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Abstract

The spokes model of nonlocalized spatial competition provides a new analytical tool

for di¤erentiated oligopoly and a representation of spatial monopolistic competition.

At the unique symmetric equilibrium of the spokes model, an increase in the number of

�rms leads to lower prices when consumers have relatively high product valuations, but,

surprisingly, to higher prices for lower consumer valuations. New entry alters consumer

and social welfare through price, market expansion, and matching e¤ects. With free

entry, there can be multiple equilibria in the number of �rms, the market may provide

too many or too few varieties from a social welfare perspective, and the equilibrium

price remains above marginal cost even when the number of �rms is arbitrarily large.
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1. INTRODUCTION

The study of markets with di¤erentiated products is essential to understanding modern

economies. The economics literature on product di¤erentiation originates from the seminal

paper of Hotelling (1929). The Hotelling model considers a market with two stores located

symmetrically on a line, called the Main Street. Consumers are uniformly distributed on

the line and incur transportation costs to purchase from either store. Even though the two

�rms�products are physically identical, they are di¤erentiated to consumers at di¤erent

locations due to the transportation costs. The Hotelling model has become a standard tool

in oligopoly analysis.

To understand oligopoly interactions under product di¤erentiation, it is important to

develop tractable models with more than two �rms. The circle model (Salop, 1979) extends

the Hotelling model to allow an arbitrary number of di¤erentiated oligopoly �rms, and has

proven to be an important tool for analyzing oligopoly markets. In symmetric equilibria of

the circle model, price decreases in the number of �rms, approaching the marginal cost as

the number of �rms gets large, and there is over-provision of varieties with free entry. Same

as the Hotelling formulation, the circle model follows a spatial approach where consumer

preferences (or product characteristics) are represented by addresses in a geographical (or

characteristic) space.1 A distinguishing feature of the circle model is that competition is

localized, in that a small change in a �rm�s price only a¤ects its two neighbors, not the

rest of the �rms. A drawback of the circle model is that symmetry requires incumbents to

relocate in product space when new �rms enter the market.

Parallel to the development of models of localized competition are models of nonlocalized

competition, in the tradition of Chamberlin (1933). Under nonlocalized competition, each

�rm competes against the market, and a price change by one �rm a¤ects all other �rms

(more or less) equally. Nonlocalized competition is clearly important for many industries,

and is becoming perhaps even more so with the developments of new trading institutions

1Lancaster (1966) pioneered the characteristics approach where goods are represented by points on some

characteristic space.
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such as the Internet. Studies of product di¤erentiation in the Chamberlinian tradition in-

clude the representative consumer model pioneered by Spence (1996) and Dixit and Stiglitz

(1977), and the random utility model exempli�ed by Perlo¤ and Salop (1985). Following

a nonspatial approach, these studies have o¤ered new insights about prices and product

varieties in di¤erentiated-product industries. In particular, a market with nonlocalized

competition can provide either too few or too many varieties.

The literature on di¤erentiated product competition has focused on formalizing Cham-

berlin�s concept of monopolistic competition by examining free entry equilibria in the limit

as the number of competitors becomes arbitrarily large. In monopolistic competition, �rms

exercise market power, i.e. set price above marginal cost, while earning zero pro�ts. With

free entry into the market, the number of competitors increases either as the size of the

market grows larger or as the �xed cost of market competition becomes smaller. Monopo-

listic competition holds in the limit if, as in Hart (1985a, 1985b), consumers care about only

a limited number of product varieties,2 or if the product space is unbounded and available

product varieties are never close substitutes. These conditions ensure that, when each �rm

is negligibly small in the limiting market, the demand for a �rm�s product is not in�nitely

elastic.3

Despite the many important developments in the economics literature on product dif-

ferentiation,4 oligopoly competition with product di¤erentiation has not been studied in a

spatial model with nonlocalized competition. The spatial approach is attractive for oligopoly

analysis, because it is based on a de�nite and easy to visualize physical foundation. In

the present paper, we introduce the "spokes model" of non-localized spatial competition as

2This assumption has been justi�ed by Wolinsky (1986) as arising from consumers�imperfect information

about di¤erent brands.
3 In the circle model, when the number of �rms approaches in�nite, the distance between any two �rms

approaches zero. In the random utility model of Perlo¤ and Salop, when the random utility of each consumer

is bounded, the di¤erence between a consumer�s utilities from her �rst and second most preferred brands

approaches zero when the number of brands approaches in�nite. In both cases the demand elasticity for

each �rm approaches in�nite at the limit.
4See Eaton and Lipsey (1989) and Anderson et al (1992) for excellent reviews of the literature.
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a tool for oligopoly analysis. The spokes model extends the classical Hotelling duopoly

model to allow for arbitrary numbers of possible product varieties and of �rms, and has the

following structure. Starting at the midpoint (center) of a line of unit length, add lines of

one-half length to form a radial network of N (� 2) lines (spokes). Each spoke (denoted as

li) terminates at the center and originates at the other end. There are i = 1; 2; :::; N distinct

possible varieties of a product, with variety i located at the origin of spoke i: There are n

(� N) �rms, each producing a single variety (or brand). The brands are physically identical

but are di¤erentiated by their di¤erent locations. Consumers are uniformly distributed on

the network of spokes. A consumer travels to a �rm in order to purchase the �rm�s brand,

and incurs transportation costs (or, alternatively, utility losses due to imperfect preference

matching). For a consumer located on li; brand i is her �rst preferred brand (or local

brand), and each of the other N � 1 brands is equally likely to be her second preferred

brand. The consumer has value v for one unit of either her �rst or second preferred brands,

and zero value for additional units or for other brands. The Hotelling model is a special

case with N = n = 2:5

The spokes model is a special case of Hart�s (1985a) general model of monopolistic com-

petition, and inherits several attractive features that distinguish it from the circle model of

spatial competition (Salop, 1979). First, the model maintains symmetry between all brands

and between all �rms without the need to change the locations of incumbents as new �rms

enter the market. Second, each �rm is in direct competition with all other �rms, even

though each consumer is only interested in a �xed number of possible varieties.6 Third,

total output in the market is not �xed but depends on equilibrium prices and the num-

5A variant of the spokes model was initially suggested in Chen and Riordan (2003), in order to study

how downstream market structure mattered for the competitive consequences of vertical integration and

exclusive contracts. In that model, �rms observe consumers� locations and deliver goods to consumers

at individualized delivery prices; and it is thus not an extension of the standard Hotelling model where

consumers�locations are not known.
6Our assumption that each consumer is only interested in two brands is obviously restrictive and is made

mainly for tractability. We shall later discuss a possible motivation for this assumption based on consumers�

imperfect information, as well as possible ways to relax this assumption.
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ber of �rms. Consequently, the new entry in the spokes model has a market expansion

e¤ect. Fourth, the model approximates monopolistic competition in the limit as N ! 1

and n = kN for some �xed 0 < k � 1. Hart (1985a, 1985b) focuses on the limiting case

of monopolistic competition. The additional structure of the spokes model allows a more

detailed analysis of the e¤ect of new entry on market conduct and performance away from

the limit when N is �nite. While other analyses of di¤erentiated oligopoly do likewise

(see, for example, Sattinger, 1984; and Anderson, dePalma, and Thisse, 1992), our spatial

approach is novel and o¤ers interesting, and at times surprising, new insights.

