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Abstract

In this thesis we examine return and volatility predictability of continuous
futures contracts within the European Union Emissions Trading System (EU
ETS). The market has been active for nine years and we examine whether it
is more mature now compared to a few years ago when most existing research
was carried out. We find that autoregressive terms are now significantly
weaker compared to during the first phase of the ETS, which is seen as a sign
that the market has become more efficient. As heteroskedasticity is observed,
GARCH models are used to model and predict volatility. To predict returns,
we find that using exogenous inputs, in the form of electricity, coal, Brent
oil and gas prices, yield better results than using autoregressive terms of the
emission allowance data. Based on the results, we suggest that exogenous
variables may be used to predict the returns of carbon futures.
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1 Introduction

The EU emissions trading system (EU ETS) was launched in 2005 to combat climate

change mostly due to large emissions of carbon dioxide (CO2). Several other emission

systems provided experience prior to the launch of the EU ETS, such as the UK Emissions

Trading Scheme (UK ETS), the Danish CO2 trading program and the US sulfur dioxide

(SO2) emissions trading system. The EU ETS shows many similarities to the US system,

there are however several key differences. The ETS incorporates a much larger set of

companies, the emission reduction rate is lower, and the value of the traded allowances

of the ETS is about 8 times larger than that of the US SO2 traded allowances. (Ellerman

and Buchner, 2007).

As of 2013, more than 11 000 power generation and manufacturing firms are part of

the ETS. It covers about 45% of the participating countries greenhouse gas emissions.

The participants are spread across the 28 EU countries as well as Iceland, Lichtenstein

and Norway. As a cap and trade system the ETS sets a cap on the amount of greenhouse

gases that can be emitted. The overall goal is to lower greenhouse gases, this is done by

annually reducing the limit of allowances available on the market. From 2005 to 2020

the allowances will be reduced by 21%. Some allowances are allocated for free, while the

rest are being auctioned. In 2013 more than 40% of the allowances were auctioned, and

by 2020 the allocation of free emission allowances is supposed to stop, and the allocation

process will instead be based solely on auctioning. (European Commission, 2013).

The allowances can also be traded on the secondary market directly between partici-

pants, through a broker or on an exchange. The largest part of the traders are companies

that are obligated to own allowances because of their emissions, however a considerable

portion of the trading is driven by hedging, portfolio adjustments, profit taking and ar-

bitrage (Kossoy and Guigon, 2012).

Since the ETS is an immature market there has been many price jumps, especially during

the first two years the price fell sharply on several occasions. The drastic changes in price

was the result of over-allocation (Ellerman and Buchner, 2007). The 2005 to 2007 period

was the first phase of the ETS. The second trading period, or phase two, lasted from

2008 to 2012. During the second period the total amount of allowances was reduced by

6.5%, but because of the financial crisis the price of the emission allowances was still

lower than expected. The third phase started in 2013 and ends at the end of year 2020.

A big change from previous phases is the introduction of an overall EU cap, instead of
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individual country caps. The annual reduction rate during phase three is set to 1.74%

(European Commission, 2013).

Prediction of returns is an intriguing subject in a young and growing market such as

the ETS. As the amount of instruments (e.g. spots and different types of forward and

futures contracts) increases, traders are interested not only in long-term price behavior,

but also short-term price dynamics. Most existing literature on predicting the European

Union allowance (EUA) price and volatility use data from the first phase of the EU ETS.

Since the market was very young at the time of their research, one might suspect that

it has stabilized by now. Moreover, structural changes have occurred, and the trading

volume has significantly increased since the first phase.1 Furthermore, as seen in the

following chapter, several papers have been published on how closely related the ETS

market price is to other market fundamentals, such as various energy prices. However,

literature using exogenous factors to predict the EUA price is sparse. Hence we state two

hypotheses:

• The EU ETS market has come closer to being an efficient market and therefore the

potential of prediction has decreased.

• Including exogenous variables, such as energy related commodity prices, increases

the predictive power of our models and lead to smaller errors when predicting.

