committed to supply a predetermined quantity independently of the action
of the competitor. Consider a two-stage game where firms first simultaneously commit
themselves to a type of contract and afterwards compete contingent on the chosen types
of contracts. Restricting attention to subgame perfect equilibria of this game, we show
that if the goods are substitutes (complements), it is a dominant strategy for firm / to
choose the quantity (price) contract. When the goods are substitutes, if firms may commit'
themselves to offer consumers only a certain type of contract, they will always choose the
quantity contract, and this will keep the prices high. When the goods are complements,
firms want to keep the quantities produced high to reinforce each other's market, and
they will offer the price contract. This result generalizes, under certain assumption?, to a
nonlinear demand structure. Furthermore, in the linear case the dominant strategy
equilibrium turns out to be Pareto superior from the point of view of the firms, since
Coumot (Bertrand) profits are the highest of all when the goods are substitutes (comple-
ments).

To get the results, we take advantage of the duality structure of Coumot and Bertrand
competition in our differentiated commodity setting. This duality was first pointed out
by Sonnenschein (1968) in a nondifferentiated framework. In our setup it turns out that
Coumot (Bertrand) competition with substitutes is the dual of Bertrand (Coumot)
competition with complements. This means that they share similar strategic properties.
For example, with linear demand, reaction functions slope downwards (upwards) in both
cases. It is a matter of interchanging prices and quantities. A useful corollary is that one
only needs to make computations or prove propositions for one type of competition
(Coumot or Bertrand) or for one type of product (substitute or complement); the other
cases follow by duality.

In Section 2 we present the linear model. Section 3 deals with the welfare properties
of Bertrand and Coumot equilibria. The two-stage model is dealt with in Section 4.
Section 5 extends the results to a nonlinear demand structure. Concluding remarks
follow.

2. The linear model
• We have an economy with a monopolistic sector with two firms, each one produc-
ing a differentiated good, and a competitive numeraire sector. There is a contin-
uum of consumers of the same type with a utility function separable and linear in the
numeraire good. Therefore, there are no income effects on the monopolistic sector, and
we can perform partial equilibrium analysis. The representative consumer maximizes

2

i, Qi) ~ 2 PiQi, where ,̂ is the amount of good / and p, its price. U is assumed to be

quadratic and strictly concave U{qx, qj) = ai^i + a2̂ 2 - (|8i9i + '^yQxQi +
where a, and /3, are positive, / = 1, 2, |8i/32 - 7^ > 0, and a,(8, - aff > 0 for / ¥= j ,
i = 1,2. This utility function gives rise to a linear demand structure. Inverse demands
are given by

Pi = a, -

Pi = 0L2

in the region of quantity space where prices are positive. Letting 6 =
a, = (a,j8; - a;7)/5, 6, = /8,/5 for / ^ j , i = 1, 2, and c = j/b (note that a,- and 6, are
positive because of our assumptions), we can write direct demands as
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provided that quantities are positive.^ The goods are substitutes, independent, or comple-
ments according to whether 7 $ 0. Demand for good / is always downward sloping in its
own price and increases (decreases) with increases in the price of the competitor if the
goods are substitutes (complements). When ai = a2 and /81 = ft = 7. the goods are
perfect substitutes.^ When ai = a2, y^/(P\02) expresses the degree of product differentiation,
ranging from zero when the goods are^ independent to one when the goods are perfect
substitutes. When 7 is positive and y^ 1(^1^2) approaches one, we are close to a
homogeneous market.

Firms have constant marginal costs, Wi and ^ 2 . We consider from now on prices
net of marginal cost. This is without loss of generality since if marginal costs are positive,
we may replace a, and a, by a, - w, and a, - i,m, + cmj, i "^ j , i ^ 1, 2, respectively.

Profits of firm /, II,, are given by II, = p,^,, total surplus, TS, with the quantity pair
{QI, Q2) is just U{qi, ^2), and consumer surplus, CS, with prices (pi, P2) and quantities
(?i) Qi) is U{qu 92) - (III + 112). Notice that II, is symmetric in p, and ?,.