We use the model to reexamine core economic questions about di¤erentiated product

markets: How does price competition depend on market structure? What are the e¤ects

of new product entry on competition and welfare? Does the market provide too few or

too many product varieties compared to the social optimum? And what properties hold

when �rms are small relative to the size of the market? Our analysis reveals intriguing

relationships between market structure and equilibrium price: an increase in the number of

�rms reduce price if consumers value products highly, but raises price if consumer value is

in an intermediate range. Consequently, �rm pro�t can be non-monotonic in the number of

competitors. New entry alters consumer and social welfare through price, market expansion,

and matching e¤ects. As with other models on nonlocalized competition, the number of

product varieties can be either socially excessive or de�cient. In the spokes model entry

tends to be excessive (de�cient) when entry cost is relatively low (high), and excessive or

de�cient entry can arise for the same set of parameter values due to multiple free-entry

equilibria. Finally, the spokes model with free entry provides a representation of spatial

monopolistic competition as the number of competitors becomes arbitrarily large, with

interesting welfare properties of equilibrium in the limit.

Our result that equilibrium price can increase with entry is unusual,7 and it has the

7Perlo¤, Suslow, and Sequin (2005) demonstrate a similar result in a spatial model comparing monopoly

and duopoly. Other oligopoly models in which price rises with more �rms are based on imperfect consumer

information (e.g., Satterthwaite, 1979; Schulz and Stahl, 1996; and Stiglitz, 1987), or mixed-strategy pricing

(e.g., Rosenthal, 1980). Our result is obtained under perfect information and with pure strategies.
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following intuition. In equilibrium, each symmetrically positioned �rm views itself as

competing in a number of submarkets. The submarkets are distinguished by whether

consumers��rst and second preferred brands are available. In some submarkets, consumers

lack an alternatively available brand and the �rm is e¤ectively a monopolist. In other

submarkets, the �rm is a duopolist competing with an alternative brand. A key property

of the spokes model is that the price elasticity of demand can be lower in the monopoly

submarkets than in duopoly submarkets.8 Therefore, �rms prefer a lower price in the

monopoly submarkets, but, unable to discriminate, settle on a compromise price. The

e¤ect of new entry is to convert some monopoly submarkets into duopolies. This changes

the compromise, and gives �rms an incentive to raise price. This intuition shows that price-

increasing entry depends on a particular ranking of elasticities across market structures.

The rest of the paper is organized as follows. Section 2 describes the basic model and

derives each �rm�s demand function. Section 3 characterizes the unique (symmetric) equi-

librium of the model for a given number of �rms. The equilibrium price exhibits di¤erent

properties corresponding to four mutually exclusive and connected regions of parameter

values. Comparative static analysis of equilibrium shows how a change in the number of

�rms a¤ects price, pro�ts, and consumer welfare. Section 4 endogenizes the number of

�rms in a free-entry equilibrium, and shows that the free entry number of �rms may exceed

or fall short of the socially optimal number depending on parameter values, and, in some

cases, on equilibrium selection. Section 5 studies monopolistic competition by examining

the properties of the model when there is an arbitrarily large number of possible varieties

and proportionally large number of �rms. Section 6 concludes.

2. SPOKES MODEL

There are i = 1; 2; :::; N possible varieties of a di¤erentiated product. Each variety (brand)

is represented by a point that is the origin of a line with its length being 1
2 : The other end of

the line is called its terminal. For variety i; its associated line is called li; and the terminals

8This generalizes a property of the Hotelling model (Chen and Riordan, 2004).
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of all the lines meet at one point, called the center. This forms a radial network of lines

(spokes network) connected at the center, and this network represents the preference space.

There are j = 1; 2; :::; n �rms in the market, 2 � n � N: Firm j is located at the origin

of lj and produces variety j with constant marginal cost: For expositional simplicity, this

variable production cost is normalized to zero; thus all values in the model are interpreted

to be net of production costs. Each �rm produces only one variety and posts a single price.

Firms set prices simultaneously.

Consumers are uniformly distributed on the spokes network, and the total mass of con-

sumers is normalized to unity. A consumer�s location (ideal point) on the network is fully

characterized by a vector (li; xi); meaning that the consumer is on li at a distance xi to

variety i (the origin of li):9 Since all the other varieties are symmetric, the distance from

consumer (li; xi) to any variety i0, i0 6= i; is 12 �xi+
1
2 = 1�xi: Any consumer must travel on

the spokes to reach any �rm (variety) where she wishes to purchase the product, incurring

positive transportation costs: The unit transportation cost, t; is normalized to unity; thus

all values in the model are expressed in transportation cost units. Variety i is consumer

(li; xi)
0s �rst preferred brand (or local brand), of which her valuation for one unit is v; she

also has a second preferred brand, which is any i0 6= i chosen by nature with probability

1
N�1; and of which her valuation for one unit is also v: The consumer places zero value on

the brand that is not one of her two desired brands,10 as well as on any additional units of

any brand.

We notice immediately the following:

Remark 1 The spokes model reduces to the Hotelling model when N = n = 2:

We derive the demand for �rm j for any given price pro�le (p1; p2; :::; pn):There are three

relevant categories of consumers: consumers for whom brand j is preferred, and whose

two preferred brands are both available; consumers for whom brand j is the �rst preferred
9We denote the consumer located at the center by

�
l1;

1
2

�
; and therefore every consumer�s location

representation is unique.
10We discuss later about the motivation for this assumption and how it can be relaxed without changing

the results of our analysis.
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brand, whose second preferred brand is not available; and consumers whose �rst brand is

unavailable and for whom brand j is the second preferred brand.

For any consumer located on lj or on lk; denoted as (lj ; xj) or (lk; xk); for j; k 2 f1; :::; ng;

both variety j and variety k are her desired brands with conditional probability 1
N�1 : Such

a consumer is indi¤erent between variety j and k if pj+xj = pk+(1�xj) or pj+(1�xk) =

pk + xk. The marginal consumer between j and k is a distance

x̂ = max

�
min

�
1

2
+
pk � pj
2

; 1

�
; 0

�
from �rm j. The number of such consumers served by �rm j is

2

N

1

N � 1
X

k 6=j; k2f1;:::;ng
max

�
min

�
1

2
+
pk � pj
2

; 1

�
; 0

�
;

where 2
N is the density of consumers on lj and on lk:

For any consumer on lj; with probability 1
N�1 variety i is her second preferred brand

where i =2 f1; :::; ng: Such a consumer prefers purchasing from �rm j to no purchase if

pj + xj � v: Firm j0s demand from this second category of consumers is

N � n
N � 1

2

N
minfmaxf0; v � pjg;

1

2
g;

where 2
N is again the density of consumers on lj ; and N � n varieties are unavailable.

Finally, for any consumer on li; i 6= j and i =2 f1; :::; ng; variety j is her second pre-

ferred brand with probability 1
N�1 : Such a consumer prefers purchasing from �rm j to not

purchasing if pj + (1� xi) � v: Firm j0s demand from this last consumer type is

N � n
N � 1

2

N
minfmax

�
0; v � pj �

1

2

�
;
1

2
g:

Summing up these three categories of consumers, and simplifying, we obtain �rm j0s total

demand as

qj =
1

N � 1
2

N

X
k 6=j;

k2f1;:::;ng

max

�
min

�
1

2
+
pk � pj
2

; 1

�
; 0

�
+
N � n
N � 1

2

N
max fminfv � pj ; 1g; 0g ;
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which, provided jpk � pj j � 1 and v � pj > 1
2 ; can be re-written as

qj =

8<:
1

N�1
2
N

P
k 6=j; k2f1;:::;ng

�
1
2 +

pk�pj
2

�
+ N�n

N�1
2
N (v � pj) if 0 < v � pj � 1

1
N�1

2
N

P
k 6=j; k2f1;:::;ng

�
1
2 +

pk�pj
2

�
+ N�n

N�1
2
N if v � pj > 1

: (1)

Thus, �rm j essentially sells to two consumer groups: consumers who have an alternative

available, and those who do not. The �rm, however, cannot price discriminate between the

two consumer groups.