The first hypothesis will be investigated by constructing ARMA-GARCH models based

on a sample covering the second and the start of the third phase of the ETS. If our

hypothesis is true, trends might not be as prominent as earlier research, based mostly

on data from the first phase, has shown. In this case we will most likely find overall less

significant parameters, and probably smaller autoregressive coefficients in our models,

as Fama (1970) states that lack of autocorrelation indicates an efficient market. The

exogenous variables tested will be electricity, Brent oil, coal and natural gas prices, as

well as a paper price index and a stock index.

Indeed our results strengthen both of our hypotheses. We find only very small autore-

gressive terms when modeling the EUA returns. Moreover, we find that the prices of

electricity, Brent oil, coal and natural gas can be used to predict the EUA price. Doing

so decreases both the mean squared and mean absolute errors (MSE and MAE) of the

predictions, compared to using only the past EUA returns.

1In 2011, the total traded volume of EUAs were 7.9 billion tonnes CO2 or 148 billion USD (Kossoy
and Guigon, 2012), compared to 0.3 billion tonnes CO2 or 8.2 billion USD for 2005 (Capoor and Ambrosi,
2006).
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2 Related literature

The first research on the ETS, carried out around and just after its launch in 2005 focused

on finding determinants for the EUA price. Pioneering work was done by Christiansen

et al. (2005) who identified three key drivers for the market price in the ETS, these three

being policy and regulatory issues, market fundamentals, and technical indicators. Fol-

lowing this, Mansanet-Bataller et al. (2007) were the first to investigate econometrically

the relationships between energy markets and the EUA price. They found that the most

emission intensive energy variables, i.e. coal, Brent and to some extent natural gas, are

the most important ones in the determination of EUA returns. Their work was extended

by Alberola et al. (2008) who showed that the EUA price is related to the prices of Brent

oil, natural gas, coal, electricity, and energy spreads2. They also investigated the effects

of temperature on the EUA price, and the consequences of two structural breaks which

occurred during the first phase of the ETS.

Concerning technical indicators, Paolella and Taschini (2008) used an AR(1)-GARCH(1,1)

model to capture heteroskedasticity in the EUA returns. They also look at the US SO2

market, where they find an "extremely mild" autoregressive term. Benz and Trück (2009)

also worked with an AR(1)-GARCH(1,1) model, and found a large and significant au-

toregressive term for the EUA returns. They also employed a Markov regime-switching

model, which performed slightly better than the AR-GARCH model when doing out-

of-sample predictions. Other mean estimating models than the AR(1) are rarely used,

exceptions include Alberola and Chevallier (2009) who use an ARMA(1,1) model.

As the first phase of the ETS had ended, Daskalakis et al. (2009) did explicit model-

ing on the consequences of the prohibition on inter-phase banking of allowances that was

in force between the first and second phases of the ETS. They claim that this prohibition

"may have an adverse effect on market liquidity and efficiency" (p. 1231), and indeed it

is believed to have been a major reason for the price crash in 2007 (Ellerman and Joskow,

2008). For the second and all subsequent trading phases, unrestricted inter-phase bank-

ing has been allowed.

Combining exogenous variables, such as coal, Brent and natural gas, with structural

models such as the GARCH model was done by Chevallier (2009). He employed a

TGARCH(1,1) model for the variance, and used several macroeconomic and energy vari-

ables for the mean equation. However, no actual forecasting was carried out in his paper.

2Energy spreads are measures of the difference between the market price of electricity and its cost of
production, when produced using either coal (dark spread) or natural gas (spark spread).
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Using data from the second phase of the ETS, Chevallier (2011) found that the EU in-

dustrial production index does impact the EUA futures price. He also suggested the

emission allowance market to be related to Brent oil and natural gas, but not coal. How-

ever, Mansanet-Bataller et al. (2011) suggested that the EUA futures price is affected by

Brent oil, natural gas and coal. Aatola et al. (2013) further investigated determinants of

the EUA price. They found that not only energy variables, with electricity price being the

most important one, but also factors such as a stock index as well as paper and mineral

price indices impacts the price of an emission allowance. Recently, Byun and Cho (2013)

used several ARMA-GARCHX models, that is, with exogenous inputs (electricity, oil,

coal and gas prices) in the variance equation. They analyzed forecasting and concluded

that indeed electricity, coal and Brent oil prices can be used advantageously to forecast

the volatility of emission allowance prices. They also find that ARMA-GARCH models

considering more than one lag can be rejected according to Bayesian information criteria,

which is a finding in line with previous research.
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3 Methodology