3. Bertrand and Cournot equilibria

• In Bertrand competition firms set prices, in Coumot competition, quantities. In both
cases the equilibrium concept is the noncooperative Nash equilibrium. We have noticed
above that profits are symmetric in prices and quantities. In the Coumot case firm 1
chooses qy to maximize (a, - /3,^, - 7^2)^1, taking as given ^2, and in the Bertrand case
it chooses Pi to maximize Pi{ai - biPi + CP2), taking P2 as given. Both expressions are
perfectly dual. We get one from the other by replacing qi by pi, a, by ai, /3i by bi, and
7 by -c. We have thus that Coumot competition with substitute products (7 > 0) is the
dual of Bertrand competition with complements (c < 0) (and similarly for the other
possible combination). This means that they are going to share similar strategic properties
and that we shall be able to derive the Bertrand reaction functions, equilibrium strategies,
and profits from the Coumot ones. It is easily seen that the Coumot reaction of firm 1
to output 2̂ is ("1 - 792)/2j8i, and correspondingly the Bertrand reaction to P2 is
(fli + cp2)/2bi.* Note that the reaction functions slope downwards in the Coumot case
with substitutes and in the Bertrand case with complements. In any case, under our
assumptions, reaction functions intersect only once, thereby yielding a unique equilibrium
(Coumot and Bertrand). It is straightforward to compute the Coumot equilibrium. The
Bertrand equilibrium follows by duality. Table 1 gives the equilibrium levels of prices
and quantities under Cournot, C, and Bertrand, B, competition for firm 1. qf and pf
denote, respectively, the Coumot quantity and the Bertrand price of firm i. Let A = 4/3, ft
- 7^ and D = 4^162 - c l

To illustrate, take the symmetric case where a, = a and ^i = P,i= 1,2 and consider
two demand structures. When 7 = 0, the goods are independent, and we have the
monopoly solution in any case, ^ = pf = ajlb and qf = qf = a/2^, i = 1, 2. If instead
7 = ;8 > 0, the goods are perfect substitutes and price equals marginal cost in Bertrand
competition, pf = 0,' and we have the usual Coumot solution qf = al'i^ if there is
quantity competition.

^ That is in the region K = {p E. R\: a^ - biP, + cp2 > 0, 02 - 62P2 + cp, > 0}.
^ When |8| = (82 = -y the demand system may not be well defined.
•"This is the Bertrand reaction function of firm 1, provided 92 is positive. When the reaction function

reaches the boundary ofthe region A where 92 = 0, then p, = (^2^2 - a2)/c until pi reaches a,/2, the monopoly
price for firm 1. For.p2 larger than {02 + ca,/2)/b2, firm 1 charges the monopoly price a,/2.

' The Bertrand quantity, qf, equals a. When 7 = /3, t/ is not strictly concave, |8^ - 7^ = 0, and b is
infinite, bp" tends to a as 7 tends to /J.
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TABLE t

Bertrand

Coumot

Equilibrium
Quantity

Price

2a,b2 + a2C

D

Levels of Price and

Quantity

2aA-a27
A

From Table 1, one gets pf - p^ = aty'^l^ (and similarly qf - qf = at
i = 1,2, which are nonnegative. Quantities are lower and prices higher in Coumot than
in Bertrand competition, regardless of whether the goods are substitutes or complements.
Coumot competition is more "monopolistic" than Bertrand competition.* Firms have
less capacity to raise prices above marginal cost in Bertrand competition because the
perceived elasticity of demand of a firm when taking the price of the rival as given is
larger than that which the same firm perceives when taking the quantity of the rival as
given. In the first case the absolute value of the slope of the perceived demand function
is bi and in the second b\ - ĉ /Z?2. The resuh is that in Bertrand competition firms quote
lower prices than the Coumot ones. Furthermore, the difference in prices (or quantities)
depends on the degree of product differentiation. When a, = a2, this is given by 7̂ /181/82
and

pf-pf-

so that the more differentiated the products are, the smaller is the difference between the
Coumot and Bertrand prices, and in the extreme situation of independent goods the
difference is zero. The type of competition becomes less important, the less related the
goods are.