A restrictive assumption of the spokes model is that each consumer only cares about two

possible brands, although the two desired brands di¤er for di¤erent consumers. This is a

special case of Hart�s (1985) restriction that each consumer cares only about a �xed �nite

number of possible varieties. It is a tractable way to introduce nonlocalized competition in

a spatial setting. One possible motivation for the assumption, following Wolinsky (1986),

is consumers�imperfect information. For instance, if the consumer has perfect information

about her local brand but must search to �nd information about any other brand, and if she

has zero cost for her �rst search but has a su¢ ciently high cost for any additional search,

then she e¤ectively will be interested only in her local brand and another randomly chosen

brand even if other brands are also desirable.11

The purpose of the restriction is to assure the existence of a symmetric pure strategy

equilibrium in prices with a minimum of fuss. For example, suppose alternatively that

consumer (li; xi) valued equally all varieties other than variety i. Then there would be a

discontinuity in �rm i�s demand curve that would undermine a pure strategy equilibrium.

There are various ways to extend the model to relax the assumption and still deal with

the existence problem. For example, suppose that each consumer has a randomly selected

third preferred brand valued at v3 < v�1, fourth preferred brand valued at v4 � v3, and so

on. Consumer (li; xi) travels distance (1�xi) to purchase any of these lower-ranked brands,

the same as if she purchases her second preferred brand. This formulation is similar to

the model of Deneckere and Rothchild (1992), except that here the intensity of consumer
11 In their symmetric random utility model, Perlo¤ and Salop (1985) have also suggested that consumers

may have imperfect information about the availability of competing brands, which can lead to a situation

where every �rm competes with every �rm else but for di¤erent consumers, as in the spokes model here.
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preferences over di¤erent brands is heterogeneous. If v3 < p�, where p� is the equilibrium

price, then the consumer only cares about two varieties in equilibrium, and all of our results

remain true.

3. PRICE

Given the symmetry of the model, we focus on symmetric Bertrand-Nash (pure strategy)

equilibria in which all �rms set the same price p�, serve an equal number of consumers q�,

and earn the same amount of pro�t �� = p�q� (recalling cost is normalized to zero): We

assume:

1 � v � 2N � 1
n� 1 +

1

2

2N � n� 1
N � n � �v(N;n): (2)

If v > �v(N;n), then a symmetric pure strategy equilibrium does not exist;12 and, if v < 1,

then �rms e¤ectively are independent monopolists. The equilibrium price is a continuous

function of v; corresponding to four regions of the assumed parameter space. The regions

are distinguished by the prevailing pattern of consumer demand, in particular, the extent to

which consumers whose desired brands are available actually make a purchase and obtain

a positive surplus in equilibrium. We have:

Proposition 1 The spokes model has a unique symmetric equilibrium. The equilibrium

price is

p� =

8>>>>>><>>>>>>:

2N�n�1
n�1 if 2N�1n�1 < v � �v(N;n) (Region I)

v � 1 if 2 � v � 2N�1n�1 (Region II)
2(N�n)v+(n�1)

4N�3n�1 if 1
2 +

N�1
2N�n�1 < v < 2 (Region III)

v � 1
2 if 1 � v � 1

2 +
N�1

2N�n�1 (Region IV)

: (3)

The proof of Proposition 1 is in the Appendix. Figure 1 illustrates how p� depends on

v over the four regions. Region I corresponds to "normal" oligopoly competition. All

consumers whose desired brands are available purchase and enjoy a strictly positive sur-

plus in equilibrium. Price is forced down by competition for consumers with a �rst and

12For any given N � 3; �v(N;n) is a convex function of n and reaches its minimum at n = 2N+1
3
; and thus

�v(N;n) � �v(N; 2N+1
3
) = 5: Notice also that �v(N;n) =1 when n = N:
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second choice of available brands. Consequently, p� depends on n and N , but not on

v. In Region II, �rms focus on monopolizing consumers who lack a second choice. All

consumers whose desired brands are available again purchase, but the marginal consumer

is indi¤erent between purchasing her second desired brand and purchasing nothing. Thus

each �rm�s demand curve has a kink at p� = v � 1, which fully extracts the surplus of

the marginal consumer, and therefore rises linearly with v. In Region III, �rms sell to both

consumers who have a choice (the duopoly submarket) and those who do not (the monopoly

submarket). The marginal consumer in the duopoly submarket is indi¤erent between two

available varieties and gains a strictly positive surplus, while the marginal consumer in the

monopoly submarket is indi¤erent between purchasing her second preferred variety and not

purchasing at all. An increase in v motivates each �rm to raise price in order to further

exploit consumers in the monopoly submarket, and thus p� rises with v: This region has

the unusual property that equilibrium demand is more elastic in the monopoly submarket,

implying that price increases with entry, as discussed further below. Finally, Region IV cor-

responds to a di¤erent kind of "kinked" equilibrium. All consumers whose �rst preferred

variety is available, and only these consumers, purchase the product, with the marginal

consumer indi¤erent between purchasing and not. Again p� does not depend on n and N ,

and increases linearly with v.

[Insert Figure 1 about here]

The e¤ects of market structure on equilibrium prices follow easily from Proposition 1:

Corollary 1

dp�

dn
=

8>>>>>><>>>>>>:

�2 N�1
(n�1)2 < 0 if Region I

0 if Region II

2 (N�1)(2�v)
(3n�4N+1)2 > 0 if Region III

0 if Region IV

: (4)

A change in market concentration has a mixed e¤ect on price across the regions of the

parameter space: it is weakly decreasing in n for v � 2 but weakly increasing in n for
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v < 2. In Region I, where v is high, an increase in n has the familiar e¤ect of lowering

equilibrium prices, due to increased competition. For Regions II and IV, where the demand

is kinked, p� is una¤ected by the small changes in n, due to a discontinuity in the marginal

pro�t function. What is most surprising is that p� is strictly increasing in n in Region III:

This is very di¤erent from the result in the circle model. While there are other oligopoly

models in which price rises with more �rms, these models rely either on imperfect consumer

information (e.g., Satterthwaite, 1979; Schulz and Stahl, 1996; and Stiglitz, 1987) or on

mixed strategy equilibrium in prices (e.g., Rosenthal, 1980). Our striking result is obtained

under complete information and with pure strategies, and it has a novel economic intuition:

In Region III of parameter values, each �rm continues to sell to two segments of consumers,

those it competes for against other �rms (the competitive segment) and those for whom

it provides the only desirable variety (the monopoly segment). It turns out, however,

that demand is more elastic for the monopoly segment than for the competitive segment.

This property is due to the fact that, as the �rm lowers its price, the marginal consumer

in the monopoly segment always has zero surplus from the alternative (not purchasing)

while the marginal consumer in the competitive segment becomes increasingly attracted to

the alternative (closer to the competing brands). As the number of �rms becomes higher,

the monopoly segment shrinks and the competitive segment expands, reducing the overall

demand elasticity. This leads to a higher market price.

It is also interesting that changes in n can change equilibrium prices by changing the

nature of the equilibrium, i.e. by shifting the equilibrium from one region to another. For

instance, an increase in n can shift the equilibrium from Region II to Region I, decreasing

the equilibrium price from v � 1 to 2N�1n�1 � 1. On the other hand, an increase in n can

shift the equilibrium from Region IV to Region III, resulting in a higher price.13

If an increase in n leads to lower prices, then it bene�ts consumers. On the other hand,

an increase in n that leads to higher prices does not necessarily mean consumers are worse

13 If unit transportation cost t were not normalized to 1, the equilibrium price would be v� t in Region II

and v � t
2
in Region IV, and an increase in t would lower price in these two regions. This "perverse" e¤ect

of t in kinked equilibria is similar to that of the circle model (Salop, 1979).
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o¤, because it also increases the available product varieties, which has the positive market

expansion and matching e¤ects. Generally, an increase in n a¤ects consumers in three ways:

� Market expansion e¤ect: An increase in available varieties enables some consumers

whose desired brands were previously unavailable to obtain a positive surplus.