In this section we explain the steps that will be carried out to obtain a model. As men-

tioned in section 2, AR-GARCH or ARMA-GARCH models are often used in modeling

and forecasting EUA prices. The GARCH part models conditional heteroskedasticity,

which is useful in financial time series since volatility clustering is often observed. For

the mean equation, an ARMAX model allows for autoregressive terms, moving average

terms, and also exogenous inputs. Hence, for this thesis we examine ARMAX-GARCH

models, which are specified in equations 1-3. We first try to find the best ARMA-GARCH

model, and then add exogenous terms.

First we need to check the data sets for stationarity, as carried out according to sec-

tion 3.1. If we can not reject non-stationarity, ARMAX-GARCH models will not be

suitable. If we have stationary time series, we construct a few ARMA models and per-

form ARCH LM tests, as described in section 3.2, and add ARCH and GARCH terms

accordingly. When we have our ARMA-GARCH models, we estimate parameters and

evaluate the models based on their Bayesian information criteria values (BIC-values) as

described in section 3.3.

When we have found our optimal ARMA-GARCH model, we introduce exogenous vari-

ables. We start with several different factors and evaluate them as specified in section

3.4. Subsequently we construct models with all possible constellations of the exogenous

variables that we have selected. We look not only at their BIC-values, but also at likeli-

hood ratio tests (see section 3.5), where we test whether the exogenous variables in each

model add any explanatory power compared to the benchmark ARMA-GARCH model.

We also perform Ljung-Box Q-tests as described in section 3.6. Finally, we do out-of-

sample predicting with our ARMAX-GARCH models, and evaluate their performances,

as described in section 3.7.

When we use ARMAX models we only look at one lag for the exogenous variables.

Hence we specify our models as ARMAX(r,m, b) models, where r denotes the number of

autoregressive terms, m the number of moving average terms, and b the amount of exoge-

nous time series. The mathematical formulation for an ARMAX(r,m, b)-GARCH(p, q)
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is

yt = c+
r∑

i=1

φiyt−i +
m∑

j=1

θjǫt−j +
b∑

k=1

ηkdk,t−1 + ǫt (1)

ǫt = utσt (2)

σ2

t = α0 +

q∑

i=1

αiǫ
2

t−i +

p∑

j=1

βjσ
2

t−j (3)

Here, equation 1 is the mean equation, equation 2 describes the residuals, and equation

3 is the conditional variance equation. yt is the return of the EUA price at time t, c

is a constant, φi is the AR parameter at lag i, θj is the MA parameter at lag j, ηk is

the parameter for the k:th exogenous dataset and dk,t−1 is the return of the exogenous

variable k at time t− 1. ǫt is the residual at time t, which is the product of ut, assumed

to be independent and identically distributed, zero mean and with unit variance and σt,

which is described by equation 3. Here α0, αi and βj are real constants, where αi is the

ARCH parameter and βj the GARCH parameter at lag i and j respectively.

3.1 Stationarity

To model our time series as an ARMA-GARCH model the series should be stationary.

The Augmented Dickey-Fuller (ADF) test checks for a unit root in the time series. If a

time series has a unit root it is non-stationary. We conduct the test without including an

intercept or trend term, which means that if the null hypothesis is true, the time series is

a random walk. The alternative hypothesis is that the series is stationary. The number

of lags is chosen by minimizing the Akaike information criterion (AIC), which is one

method suggested by, for example, Hall (1994). The other test we use is the KPSS test

(Kwiatkowski et al., 1992). Since we are not including a trend term, the null hypothesis

of the KPSS test is that the series is level stationary. The alternative hypothesis is that

it has a unit root. When we choose the number of lags we follow one of the suggestions

from Schwert (1989), who does a simulation study of unit root tests. One of the lag

lengths he advocates, and the one we use, is defined as the integer value of 4(n/100)1/4,

where n is the number of observations.