Lower prices and higher quantities are always better in welfare terms. Consumer
surplus is decreasing and convex as a function of prices, and total surplus equals
C/(9i, Qi), which is increasing and concave. Therefore, in terms of consumer surplus or
total surplus, the Bertrand equilibrium dominates the Coumot one. For firms, if the
goods are substitutes, low prices mean low profits, and Coumot profits are larger than
Bertrand profits. The converse is true if the goods are complements since then to increase
profits firms have to lower prices from the Coumot levels to gain market share. (See
Appendix 1 for a proof of these assertions.) Proposition 1 summarizes the results
thus far.̂

Proposition 1. Consumer surplus and total surplus are larger in Bertrand than in Cournot
competition except when the goods are independent, in which case they are equal. Profits
are larger, equal, or smaller in Cournot than in Bertrand competition, according to
whether the goods are substitutes, independent, or complements.

4. The two-stage game
• We suppose that firms can make two types of contracts with consumers: the price
contract and the quantity contract. If firm / chooses the price contract, this means that it

'Shubik (1980, pp. 68-78) showed that quantities are lower and prices are higher in Coumot than in
Bertrand competition in a symmetric linear duopoly with substitute goods. Deneckere (1983) considered also
the case of complements in a symmetric and linear duopoly model.

'See Vives (1984) for an extension of Proposition 1 to an incomplete information setting where firms
receive signals about the uncertain demand. Bayesian Coumot and Bertrand equilibria are compared.
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will have to supply the amount the consumers demand at a predetermined price, whatever
action the competitor, firm j , j ¥= /, takes. If firm / chooses the quantity contract, it is
committed to supplying a predetermined quantity independently of the action of the
competitor. That is, we restrict, in Grossman's terminology (1981), the supply curves
firms can choose to two types: the vertical one, corresponding to quantity setting, and
the horizontal one, corresponding to price setting. Furthermore, we assume that there are
prohibitively high costs associated with changing the type of contract. Firms first choose
what type of contract to offer consumers, and afterwards they compete contingent on the
chosen types of contracts. Restricting attention to subgame perfect equilibria of this two-
stage game, we shall see that if the goods are substitutes (complements), it is a dominant
strategy for firm i to choose the quantity (price) contract. Denote the Coumot profits of
firm / by Ilf and the Bertrand ones by Ilf. At the second stage, if both firms choose the
quantity contract, we have the Coumot outcome; if they choose the price contract, the
Bertrand outcome prevails.

What happens if firm 1 chooses the price contract and firm 2 the quantity contract?
In that case firm 2 chooses qi to maximize its profit, taking pi as given. That is, maximize
P2Q2, where P2 is a function of/?, and qj, derived from the demand equations, i.e.,
P2 = (̂ 2 + cpi - ?2)/^2- This yields the reaction function of firm 2, 2̂ = (̂ 2 + cpi)/2. It
is just the quantity 2̂ which corresponds to the Bertrand reaction to pi.^ Notice that it is
upward (downward) sloping for substitutes (complements). Firm 1 chooses Pi to maximize
its profit, taking 2̂ as given. That is, maximize pi^,, where qi is a function of Pi and ^2-
Duality gives us firm's 1 reaction function: /?, = (a, - yq2)/2. (It is the price p, that
corresponds to the Cournot reaction to 2̂ ) We see it slopes down (up) for substitutes
(complements). These reaction functions intersect once to yield a Nash equilibrium
(f, Q), where firm 1 chooses the price contract and firm 2 the quantity contract, with
prices

r p Qs =

and quantities

where E = 4bib2 - 3c^ and d = b\b2 - c^.
If firm 1 chooses the quantity contract and firm 2 the price contract, then firm 1 is

on its Bertrand reaction function and firm 2 on its Coumot reaction function. By a dual
argument of the above we get a Nash equilibrium with prices

and quantities

Let nf = ;7f̂ f and Ilf = p<^q^. In Appendix 2 we show that n f > Ilf > nf > nf
if the goods are substitutes, and nf > nf > nf > n f if they are complements. These
inequalities have a clear interpretation. Suppose the goods are substitutes. If firm 1 sets
prices and firm 2 quantities, then firm 1 is in the worst of the possible worlds since it
faces a price cutter and takes as given the supply of the rival. Firm 1 would be better off
by being a price cutter itself The outcome would be then the Bertrand equilibrium which
yields more profits to firm 1, nf > nf. On the other hand, firm 1 would prefer to set