� Price e¤ect: Depending on the value of v; an increase in n can either reduce, increase

or have no e¤ect on equilibrium prices.

� Matching e¤ect: Some consumers previously consuming their second choice, are able

to consumer their �rst choice.

Equilibrium pro�t is calculated easily from Proposition 1 and equilibrium demand:

Corollary 2 The pro�t of each �rm at the unique symmetric equilibrium is:

�� =

8>>>>>><>>>>>>:

(2N�n�1)2
(n�1)(N�1)N if Region I

(v � 1) 2N�n�1(N�1)N if Region II
(2(N�n)v+(n�1))2(2N�n�1)

(4N�3n�1)2(N�1)N if Region III�
v � 1

2

�
1
N if Region IV

: (5)

Furthermore, �� decreases in n for v � 2 (Regions I and II); but �� may either decrease or

increase in n if 12 +
N�1

2N�n�1 < v < 2 (Region III).

The unusual result that pro�ts can be non-monotonic in the number of �rms is a conse-

quence of price-increasing entry. In Region III, an increase in n raises equilibrium price,

but reduces each �rm�s output since some consumers switch to purchase from new entrants.

If v is relatively large in Region III, then each �rm sells to most consumers in its monopoly

submarkets. Consequently, the �rm experiences a large decrease in output when an increase

in n converts some of these submarkets to duopolies, even though price increases, and ��

decreases in n: But if v is relatively small, the output e¤ect dominates when n is small and

the price e¤ect dominates when n is large, resulting in a U-shaped curve, as demonstrated

with the following example:
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Example 1 Assume N = 20 and v = 3
2 . Then, for n < N ,

1
2 +

N�1
2N�n�1 < v < 2; and

�� =
(2 (N � n) v + (n� 1))2 (2N � n� 1)

(4N � 3n� 1)2 (N � 1)N
=
(2n� 59)2 (39� n)
380 (3n� 79)2

.

Thus,
@��

@n
=

�
6n2 � 297n+ 3179

�
(2n� 59)

380 (79� 3n)3
;

and �� (n) is convex because

@2��

@n2
=
19 (275� 9n)
10 (3n� 79)4

> 0:

Since @��

@n = 0 when n = 15: 654; which is the solution to

6n2 � 297n+ 3179 = 0;

�� decreases for n � 15 and increases for n � 16:

4. VARIETY

The performance of markets under product di¤erentiation depends not only on the equi-

librium price, but also on the variety of products available in the market. The spokes model

o¤ers an interesting setting to investigate the issue of whether and how the variety provided

by the market in equilibrium di¤ers from the socially optimal level. Unlike the circle model,

the spokes model has the desirable feature that as the number of �rms increases, the sym-

metry of the model is maintained without the need to change the locations of the incumbent

�rms. In addition, there is a market expansion e¤ect with the entry of new �rms, namely

some consumes who were not purchasers before will now consume the product, which is

not present in the circle model or in the representative consumer model. Furthermore, the

e¤ect of entry or exit on market performance depends on the relationships between v, N ,

and n�; the equilibrium number of �rms (as determined by �xed cost).

Suppose that there are many identical potential �rms who can enter to produce a brand

by incurring a �xed entry cost f > 0. If n �rms enter, then each earns pro�ts �� (n) as

characterized in Corollary 2. In a "free entry equilibrim", there are n� active �rms satisfying

�� (n�) � f � �� (n� + 1)

13



if n� < N , or �� (n�) � f if n� = N .

We separately consider two cases. Case A corresponds to combined Regions I and II of

the parameter space, and Case B to Regions III and IV. For convenience we sometimes

treat n as a continuous variable, in which case we use the notation [n]� to denote the largest

integer smaller than n, and [n]+ the smallest integer larger than n.

The reader can skip to Section 5 on monopolistic competition without much loss of

continuity. Monopolistic competition provides a simpler framework for evaluating free-

entry equilibria, with similar results.

4.1 Case A: 2 � v � �v(N;n�):

We assume that
1

2
� fN � 2N � 3

N � 1 (v � 1): (6)

The �rst inequality in this assumption ensures that the constraint n � N is not binding for

the socially optimal number of �rms, and the second inequality ensures that a free-entry

equilibrium can support at least two active �rms (see Lemma 1 in the appendix).

By Corollary 2, �� decreases in n for the relevant parameter space for Case A. Therefore

if ~n � 2 satis�es

�� (~n) = f;

then the unique free-entry equilibrium has

n� = [~n]�

�rms.

In order to characterize the free entry equilibrium further, we need some additional no-

tation. De�ne

n̂ = 1 + 2
N � 1
v

;

f̂ =
(2N � n̂� 1)2

(n̂� 1) (N � 1)N :

14



Then n̂ is the critical value of n that divides the parameter space between Region I and II,

and f̂ is the corresponding value of f de�ned by the zero pro�t condition at this boundary

point. Substituting n̂ into f̂ ; we obtain

f̂ =

�
2N �

�
1 + 2N�1v

�
� 1
�2�

1 + 2N�1v � 1
�
(N � 1)N

= 2
(v � 1)2

Nv
:

Thus f̂N > 1 if v > 2. For fN � f̂N , Region I is relevant, and for 1
2 � fN < 1 the

constraint n � N will be binding and hence n� = N ; for 1 � fN � f̂N the zero pro�t

condition is satis�ed at

n1 = 2N � 1� N � 1
2

�p
fN (fN + 8)� fN

�
: (7)

Similarly, the zero pro�t condition in Region II is satis�ed at

n2 = 2N � 1� fN (N � 1)
v � 1 : (8)

The next proposition, which provides a complete characterization of n� and is proved for-

mally in the appendix, establishes that Region I is the relevant region of the parameter

space at a free-entry equilibrium for lower values of f , and Region II is relevant for higher

values.

Proposition 2 The number of �rms in a free-entry equilibrium is

n� =

8>>><>>>:
N if 1

2 � fN < 1

[n1]
� if 1 � fN � f̂N

[n2]
� if f̂N < fN � 2N�3

N�1 (v � 1)

; (9)

assuming 2 � v � �v(N;n�).

We next compare the free-entry number of �rms with the number that maximizes social

surplus (social welfare), no. Since 2 � v � �v(N;n�); all consumers whose desired brands

are available are served in a free-entry equilibrium. This means that social surplus cannot

be increased by changing �rms�prices, and any potential distortion in a market equilibrium

comes from the possible distortion in the number of �rms.
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Accordingly, we compute the socially optimal number of �rms under the assumption that

available brands are allocated to consumers e¢ ciently. With n �rms, consumers on the n

spokes receive their most preferred variety, and generate social surplus equal to

2n

N

Z 1
2

0
(v � x) dx = n

N

�
v � 1

4

�
;

where 2
N is the consumer density on each spoke. For consumers on the remaining (N � n)

spokes, whose �rst preferred variety is unavailable, each consumer is served by each of the

n �rms with probability 1
N�1 . Thus, the social surplus from serving all these consumers is

2n

N

N � n
N � 1

Z 1

1
2

(v � x) dx = n

N

N � n
N � 1

�
v � 3

4

�
:

Adding up, the social welfare with n �rms is:

W (n) =
(4 (N � n) v + 4 (N � 1) (v � 1) + 3 (n� 1))n

4 (N � 1)N � fn:

We have:

W 0(n) = �4v � 1 + 4N � 8Nv � 6n+ 8nv
4 (N � 1)N � f

and

W 00(n) = � (4v � 3)
2 (N � 1)N < 0:

Thus, ignoring integer constraints, the optimal n solves W 0(n) = 0, i.e.

nw =
2N � 1
2

� (2fN � 1) (N � 1)
4v � 3 : (10)

We note that nw < N when fN � 1
2 : Furthermore, it is straightforward that n

w > 1 if

v � 2 and N � 2. If nw happens to be integer, then no = nw is the socially optimal number

of �rms. Otherwise, either no = [nw]� or no = [nw]+ by the concavity of W (n).