3.2 Testing for ARCH effects

Before we construct a volatility model we check the residuals of the mean equation for

ARCH effects. When looking for ARCH effects we use the Lagrange multiplier test of

Engle (1982). The test is applied to the squared residuals of the mean equation, and
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the null hypothesis is that there is no autocorrelation among them. The alternative

hypothesis is autocorrelation in the squared residuals. If the null hypothesis is rejected

we can assume that there are ARCH effects present. We use 12 as the number of lags as

is done by Tsay (2010), among others.

3.3 Likelihood function and the Bayesian information criterion

When estimating parameters in a model, one usually seeks to maximize the likelihood

function. It is often more convenient to work with the natural logarithm of the function,

i.e. the log-likelihood function (LLF), which obviously takes its optimal value for the

same parameters. The LLF will never decrease when more parameters are added, hence

selecting models solely based on their maximized LLF value might lead to an unnecessarily

complicated model. Instead the Bayesian information criterion, developed by Schwarz

(1978), is often used for model selection. The formula is

BIC = −2L̂+ k ln(n)

where L̂ is the maximized LLF value, k is the number of parameters, and n is the amount

of observations. A lower BIC value indicates a better model. The BIC is frequently used in

time series or linear regression modeling, and the literature on EUA return and volatility

prediction is no exception.3

3.4 Choosing exogenous variables

For the ARMAX models considered, we use as exogenous variables the daily returns

(lagged by one business day) of other commodities as well as macroeconomic factors. We

start by looking at six factors found to be important in determining the EUA price in

earlier studies. Those factors are electricity, coal and gas prices, a European stock mar-

ket index (we use STOXX Europe 600) and a price index for paper products, all found

significant by Aatola et al. (2013). We also use the Brent oil price, which as mentioned

in section 2 has been found significant in numerous other studies.

Since many companies covered by the ETS are producing electricity or paper, these

prices should theoretically impact the price of an EUA. For example, when the electricity

price is high, power plants want to produce a lot of electricity, for which they will need

more EUAs. The demand for emission allowances increases, and subsequently so does

3Research using BIC includes for example Paolella and Taschini (2008), Daskalakis et al. (2009), Benz
and Trück (2009) and Byun and Cho (2013).
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the price. The coal price is expected to have a negative impact on the EUA price, as

coal is a very emission intensive fuel. When coal is expensive, power plants will be less

inclined to use coal, and hence not need as many emission allowances. The opposite goes

for natural gas, as it is a fuel emitting less CO2 than coal. Therefore when natural gas

is expensive, power plants will likely switch to coal instead of natural gas, increasing the

need for emission allowances. The stock index will theoretically have a positive effect, as

high economic activity will lead to an increase in demand of EUAs. Concerning the Brent

oil price effect, most studies find that the oil price has a positive influence on the EUA

price. It remains unclear whether this should be attributed to a fuel switching effect,

as oil is a less carbon emitting fuel than coal, or rather to the correlation between the

oil price and economic activity (Rickels et al., 2010). A summary of these theory based

impacts can be found in table 1.

Variable Description Impact

Electricity End product price +
Paper End product price +
Gas Less emitting input price +
Stock index Economic activity +
Brent oil Less emitting input price and/or economic activity +
Coal More emitting input price −

Table 1: Summary of the theory based impacts of exogenous factors on the EUA price.

Note that we in our models use lagged returns of exogenous variables, so the signs of

parameters might not be consistent with the theoretical signs. Previous research con-

siders mostly non-lagged modeling, to determine price drivers. Hence, we do not know

if the lagged values of our exogenous variables are relevant in predicting the EUA re-

turns. To find out which ones that are relevant, we run the best ARMA-GARCH model

found with one exogenous variable added to the mean equation, i.e. an ARMAX(r,m,1)-