' See footnote 4.
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quantities and be the price cutter while facing a price-setting rival rather than to face
another price cutter, n f > nf. The best of the possible worlds is when both firms set
quantities and there is no price cutting. The Coumot outcome dominates in terms of
profits the other outcomes. With complements we have the dual inequalities as expected,
and the Bertrand equilibrium dominates in terms of profits the others. We have thus firm
1 facing the following payoff matrix at the first stage:

Firm 2

Price Quantity

Price nf nf
Firm 1

Quantity n f n f .

We see that it is dominant for firm 1 to choose the quantity contract if the goods
are substitutes, since n f > nf and nf > nf, and to choose the price contract if the
goods are complements, since then nf > nf and nf > nf. The same applies to firm 2.
Proposition 2 states the result.

Proposition 2. In the two-stage game it is a dominant strategy for firm / to choose the
quantity (price) contract if the goods are substitutes (complements).

With substitute products, choosing the quantity contract is the best firm 1 can do,
regardless of the competitor's choice of contract. This is unfortunate from the welfare
point of view since consumer surplus and total surplus are higher with price competition.
It is, however, fortunate from the viewpoint of the firms since Coumot profits are larger
than Bertrand profits. With complements, by choosing the price contracts firms enhance
their profits and consumer surplus, and hence general welfare.

5. A nonlinear demand structure
• To examine the case with nonlinear demand,' suppose now that Uiqi, ^2) is a
differentially strictly concave utility function on Rl, which is (differentially) strictly
monotone in a nonempty bounded region Q. Let q = {qi, 92) and p = (Pi, P2)- Our
representative consumer by maximizing U(,q) - pq gives rise to an inverse demand system
Pi = fi{<j), ' = 1.2, which is twice-continuously differentiable in the interior of Q. Inverse
demands will be downward sloping,'" djt < 0, / = 1,2, and the (symmetric) cross effect
djfj, j + i, will be negative or positive, depending on whether the goods are substitutes or
complements. Under our assumptions/can be inverted to yield a direct demand system
q^ = hi{p), i = 1, 2. The bounded region in price space where demands are positive will
be denoted by P. The demand system h will be twice-continuously differentiable in the
interior of P. Direct demands are certainly going to be downward sloping, 3,/i, < 0,
/ = 1,2, and djhi,j + i, will be positive for substitute goods and negative for complements.
We assume furthermore that the "own effect" is larger than the "cross effect," that is,

l > WLi =̂  /" (or equivalently, |a,/j,| > \c>jH,i # /).
We suppose that there are no costs" and that any firm can make positive profits

' T h e model in this section follows Vives (1985). Hathaway and Rickard (1979) consider also a nonlinear
duopoly and Bylka and Komar (1975) "mixed" oligopolies. See Cheng (1984) for a graphical discussion of some
of the issues.

'° bjfi denotes the partial derivative ofy; with respect to the 7th variable.
" If there are positive and constant marginal costs m, and m-i, then define new functions

>".. and h(P) = kiP), '= 1-2,

where p, = Pi - m, to proceed with the analysis considering prices net of marginal cost.



552 / THE RAND JOURNAL OF ECONOMICS

even when the rival's price (quantity) is zero if the goods are substitutes (complements).
This ensures interior solutions in equilibrium. Profits of firm / in terms of prices are
n,(/7) = Pihiip) and in terms of quantities, n,(^) = fi{q)qi. Notice again that since djhj
and djfi, j =f= i, have opposite signs, Coumot competition with substitutes is the dual of
Bertrand competition with complements. We shall use this duality to infer results for the
case of complements from the case of substitutes. For / = 1, 2, we make the following
two assumptions:

Assumption 1. duUiip) + IdyllKp)! < 0 for all p in the interior of P, j ¥= i.