The following table calculates pairs of (n�; no) for various parameter con�gurations. An

entry of "X" indicates that either n� or no is less than 2.

TABLE 1: Equilibrium vs. socially optimal number of �rms: (n�; no)
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fN = 1 1:5 2 3 4 5 6 7 7.58

N v = 2 10, 8 5, 6 X, 4 X, X X, X X, X X, X X, X X, X

= v = 3 10, 9 8, 8 7, 7 5, 5 X, 3 X, X X, X X, X X, X

10 v = 4 10, 9 8, 8 7, 7 6, 6 5, 5 4, 3 X, 2 X, X X, X

v = 5 10, 9 8, 8 7, 8 6, 7 5, 6 5, 5 4, 4 3, 3 X, 2

N v = 2 15, 12 8, 9 X, X X, X X, X X, X X, X X, X X, X

= v = 3 15, 13 13, 11 11, 10 8, 7 X, 4 X, X X, X X, X X, X

15 v = 4 15, 13 13, 12 11, 11 9, 9 8, 7 5, 5 X, 3 X, X X, X

v = 5 15, 14 13, 13 11, 12 9, 10 8, 9 7, 6 6, 5 4, 4 2, 3

N v = 2 20, 16 10, 12 X, 8 X, X X, X X, X X, X X, X X, X

= v = 3 20, 17 17, 15 15, 13 10, 9 X, 5 X, X X, X X, X X, X

20 v = 4 20, 18 17, 17 15, 15 12, 12 11, 9 7, 6 X, 3 X, X X, X

v = 5 20, 18 17, 17 15, 16 12, 14 11, 12 9, 9 6, 5 4, 4 2, 4

The table has several noteworthy features.

� First and foremost, the socially optimal number of �rms can be greater than, equal

to, or less than the equilibrium number depending on parameter values.

� Second, free entry tends to be excessive when fN is small14, and de�cient when fN is

large.15 The entry of an additional �rm has the negative externality of reducing each

incumbent �rm�s pro�t, but also has the positive externality of increasing consumer

surplus through the market expansion and the matching e¤ects. For given N; fN

being small or large is the same as f being small or large. Thus, when f is small,

the negative externality on pro�ts is more likely to dominate; otherwise, the positive

externality from the market expansion and matching e¤ects tends to dominate.

� Third, the relationship between n� and no is not monotonic in fN (or in f for �xed

N): It can be readily veri�ed that n1 � nw is U-shaped as fN increases, and n2 � nw
14A su¢ cient condition for n� > no is 1

2N
< f � 1:

15When fN = 2N�3
N�1 (v � 1) ; n2 = 2 but n

w > 2 if in addition v < N
2
+ 1

8
: Notice that in Table 1 v < N

2
+ 1

8

since N � 10 and v � 5:
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decreases as fN increases. Therefore, when fN is small and the equilibrium falls

within Region I, n� > no initially but the opposite can be true for some intermediate

values of fN:

� Fourth, for the same N and fN; as v increases, n� remains the same if the nature

of equilibrium does not change but can increase if the equilibrium switches from

Region II to Region I; and no weakly increases. As a result, it is possible that the

entry equilibrium changes from being excessive to being de�cient, or vice versa, as v

increases.

4.2 Case B: 1 � v < 2

Case B combines Regions III and IV. Recall from Section 3 that

�� (n) =

8<:
(2(N�n)v+(n�1))2(2N�n�1)

(4N�3n�1)2(N�1)N if 1
2 +

N�1
2N�n�1 < v < 2 (Region III)�

v � 1
2

�
1
N if 1 � v � 1

2 +
N�1

2N�n�1 (Region IV)
;

and �� (n) is continuous: Notice that 12 +
N�1

2N�n�1 2 (1;
3
2 ] increases in n and is equal to

3
2

when n = N: Thus, if v 2 [1; 32); as n increases from 2 to N; it is possible that the relevant

region for �� is �rst in Region III and then in Region IV. If v � 3
2 ; the relevant region for

�� is always Region III.

The analysis of free-entry equilibria for this case is complicated by the possibility of

multiple equilibria, due to the possibility that �� is U-shaped in n in Region III. For given

f > 0 that is not too large; n� is a free-entry equilibrium if it satis�es one of the two

conditions below:

1. �� (�) is decreasing; and �� (n�) � f � �� (n� + 1) for n� < N; or �� (n�) � f for

n� = N:

2. �� (z) = f for some z � N and �� (n) is weakly increasing for n � z with

n� = argmax f�� (n)� fn : z � n � Ng :

18



Obviously, if �� (n) is non-monotonic in n; both conditions can potentially be satis�ed

by di¤erent values of n�.

Since in equilibrium not all consumers are served, the prices in the market equilibrium

are not e¢ cient. This complicates the determination of the socially optimal number of

varieties; since one needs to consider whether prices are set e¢ ciently (at marginal cost).

Suppose that a social planner sets the price e¢ ciently, then the socially optimal (the �rst-

best) number of varieties is the same as before and is no = [nw]� or [nw]+ ; where nw is

given by equation (10) earlier.

Suppose next that the social planner can regulate entry but not �rm prices (i.e., the

second-best solution). Then with n �rms, consumers on the n spokes receive their most

preferred variety, and generate social surplus equal to

2n

N

Z 1
2

0
(v � x) dx = n

N

�
v � 1

4

�
:

For consumers on the remaining (N � n) spokes, whose �rst preferred variety is unavailable,

if the parameter values are in Region III, then (v � p�) consumers on each of the (N � n)

spokes is served by each of the n �rms with probability 1
N�1 ; and the social surplus from

serving all these consumers is

2n

N

N � n
N � 1

Z v� 2(N�n)v+(n�1)
4N�3n�1

1
2

(v � x) dx

=
1

4

(4N � n+ 2v � 4Nv + 2nv � 3) (4N � 5n+ 2v � 12Nv + 10nv + 1) (N � n)n
(3n� 4N + 1)2 (N � 1)N

:

If, on the other hand, the parameter values are in Region IV, then none of the consumers

on the (N � n) spokes is served.

Adding up, the second-best social welfare with n �rms is:

~W (n) =

8>>><>>>:
n
N

�
v � 1

4

�
� fn+

1
4
(4N�n+2v�4Nv+2nv�3)(4N�5n+2v�12Nv+10nv+1)(N�n)n

(3n�4N+1)2(N�1)N

if 1
2 +

N�1
2N�n�1 < v < 2

n
N

�
v � 1

4

�
� fn if 1 � v � 1

2 +
N�1

2N�n�1

:

(11)
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The second-best number of varieties is integer ~no that maximizes ~W (n); and ~no can be

computed numerically.

In Table 2, we list for selected parameter values the equilibrium number of �rms, the

�rst-best number of �rms, and the second-best number of �rms, (n�; no; ~no) : When n� can

take multiple values, the vector of n� is entered. A number that is less than 2 is denoted

with �X�.