GARCH(p, q) model. We do this for each variable one by one, and reject the factors

that have a parameter which is not significant at the 5% level. The variables that pass

this test will also be checked for multicollinearity. Following Chevallier (2009), we ex-

amine the cross-correlations between the variables, and check if any two variables have

a correlation larger than 0.6 which is suggested to be a breaking point in his paper. If

so, we remove the one of them that has larger cross-correlations overall. Furthermore,

also following Chevallier (2009), we examine the variance inflation factor (VIF) for each

variable. The VIF, proposed by Marquardt (1970), is found by running OLS regressions
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for each variable as a function of the other variables, and it is specified as follows

VIFi =
1

1−R2

i

where VIFi is the variance inflation factor for the i:th variable, and R2

i is the R squared

value for the corresponding regression. The square root of the VIFi can be interpreted

as follows: It reveals how much larger the standard error is compared to what it would

have been if variable i was uncorrelated with the other variables. If VIFi is around or

above 10 then multicollinearity is high. If so, we remove the i:th variable.

3.5 Likelihood ratio test

When choosing our ARMAX model we take advantage of the likelihood ratio test to see if

our models add any explanatory power compared to the benchmark model. When adding

more parameters, as we do when allowing for exogenous inputs, the likelihood will always

increase. With this test we can determine if the added explanatory power is significant

or not. The null hypothesis of the test is that the alternative model does not fit the data

better. The formula for the test is

D = −2L̂0 + 2L̂a

where L̂0 and L̂a are the maximized log-likelihood function values for the benchmark and

alternative models respectively. The test statistic D has a χ2-distribution with degrees

of freedom equal to the difference in amount of parameters between the two models.

3.6 Ljung-Box Q-test

We use the Ljung-Box Q-test to test for autocorrelation of the squared standardized

residuals of a fitted model. The null hypothesis is that the residuals show no autocor-

relation, while the alternative is that there is correlation among the residuals. We use

the test to see if our models are adequately fitted or not. If they are, there should be no

autocorrelation present. The test statistic is defined as

Q(l) = n(n+ 2)
l∑

k=1

ρ̂2k
n− k

where n is the number of observations, l is the number of lags to be tested and ρ̂k is the

sample autocorrelation function. According to Tsay (2010), simulation studies suggests

using ln(n) as the number of lags. It is also suggested to use several different lags when
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testing, we use ln(n), ln(n) + 5 and ln(n) + 10.

3.7 Prediction

We estimate our model parameters from a data sample containing a large amount of daily

observations, the in-sample. After obtaining the parameter values, we test the predic-

tive ability of our models on a smaller sample, the out-of-sample data. We use a rolling

window technique to estimate models, so we only predict one day at a time, and then

re-estimate the parameters. The length of the sample used to estimate parameters is kept

constant, i.e. the start date and end date successively increases with one observation.4

An important step in predicting lies in the evaluation of the predictions. We use a

few different performance measures to assess prediction ability in our forecasts. The

MSE is often used in this context. A downside of this measure is that outliers have a

heavy impact on the result since it uses the squared errors. The outlier problem is not

as prominent when using MAE for evaluation. The MSE and MAE are calculated with

the differences of the predicted returns and the actual returns, the formulas can be seen

in appendix A.2.

4This technique is very common and in this field it is used by for example Paolella and Taschini
(2008) and Byun and Cho (2013).
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4 Data

We use daily data from the ICE European Climate Exchange (ICE ECX) emission al-

lowance continuous futures contract. The continuous future uses a rolling method where

a new future is added to the series when the last one has matured. It has become common

practice to use this kind of derivative for academic studies (Chevallier, 2010). Trück et al.

(2012) find that the price behavior of the EUAs spot and futures market is very different

from other commodities. We do not use the spot prices, instead we focus entirely on the

price of futures contracts. They further state that market participants have a tendency

to hold long futures positions instead of the spot, and a large majority of the number of

allowances traded comes from traded futures, while the spot trading contribution is much

smaller. The ICE ECX is by far the most liquid market place for EUA futures contracts

(IntercontinentalExchange Group, 2011). As the vast majority of existing literature on

the subject, we use daily data to be able to compare our results to previous research.