Assumption 2. 3,,n,(9) + |dyn,(^)| < 0 for all q in the interior of Q, j + i.

These assumptions ensure that the Bertrand and Coumot reaction functions are well
behaved and have slope less than one in absolute value, and therefore there exist unique
Bertrand and Coumot equilibria (Friedman, 1977). The assumptions put no restriction
on the sign of the slope of the reaction functions. Intuitively though one expects reaction
functions to slope up (down) in Bertrand (Coumot) competition if the goods are
substitutes and conversely if the goods are complements.

We know that if firm 1 chooses the price contract, then firm 2 will be on its Bertrand
reaction function, 7?2( •), and that if firm 2 chooses the quantity contract, then firm 1 will
be on its Cournot reaction function, /•,(•). The function rx{-) defines implicitly in price
space a curve Pi = 0i(/72), and Rii-) similarly defines a curve in quantity space,
<li = ^liQi)- It is easily checked that 5,11,(^[(pz), PJ) < 0, and therefore (t>\{P2) > R\(P2)-
That is to say, the translated Coumot reaction in price space is always larger than the
Bertrand reaction. To ensure the uniqueness of the "mixed" equilibria we need a further
assumption:

Assumption 3. dufi ^ 0, a,,/z, < 0 and dijfi > 0, dy/z, < 0 if the goods are substitutes, or
dijfi < 0, dijhi > 0 if they are complements, j i= \, i = 1,2.

We show in Appendix 2 that if Assumptions 1-3 hold and the goods are substitutes,
then (j)\ > 0, and the pairwise intersections of J?|, R2, <t>i, and (l>2 are unique.'^ For
example, the intersection of </>, and R2 yields the mixed equilibrium {P, Q), where firm 1
chooses the price contract and firm 2 the quantity contract, and so on. Note that since
the 4>iS, are upward sloping and 0, > Rj, i = 1, 2, the Coumot price pf will be higher
than pf, pf or pf, and pf larger than pf. Therefore, in particular, Cournot prices are
higher than Bertrand prices. What can we say about Ilf and Ilf? Profits of firm 1 increase
along the Bertrand reaction function /?, as P2 increases, because the goods are substitutes,
and therefore nf > Ilf, since pf > /^- Furthermore, it is easily seen by using the Coumot
first-order condition that dni((t)i{p2), P2)/dp2 = qid2hi, and therefore n , increases along
01 as P2 increases. It follows that n f > nf, since P2 > P?- We conclude that if goods are
substitutes, the outcome of the two-stage game is the Coumot equilibrium. If the goods
are complements, we just replace prices by quantities and Coumot by Bertrand in the
above argument. Proposition 3 states the results.

Proposition 3. If Assumptions 1-3 hold, all four subgames have unique equilibria,
Coumot prices (quantities) are larger (smaller) than Bertrand prices (quantities), and in
the two-stage game it is a dominant strategy for any firm to choose the quantity (price)
contract if the goods are substitutes (complements).

Without Assumption 3 we cannot ensure the uniqueness of the mixed equilibria.

'̂  Assumption 3 is stronger than necessary. To get uniqueness of the mixed equilibria it is enough to
assume that the elasticity of the cross effect djf with respect to 9, minus the elasticity of the own effect d,f, with
respect to qj is less than one; and similarly replacing aj, by d^i, djf by 5,/i,, and q, by p,. Assumption 3 implies
this condition.
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but the profits of firm 1 increase along Ri and 0i as P2 increases and 02 > ^2- Therefore,
any outcome of the quantity contract yields more to firm 1 than the Bertrand outcome
in the (Q, P) case, and similarly the Coumot outcome dominates any outcome of the
price contract in the {P, Q) case.