TABLE 2: Equilibrium vs. Socially Optimal Number of Firms: (n�; no; ~no)

fN = 0:74 0:76 0:96 1:1 1:2 1:4

N v = 5
4

4

10
; 7, 10 2, 7, 10 X, 5, 4 X, 4, 2 X, 3, X X, X, X

= v = 6
4 10, 8, 10 8, 8, 10

5

10
; 7, 10 X, 6, 10 X, 5, 10 X, 4, X

10 v = 7
4 10, 8, 10 10, 8, 10 10, 7, 10 7, 7, 10 5, 6, 10 2, 5, 10

N v = 5
4

5

15
, 11, 15

3

15
, 11, 15 X, 8, 6 X, 6, 2 X, 5, X X, 2, X

= v = 6
4 15, 12, 15 15, 12, 15

8

15
; 10, 15 X, 9, 9 X, 8, 7 X, 6, 4

15 v = 7
4 15, 13, 15 15, 13, 15 15, 11, 12 10, 10, 11 8, 10, 10 3, 8, 8

N v = 5
4

7

20
; 15, 20 3, 15, 20 X, 11, 8 X, 8, 3 X, 6, X X, 2, X

= v = 6
4 20, 16, 20 20, 16, 20

10

20
; 14, 20 2, 12, 12 X, 11, 10 X, 8, 6

20 v = 7
4 20, 17, 20 20, 17, 20 20, 15, 17 14, 14, 15 10, 13, 13 4, 11, 11

Table 2 has the following notable features:

� The socially optimal number of �rms, whether in the sense of �rst- or second-best, can

be greater than, equal to, or less than the equilibrium number depending on parameter

values. This can happen whether or not the free entry equilibrium is unique.
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� Relative to the �rst best, free entry tends to be excessive when fN is small and

de�cient when fN is large. This is similar to the result in Case A. Relative to

the second best, however, free entry tends to be de�cient except possibly for some

intermediate values of fN:

� For the same N and fN; as v increases, both n� and no weakly increase, as in Case

A; but the second best number ~no can occasionally decrease, possibly due to the fact

that price increases with n in Region III.

� If fN is relatively small and/or v is relatively large (close to 2), the second best

number of �rms tends to exceed the �rst best number; otherwise the opposite tends

to be true. This may be due to the fact that under the second best price is too high

and output is too low, which makes it more desirable to correct through more entry

if fN is relatively small and/or v is relatively large.

4.3 Discussion

Deneckere and Rothschild (1985) suggest that markets tend to provide too many varieties

under localized competition but not enough under nonlocalized competition. Our analy-

sis indicates that the relationship between the nature of competition and entry is more

complicated. In the spokes model, with nonlocalized competition, both under- and over-

provision of product varieties are possible. This can happen for di¤erent parameter values,

but sometimes also for the same parameter value due to the multiplicity of equilibria.

Our analysis further sheds light on when free entry is likely to be excessive or de�cient. In

both Case A and Case B, compared to the �rst best, free entry tends to be excessive when

fN is small and de�cient when fN is large. When entry cost is relatively low and/or post-

entry pro�t is relatively high (fN is small), the business stealing e¤ect tends to dominate the

consumer surplus e¤ect of entry associated with market expansion and improved product

matching; and otherwise the business stealing e¤ect tends to be dominated by the consumer

surplus e¤ect. Interestingly, de�cient entry can also occur here because there are multiple

equilibria and the market becomes �trapped� in a low-level equilibrium. If entry were
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sequential rather than simultaneous, then a "bandwagon" would eliminate such de�cient

entry equilibrium.

5. MONOPOLISTIC COMPETITION

We consider monopolistic competition with the spokes model by examining the limiting

behavior of the market when the number of �rms (n) is large. Since our model involves both

N and n, we need to de�ne what we mean by n ! 1: Following Hart (1985), we assume

n = kN , for a �xed parameter k 2 (0; 1], and let N !1. We interpret this to mean that,

as the number of possible varieties (N) increases, the �xed costs of market participation (f)

decline appropriately to keep the free entry number of �rms (n) in �xed proportion to N .

In order to apply the results from Proposition 1 and Corollary 2 in this limit, we assume

v�c
t 2 [1; 2k +

1
2
2�k
1�k ).

Hart (1985a, 1985b) argues that market power is key condition of true monopolistic

competition. The following proposition establishes that, in the limit, as the market becomes

unconcentrated, price in the spokes model remains bounded above zero, indicating that

�rms retain market power. Therefore, the spokes model provides a spatial representation

of monopolistic competition. In fact, the spoke model of monopolistic competition is a

special case of Hart�s general model (Hart, 1985a).

Proposition 3 If n = kN and N !1, then

p� !

8>>>>>><>>>>>>:

2�k
k if 2

k < v �
2
k +

1
2
2�k
1�k (Region I)

v � 1 if 2 � v � 2
k (Region II)

2(1�k)v+k
4�3k if 1

2 +
1
2�k < v < 2 (Region III)

v � 1
2 if 1 � v � 1

2 +
1
2�k (Region IV)

: (12)

As N ! 1; �� ! 0: But using Corollary 2, it is straightforward to show that ��N

converges to a positive limit.
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Corollary 3 If n = kN and N !1, then

��N ! R(v; k) �

8>>>>>><>>>>>>:

(2�k)2
k if Region I

(v � 1) (2� k) if Region II
(2(1�k)v+k)2(2�k)

(4�3k)2 if Region III�
v � 1

2

�
if Region IV

: (13)

In Regions I, II, and IV, the limiting value of ��N is decreasing in k. In Region III,

however, the limiting value of ��N is a convex function of k with a minimum at

K (v) � 1

6v � 3

�
9v �

p
3
p
12v � 5v2 � 4� 6

�
;

where K (1) = 0 and K
�
7
4

�
= 1:

In monopolistic competition the free entry zero-pro�t condition holds exactly at an inte-

rior equilibrium value of k, provided that in the limit ��N decreases in k. If n = kN in

equilibrium, then it must be that limN!1 f ! 0; and

lim
N!1

fN = R(v; k) (14)

if 0 < k < 1. This is a su¢ cient condition for a monopolistically competitive equilibrium in

Regions I, II, and IV, while Region III requires the additional condition that k < K (v) to

insure that further entry decreases pro�ts. The model also admits monopolistically com-

petitive equilibria with k = 1 and R(v; k) > limN!1 fN ; in this case, even monopolistically

competitive �rms make positive pro�ts, because there is no "room" in product space for

further entry. Our analysis below focuses only on monopolistically competitive equilibria

satisfying the zero pro�t condition (14).

We next use the zero pro�t condition to characterize the welfare properties of monopolistic

competition. Recall from Section 4 that, ignoring integer constraints, welfare optimizing

number of �rms when available products are distributed e¢ ciently to consumers is

nw =
2N � 1
2

� (2fN � 1) (N � 1)
4v � 3 : (15)

Substituting

kw =
nw

N
;
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taking limits, and imposing the zero pro�t condition yields the following comparison of the

socially optimal and equilibrium number of �rms in monopolistic competition.

Proposition 4 If �� = f , n = kN; and N !1, then

kw � k !

8>>>>>><>>>>>>:

1� k � 2(2�k)2�k
(4v�3)k in Region I

1� k � (2(v�1)(2�k)�1)
4v�3 in Region II

1� k � 2[2v�k(2v�1)]2(2�k)�(4�3k)2

(4v�3)(4�3k)2 in Region III if k < K(v)

1� k � 2(v�1)
4v�3 in Region IV

; (16)

The proposition is summarized in Figure 2. The solid lines mark the boundaries of

the four regions in (v; k), with "X" indicating regions in which a pure strategy equilibrium

does not exist in the limit. The dashed lines divide the space in regions where entry is

either de�cient (kw > k) or excessive (kw < k). Clearly, entry can be excessive or de�cient

depending on (v; k). The value of k can be interpreted as an indicator of the degree of

industry penetration in the market. The higher is k, the greater is product availability, and

the greater the fraction of consumers who obtain the good in either monopolistic competition

or a socially optimal allocation. In each of the four regions, entry has a business-stealing

and a consumer surplus e¤ect. The busines-stealing e¤ect refers to the fact that a part

of the pro�ts of a new entrant is at the expense of incumbents, and therefore does not

contribute to social welfare. The consumer surplus e¤ect aries from market expansion

and improved matching of consumers to possible varieties. Entry is excessive when the

business stealing e¤ect dominates the consumer surplus e¤ect, and conversely (Mankiw and

Whinston, 1986).