The in-sample dataset runs from 2009-11-04 to 2013-07-01 (953 observations), and we

have an out-of-sample period of 2013-07-02 to 2013-11-04 (90 observations) on which we

test the performance of our models. The source of our data is Thomson Reuters Datas-

tream, unless otherwise stated. As we are interested in capturing the growth rate of the

dependent variable, we use logreturns, that is

yt = ln(st)− ln(st−1)

where st is the price at time t. Both the prices and logreturns are plotted in figure 1.

The descriptive statistics of this data can be seen in table 2.

Dataset Size Mean Min Max Std. Dev. Skew. Kurt.

In-sample 953 -0.0013 -0.4314 0.2453 0.0365 -1.2536 27.6589
Out-of-sample 90 0.0008 -0.1134 0.0893 0.0320 0.1795 4.9608

Table 2: Summary statistics for the EUA futures logreturns yt. Std. Dev. refers to
standard deviation, Skew. to the skewness, and Kurt. to the kurtosis.

Since the kurtosis of the in-sample data is as large as 27.6589, we assume that our returns

are t-distributed rather than normally distributed. An illustration of this is given in

figure 2, which also indicates that a t-distribution indeed fits the data better. A GARCH

model in combination with a t-distribution for error terms was first used by Bollerslev

(1987). Note that when considering the t-distribution we have to estimate one additional

parameter for each model, the degrees of freedom, denoted by ν.
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Figure 1: The price and logreturns of the EUA continuous futures contract, from November
2009 to November 2013. The dashed line indicates where the out-of-sample period starts.

Figure 2: Histograms of our in-sample data, together with the best fitting t-distribution
(above) and normal distribution (below).

4.1 Exogenous data

As mentioned in section 3.4 we start by looking at six different factors that are related

to the price of an EUA. These are the returns of electricity, oil, coal and gas prices, as

well as a paper price index and a stock index. Here, the electricity variable is the EEX

(European Energy Exchange) yearly baseload continuous futures contract. The Brent oil

variable is the ICE Brent crude oil continuous futures contract, the coal variable is the

12



EEX coal ARA month continuous futures contract and the gas variable is the ICE UK

Natural Gas 1-month continuous futures contract. Paper is the FOEX PIX EU Paper

A4 B-copy index, and the stock index is the STOXX Europe 600. All of these run on the

same interval as the EUA data. The futures that are not expressed in EUR have been

converted using the exchange rates from the European Central Bank (ECB).5 Summary

statistics for the exogenous data can be found in appendix C.2.

4.2 EUA data treatment

The autocorrelation function of the in-sample data tells us about the potential of AR

models to predict future returns. It is plotted in figure 3. The most important thing

to notice is that the autocorrelation coefficient with lag 1 is very small, 0.03, and not

statistically significant. Also, there seems to be no clear pattern in which lags that have

significant autocorrelations. To investigate this further, we look at the autocorrelation

function when some outliers are removed, to see whether the autocorrelation coefficients

keep the same values or not. As seen in figure 4, the coefficients dramatically changes

when only the three most extreme returns are removed from the set, which indicates poor

robustness in the autocorrelations. We know that for a randomly distributed variable,

the autocorrelations should be between ±z1−α/2σ with significance level α, where z1−α/2

is the (1− α/2):th quantile of the normal distribution. We note that for α = 0.05, lag 2

violates this in all three of our cases, which indicates that the statistical significance of

this particular autocorrelation is robust.

Figure 3: The in-sample autocorrelation function with 95% confidence bounds.

5Available at: http://www.ecb.europa.eu/stats/exchange/eurofxref/html/index.en.html.
Accessed 7 January 2014.
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Figure 4: The in-sample autocorrelation function with some outliers removed. Only 3
observations meet |yt| > 0.2, but still the autocorrelation coefficients are very different from
the original case. 18 observations meet |yt| > 0.1.

4.2.1 Stationarity

A visual inspection of figure 1 suggests that the logarithmic return series is stationary,

but as specified in section 3.1 we use a couple of different tests to make sure that it is.