Note that in the linear case the dominant strategy equilibrium was also Pareto
superior to the others from the point of view of the firms since (with substitutes) Coumot
profits were the largest of all. This is not necessarily so in the nonlinear case. If the
demand structure is symmetric, it is shown in Vives (1985) that Coumot profits are larger
than Bertrand profits. From the welfare point of view, with substitutes, an inefficient
outcome obtains, since Coumot prices are the highest of all prices and therefore consumer
surplus is lower at the Coumot equilibrium. With complements an efficient outcome
obtains in terms of total surplus, since Bertrand quantities are the highest of all quantities.
With substitutes the firms try to keep prices high and with complements they try to keep
quantities high. In this way they reinforce each firm's market. If a firm produces nuts
and its competitor produces bolts, the firm certainly wants the output of bolts to be high
since otherwise it is going to have a low demand for nuts. On the other hand, if the
competitor produces nuts also, the firm wants its competitor to charge a high price since
this enhances the demand for the producer of nuts only. The welfare consequences in
the two situations are very different indeed.

6. Concluding remarks
• We may summarize the results derived from the model as follows:

(1) Cournot (Bertrand) competition with substitutes is the dual of Bertrand (Cournot)
competition with complements. Exchanging prices and quantities, we go from one to the
other.
(2) With a linear demand structure Bertrand competition is more efficient than Coumot
competition (in consumer or total surplus terms), regardless of the nature of the goods
(substitutes or complements) and independently of the degree of symmetry in the demand
stmcture. With nonlinear demand and under certain assumptions Bertrand prices
(quantities) are smaller (larger) than Coumot prices (quantities) if the goods are substitutes
(complements).
(3) If the firms can precommit to quantity or price contracts and the goods are substitutes
(complements), it is a dominant strategy for a firm to choose the quantity (price) contract.
Furthermore, in the linear case the dominant strategy equilibrium is also Pareto superior
in terms of profits.

Appendix 1

• From the expressions of the equilibrium prices and quantities we have that

n f = rf(pf)Vfc2, n f = /7,(pf)'. n f = rf(pr)V*2, and n<^

Let c = c^/b,b2. We then obtain

(4 - iS'f ^ (4 - 3cY
nf ~ n f " d \D) (4 - c^)\ 1 - c^) (4 - 3c'f - c« •

which is larger than one. Furthermore,

n f " U l b,{2aA + a2c))) Vnf/

which is larger than one if and only if c > 0. Finally,

nf V
^Eibi - a,cV(2a,/)2 +
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and

W,) {I - a,c}/{t},{2a,b2 +b2

which is larger than one if and only if c is negative. Therefore,

nf > n f > nf > ll!' if < > o and n f > n f > n f > n f if c < o .

Appendix 2

• Lemma 1 and its proof follow.

Lemma 1. If Assumptions 1-3 hold and the goods are substitutes, then 0) > 0, / = 1, 2, and the mixed equilibria
are unique.

Proof PI = 0,(^2) is defined implicitly by h,{p) - r,(/i2(p)) = 0 and therefore

The denominator is always negative since |r',| < I and \d,hi\ > d,h2 > 0. The numerator is obviously positive
if r'l > 0, and if r', < 0, d2h,/\d2h2\ > k'i| follows from Assumption 3 since d2hj\d2h2\ = d2f,/d,f and
k'll = (^2/1 + 9i5i2/i)/(23iyi + q\duf\). We conclude thus that <̂ ', > 0. Suppose now that firm 1 chooses the
price contract and firm 2 the quantity contract, and consider reaction curves in (px, ^2) space. We shall show
that firm l's reaction p, = f\{ri(q2), ft) is downward sloping and that firm 2's reaction ft = /i2(Pi, /?2(Pi)) is
upward sloping, and therefore their intersection is unique. Differentiating the reaction functions, one gets,
respectively, rfpi/rfft = 5,/,^', + 62f and rfft/rfp, = d2h2R'2 + 5|//2. If/•', < 0, t/pi/rfft is negative since we have
seen that d2f,/d,f, > \r',\, and if i?2 > 0, then rfft/t/p, is positive since d,h2/\d2h2\ > R'2 as 322/12 =s 0 and d2,h2
=S 0 and R'2 = -(dih2 + P2d2ih2)/{2d2h2 + P2322A2). Obviously, rfpi/rfft is negative and dq2/dp, positive when r',
> 0 and R'2 < 0, respectively, since the goods are substitutes and ^2/1 < 0, d2h, > 0. Q.E.D.
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