[Insert Figure 2 about here]

Figure 2 also shows that entry is de�cient in Region I when v is su¢ ciently high and a pure

strategy equilibrium exists. In this region, price is independent of v. Consequently, the

consumer surplus e¤ect dominates when v is large, and thus entry is de�cient; the opposite

is true when v is small. In the other regions, prices increase with v, eroding the consumer

surplus e¤ect. Consequently, when k is high in Regions II-IV, the business stealing e¤ect
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dominates and entry is excessive; when k is small, the business stealing e¤ect is small, and

entry is de�cient due to the dominating consumer surplus e¤ect.

We next further compare the number of �rms at the free entry equilibrium and the second-

best outcome in the limit. In a second-best outcome, the social planner can choose entry

but not prices. For Regions I and II, the number of �rms is the same at the second-best

and the �rst-best outcomes. For Regions III and IV, welfare under the second-best outcome

is ~W (n) de�ned by equation (11) in Section 4. Letting n = kN; N ! 1; and assuming

fN ! F , we have:

~W (kN)!

8<: k
h�
v � 1

4

�
+ (4�k�4v+2kv)(4�5k�12v+10kv)(1�k)

4(3k�4)2 � F
i
in Region III

k
��
v � 1

4

�
� F

�
in Region IV

:

Let ks denote the second-best level of product variety that maximizes this function. Note,

however that F = R(v; k) in a zero-pro�t equilibrium. Therefore, for a given v, we can

relate ks to the equilibrium value of k, and compare second-best and equilibrium varieties.

[Insert Figure 3 about here]

A numerical comparison is summarized in Figure 3, which "blows up" Figure 2 on the re-

stricted domain v 2 [1; 2]. The diagram demarcates Regions IV and III and indicates where

k = kw by the dashed line as before. The diagram yields several interesting observations.

First, in Region IV, ks = 1 and equilibrium product variety always is de�cient relative to the

second-best. Second, the area of Region III in which entry is excessive (ks < k) is bounded

by the dotted lines and K (v) (which is the �atter upward-slopping solid curve marking the

lower boundary of the X region); this region begins at about v = 5
3 and occupies the upper

corner of the diagram. Entry is de�cient in the rest of Region III below K (v). Finally, the

second-best and the �rst-best varieties are not always directly comparable on the diagram,

but the second-best variety clearly exceeds the �rst-best variety in Region IV and in part

of Region III between the dashed and dotted lines where kw < k < ks.
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6. CONCLUDING REMARKS

This paper has developed and analyzed a new spatial model of product di¤erentiation.

By extending the classical Hotelling duopoly to an oligopoly with nonlocalized competition

and an arbitrary number of possible varieties and �rms, the spokes model provides an

attractive new tool for oligopoly analysis, as well as a representation of spatial monopolistic

competition. In the spokes model, the symmetry between �rms is maintained as new �rms

enter the market, without the need to relocate the incumbents in the preference space.

Every brand (�rm) competes directly with all other brands (�rms), and both the number of

buyers and industry output depend on prices and the number of �rms. A unique symmetric

(pure-strategy) equilibrium exists, and the nature of this equilibrium di¤ers for di¤erent

regions of the parameter space.

Analysis of the spokes model yields novel and interesting results on price and variety

under product di¤erentiation. In particular, an increase in the number of �rms leads to

lower prices when consumers have a relatively high willingness-to-pay for preferred varieties,

but, surprisingly, to higher prices for lower consumer valuations. The entry of new �rms

a¤ects consumers with the positive market expansion and matching e¤ects, in addition to

the possibly either positive or negative price e¤ect; and each �rm�s pro�t can depend on the

number of �rms non-monotonically within some range, �rst decreasing and then increasing.

With free entry, the market may provide either too many or too few varieties, and there

can be multiple equilibria in the number of �rms. Finally, when the number of �rms

and of potential product varieties both approach in�nity, equilibrium price remains above

marginal cost, and thus the spokes model provides a representation of spatial monopolistic

competition.

As a tool for oligopoly analysis under nonlocalized competition, appropriate extensions of

the spokes model of product di¤erentiation have many possible applications in economics.

For instance, the model provides an attractive framework to study �rms� incentives to

o¤er multiple products and the competition between multi-product �rms. In particular,

the model can address questions such as how market concentration a¤ects the provision
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of product varieties by multiproduct �rms, and how horizontal or vertical mergers a¤ect

competition and consumers. The spokes model can also be used to study how market

structure a¤ects �rms�innovation incentives, for instance, whether a larger �rm or �rms in

more concentrated markets have greater incentives to innovate. Furthermore, the spokes

model is well suited for analyzing product choices by multiple �rms, if �rm locations on the

network are determined endogenously. For some of these applications it would be necessary

to modify the symmetric spokes model to introduce asymmetric �rms.
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APPENDIX

The proofs for Proposition 1 and 2 follow.

Proof of Proposition 1. We consider in turn the four regions of parameter values. For

each region, we construct a symmetric equilibrium where the equilibrium price satis�es a

unique property that can hold only in the assumed region of parameter values, and any

other price can be a symmetric equilibrium only in a di¤erent region of parameter values.

The (symmetric) equilibrium is thus also unique.

Region I: Suppose that for this parameter region a symmetric equilibrium price satis�es

v > p� + 1:

Then the demand facing �rm j is

qj =
1

N

n� 1
N � 1 (1 + p

� � pj) +
N � n
N � 1

2

N

for prices pj in the neighborhood of p�. The corresponding pro�t of �rm j is �j = pjqj ;

and, �rm j0s �rst-order condition for pro�t maximization is

qj � pj
1

N

n� 1
N � 1 = 0:

Therefore, at a symmetric equilibrium,

p� = 1 + 2
N � 1
n� 1 :

It is straightforward that the second-order condition is satis�ed and that p� is a local

maximum. Firm j0s output and pro�t at the proposed equilibrium are

q� =
2N � n� 1
(N � 1)N ; �� =

(2N � n� 1)2

(n� 1) (N � 1)N :
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The requirement that v > p� + 1 is satis�ed if and only if v > N�1
n�1 2:

Finally, it is necessary to verify that a �rm has no incentive to deviate globally. At the

candidate equilibrium, the second-order condition is satis�ed for pj � p�+1. Furthermore,

for v� 1 � pj > p� + 1; demand is perfectly inelastic and pro�t is increasing in pj , and, for

pj � v � 1, �rm j0s pro�ts are declining if v � 2. Therefore, the possibly most pro�table

deviation is pj = v � 1, the pro�ts from which are � = (v � 1)N�nN�1
2
N : The deviation is not

pro�table if � � ��, i.e.

(v � 1)N � n
N � 1

2

N
� (2N � n� 1)2

(n� 1) (N � 1)N ;

which holds if and only if

v � 1 + (2N � n� 1)2

2 (N � n) (n� 1) = 2
N � 1
n� 1 +

1

2

2N � n� 1
N � n � �v(N;n):

Thus p� = 1 + 2N�1n�1 is indeed a symmetric equilibrium in Region I, and it is the only

symmetric equilibrium with the property that v > p� + 1.