After performing both the ADF test and the KPSS test, we can conclude that the time

series used are stationary. The results from the tests can be seen in appendix C.3. The

ADF test reports a p-value of less than 0.01 for all return series, which means we reject

the null hypothesis of a unit root. The reported p-values of the KPSS test support the

ADF test, i.e. we cannot reject the null hypothesis of stationarity at the 5% significance

level.
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5 Results

Here we construct various models by estimating parameters using the in-sample data.

From the autocorrelation function and the robustness of it examined earlier, we know

that the potential of AR and MA models are slim. We evaluate a few of those models,

and the results, seen in tables 3 and 4 and discussed below, confirm that they are not

suitable here. When applying the ARCH LM test to the different ARMA models it is also

apparent that there is conditional heteroskedasticity present. From the table in appendix

C.4 we see that we can reject the null hypothesis for all ARMA models at the 1% level at

12 lags. Note that we have also evaluated the models using normally distributed errors,

Model k L̂ BIC

AR(0) 3 1992.7 -3964.8
AR(1) 4 1992.7 -3958.0
AR(2) 5 1999.8 -3965.4
AR(3) 6 2001.1 -3961.1
AR(4) 7 2002.9 -3957.7
MA(1) 4 1992.7 -3958.0
MA(2) 5 1999.1 -3963.9
ARMA(1,1) 5 1994.8 -3955.3
ARMA(2,2) 7 2003.1 -3958.7
GARCH(1,1) 5 2140.8 -4247.3
AR(1)-GARCH(1,1) 6 2140.9 -4240.6
MA(1)-GARCH(1,1) 6 2140.9 -4240.7
AR(2)-GARCH(1,1) 7 2141.6 -4235.2
MA(2)-GARCH(1,1) 7 2141.6 -4235.2
ARMA(1,1)-GARCH(1,1) 7 2142.3 -4236.7
ARMA(2,2)-GARCH(1,1) 9 2144.4 -4226.1
GARCH(2,2) 7 2141.8 -4235.6
GJR-GARCH(1,1) 6 2143.5 -4245.9

Table 3: Basic performance evaluation of the estimated models. k is the number of esti-
mated parameters, L̂ is the maximized value of the log-likelihood objective function, and
BIC is the Bayesian information criterion.

as opposed to the t-distributed errors we use here and for the remainder of this paper,

and these results can be seen in appendix C.5.

In table 3 we have listed a number of evaluated models. We evaluate their performance

mainly based on their Bayesian information criterion. Looking at the mean equation

models exclusively, we see that the best performing model is the AR(2) model, but it is

only slightly better than the AR(0)-model, which suggests that the autoregressive terms
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Model AR(0) AR(1) AR(2)

c -0.0002 -0.0002 -0.0002
(0.0008) (0.0008) (0.0008)

φ1 -0.0006 -0.0214
(0.0217) (0.0213)

φ2 -0.1306***
(0.0198)

σ2 0.0022** 0.0022** 0.0022**
(0.0011) (0.0011) (0.0011)

ν 2.3940*** 2.3935*** 2.3982***
(0.2573) (0.2572) (0.2582)

Table 4: Parameter values of AR models, according to equations 1-3. Standard deviations
are in parentheses. *** indicates significance at 1% level, ** at 5% and * at 10%.

might not be very strong in these models. This is in strong contrast to the AR(1) model

of Benz and Trück (2009), which had a statistically significant φ1 with a value of 0.2122.

As stated earlier, they looked at the first phase of the ETS, and we look at the sec-

ond and start of the third phase. We interpret this as an indication that trends are

less prominent and possibly that the market has matured since the first phase, which

strengthens our hypothesis of a more efficient market. One reason for the large difference

could be the structural change of allowing inter-phase banking of allowances that occurred

at the start of the second phase, which has been mentioned in section 2. Another likely

reason is the dramatic increase in trading volume, which has been mentioned in section 1.

The MA models are worse than the AR models of the same lags, and the ARMA models

have even worse BIC. Several higher order AR models have been tested but according to

the BIC, they were considered far worse than the first two. Further down the table, we

see that when allowing for heteroskedasticity, we achieve far higher BIC values, however,

when considering heteroskedastic models, ARMA terms only lowers the BIC value. We

also evaluate one specification of the GJR-GARCH model6, which Byun and Cho (2013)

found to perform well. The best BIC value is achieved for a simple GARCH(1,1) model,

and hence we rate it as the best fitting model.