Region II : Suppose that for this parameter region a symmetric equilibrium price satis�es

p� = v � 1: Then

qj =

8<:
2
N

h
1

N�1
P
k 6=j; k2f1;:::;ng

�
1
2 +

p��pj
2

�
+ N�n

N�1 (v � pj)
i
if pj is slightly above v � 1

2
N

h
1

N�1
P
k 6=i; k2f1;:::;ng

�
1
2 +

p��pj
2

�
+ N�n

N�1

i
if pj is slightly below v � 1

:

In other words, the demand for �rm j has a kink at pj = v � t:

In order for p� = v � 1 to be an equilibrium, a slight increase of pj at p� should not

increase pro�t, i.e.

qj + pj
@qj
@pj

=
2

N

�
1

2

n� 1
N � 1 +

N � n
N � 1

�
� (v � 1) 2

N

�
1

2

n� 1
N � 1 +

N � n
N � 1

�
= � 2

N

�
1

2

n� 1
N � 1 +

N � n
N � 1

�
(v � 2) � 0;

which holds if and only if v � 2: Also, a slight decrease of pj at p� should not increase pro�t,

i.e.

qj + pj
@qj
@pj

=
2

N

��
1

2

n� 1
N � 1 +

N � n
N � 1

�
� (v � 1)

�
1

2

n� 1
N � 1

��
=

2

N

�
n� 1
N � 1

��
N � n
n� 1 �

1

2
(v � 2)

�
� 0;
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which holds if and only if v � 2N�1n�1 :Therefore p
� is a local maximum. To show that p� is

also globally optimal, it su¢ ces if �rm j cannot bene�t from any deviation to pj < v�1: But

since the second-order condition is satis�ed for pj < v � 1 (any kink of the pro�t function

makes it more concave); no global deviation can be pro�table.

Thus p� = v � 1 is indeed a symmetric equilibrium in Region II.

Region III : Suppose that the symmetric equilibrium price p� is such that

1

2
< v � p� < 1;

so that

qj =
2

N

24 1

N � 1
X

k 6=j; k2f1;:::;ng

�
1

2
+
p� � pj
2

�
+
N � n
N � 1 (v � pj)

35 ;
@qj
@pj

= � 2
N

�
1

2

n� 1
N � 1 +

N � n
N � 1

�
:

The �rst-order condition for �rm j is

qj � pj
2

N

�
1

2

n� 1
N � 1 +

N � n
N � 1

�
= 0:

At a symmetric equilibrium

2

N

�
1

2

n� 1
N � 1 +

N � n
N � 1 (v � p

�)�
�
1

2

n� 1
N � 1 +

N � n
N � 1

�
p�
�
= 0;

which simpli�es to

1

2

n� 1
N � 1 +

N � n
N � 1 (v � p

�)�
�
1

2

n� 1
N � 1 +

N � n
N � 1

�
p�

=
1

2

n� 1
N � 1 +

N � n
N � 1 v �

4N � 3n� 1
2 (N � 1) p� = 0;

or

p� =
2 (N � n) v + (n� 1)

4N � 3n� 1 ;

and p� is a local maximum since the second order condition is satis�ed at p�. Furthermore,

since

v � p� = v � n� 1
4N � 3n� 1 �

2 (N � n)
4N � 3n� 1v

=

�
1� 2 (N � n)

4N � 3n� 1

�
v � n� 1

4N � 3n� 1 =
�
2N � n� 1
4N � 3n� 1

� �
v � n� 1

2N � n� 1

�
>

�
2N � n� 1
4N � 3n� 1

� �
1

2
+

N � 1
2N � n� 1 �

n� 1
2N � n� 1

�
=
1

2
;
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and

v � p� = v � 2 (N � n) v + (n� 1)
4N � 3n� 1

=
v (2N � n� 1)� (n� 1)

4N � 3n� 1 <
2 (2N � n� 1)� (n� 1)

4N � 3n� 1 = 1;

p� indeed satis�es 12 < v � p
� < 1: Finally, to verify that p� is also globally optimal, notice

that, since v�1 < p� < v� 1
2 ; it su¢ ces if any deviation to any p < p

� cannot be pro�table.

But since the second-order condition is satis�ed for p < p�; no global deviation can be

pro�table. Thus p� is indeed a symmetric equilibrium in Region III.

Region IV : Suppose p� = v � t
2 : Then

qj =

8<:
2
N (v � pj) if p is slightly above p�

2
N

1
N�1

P
k 6=i; k2f1;:::;ng

�
1
2 +

p��pj
2

�
+ 2

N
N�n
N�1 (v � pj) if p is slightly below p�

:

In order for p�to be an equilibrium, a slight increase of pj at p� should not increase pro�t,

i.e.

qj � (pj � c)
2

N
=
1

N
�
�
v � 1

2

�
2

N
� 0;

which holds if and only if v � 1:Also, a slight decrease of pj at p� should not increase pro�t,

i.e.

qj � (pj � c)
2

N

�
1

2

n� 1
N � 1 +

N � n
N � 1

�
=
2

N

�
1

2
�
�
v � 1

2

��
1

2

n� 1
N � 1 +

N � n
N � 1

��
=

2

N

�
1

2
�
�
v � 1

2

��
1� 1

2

n� 1
N � 1

��
� 0;

which holds if and only if v � 1
2 +

N�1
2N�n�1 :Therefore, p

� is a local optimum for �rm j; and,

since the second-order condition is satis�ed for both p < v � 1
2 and p > v �

1
2 ; it is also a

global optimum.

To prove that the equilibrium is unique, suppose that there is another symmetric equi-

librium, ~p; in some region, say Region I. Then v � ~p + 1: If v � ~p = 1; then ~p can be a

symmetric equilibrium only in Region II; if 12 < v � ~p < 1; then ~p can be a symmetric

equilibrium only in Region III; and if 12 = v � ~p; then ~p can be a symmetric equilibrium

only in Region IV. This is a contradiction. Thus there is no other symmetric equilibrium

in Region I. The arguments for the other regions are similar. Q.E.D.
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Proof of Proposition 2. We �rst establish the following lemma:

Lemma 1 Assume 2 � v � �v(N;n�). Then (i) n1 � 2 and n2 � 2; (ii) if fN � 1; then

n1 � N and n2 � N ; and (iii) if 1 < fN; then n1 < N:

Proof. (i) First, since 1
2 < fN � 2N�3

N�1 (v � 1); we have

n2 � 2 = 2N � 3� fN (N � 1)
v � 1 � 2N � 3� (2N � 3) = 0:

Thus if fN is su¢ ciently large, the equilibrium will be in Region II. Hence

f̂N =
2 (v � 1)2

v
� 2N � 3
N � 1 (v � 1);

and it follows that v � 2 (N � 1) :

Next, since
p
fN (fN + 8)� fN increases in fN; and fN � f̂N = 2(v�1)2

v in Region I;

we have

n1 � 2 = 2N � 3� N � 1
2

�p
fN (fN + 8)� fN

�
� 2N � 3� N � 1

2

0@
vuut2 (v � 1)2

v

 
2 (v � 1)2

v
+ 8

!
� 2 (v � 1)

2

v

1A
= 2N � 3� N � 1

2

�
4
v � 1
v

�
=
2 (N � 1)� v

v
� 0:

(ii) If fN � 1;

n1 = 2N � 1� N � 1
2

�p
fN (fN + 8)� fN

�
� 2N � 1� N � 1

2

�p
(1 + 8)� 1

�
= 2N � 1� (N � 1) = N;

and

n2 = 2N � 1� fN (N � 1)
v � 1 � 2N � 1� (N � 1)

v � 1 � 2N � 1� (N � 1) = N:

(iii) If 1 < fN;

n1 = 2N � 1� N � 1
2

�p
fN (fN + 8)� fN

�
< 2N � 1� N � 1

2

�p
1 (1 + 8)� 1

�
= N:
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Q.E.D.

Note that f̂N = 2(v�1)2
v � 1. We can now provide a complete characterization of the

equilibrium number(s) of �rms. First, if 12 < fN � 1; then n1 = n2 = N from Part (ii) of

Lemma 1: Thus n� = N �rms will enter the market and earn non-negative pro�ts. This is

the only equilibrium since no additional �rm can enter due to the constraint that n � N:

Next, if 1
N < f � f̂ ; we have

n1 � n̂ and thus 2
N � 1
n1 � 1

� v:

Therefore n� = [n1]�; and, n1 < N from part (iii) of Lemma 1. Finally, if f > f̂; we have

n2 < n̂ and thus 2
N � 1
n2 � 1

> v:

Therefore n� = [n2]
�; and n2 < N since otherwise we would have 2 > v; a contradiction.

Q.E.D.
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