Table 4 showcases parameter values of the three best AR models. Notably, among the

AR parameters only the AR(2) parameter φ2 is statistically significant. Proceeding to

the conditional heteroskedasticity models in table 5, we note that no AR parameters at

6The GJR-GARCH is named after Glosten, Jagannathan, and Runkle who first suggested it. It differs
from the ordinary GARCH model in that it also models asymmetry in the ARCH process (Glosten et al.,
1993).
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all are significant. On the other hand, GARCH parameters are significant all the way

down to the 1% level. Hence, we only use the GARCH(1,1) model without AR terms in

the next section.

Model GARCH(1,1) AR(1)-GARCH(1,1) AR(2)-GARCH(1,1)

c -0.0002 -0.0002 -0.0002
(0.0006) (0.0006) (0.0006)

φ1 -0.0133 -0.0135
(0.0324) (0.0324)

φ2 -0.0400
(0.0308)

α0 6 · 10−6** 6 · 10−6** 6 · 10−6**
(3 · 10−6) (3 · 10−6) (3 · 10−6)

α1 0.1172*** 0.1172*** 0.1138***
(0.0216) (0.0216) (0.0211)

β1 0.8828*** 0.8828*** 0.8862***
(0.0192) (0.0192) (0.0189)

ν 5.4060*** 5.4020*** 5.3092***
(0.7998) (0.8056) (0.7894)

Table 5: Parameter values of GARCH and AR-GARCH models, according to equations
1-3. Standard deviations are in parentheses. *** indicates significance at 1% level, ** at
5% and * at 10%.

5.1 Exogenous inputs - ARMAX-GARCH

The ARMAX model allows for exogenous inputs in the mean equation. We have already

seen that the optimal ARMA-GARCH model is ARMA(0,0)-GARCH(1,1). Therefore we

will evaluate ARMAX(0,0,b)-GARCH(1,1) models when considering exogenous inputs.7

Details regarding the exogenous variables have already been discussed in section 4.1.

Now, as specified in section 3.4, we will run ARMAX(0,0,1)-GARCH(1,1) evaluations

with each variable one by one. The results can be found in appendix C.6. The paper and

stock indices have p-values higher than 0.05 and are therefore disregarded.

Before performing the multivariate regression that is the ARMAX equation with more

than one exogenous variable, we need to check for multicollinearity. Again, as stated in

section 3.4 we follow Chevallier (2009) and examine the cross-correlations between our

energy variables. Results are found in appendix C.7, where we see that the highest in

absolute value is around 0.4, which is substantially lower than the 0.6 suggested to be a

7Indeed, when evaluating for example ARMAX(1,0,b)-GARCH(1,1) models, we do not get statistical
significance for the AR(1) term in any case.
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breaking point in his paper. We also examine the variance inflation factor (VIF) for each

variable, but no problematic collinearities are detected from these calculations either, as

the highest VIF is the one for electricity with a value of 1.33, which is far from worrying.

Complete results of these calculations can be found in appendix C.8.

With these four explanatory variables we construct one model for each combination of

the variables, a total of 15 models. The model specifications can be seen in table 6.

Note that this is inspired by Byun and Cho (2013), who uses exogenous variables for the

variance equation (GARCHX). Table 7 contains model evaluation results for all of our

Model Variables included

Model 1 Electricity
Model 2 Oil
Model 3 Coal
Model 4 Gas
Model 5 Electricity Oil
Model 6 Electricity Coal
Model 7 Electricity Gas
Model 8 Oil Coal
Model 9 Oil Gas
Model 10 Coal Gas
Model 11 Electricity Oil Coal
Model 12 Electricity Oil Gas
Model 13 Electricity Coal Gas
Model 14 Oil Coal Gas
Model 15 Electricity Oil Coal Gas

Table 6: ARMAX-GARCH model specifications. Listed are the exogenous inputs consid-
ered in the mean equation.

ARMAX(0,0,b)-GARCH(1,1) models. We see that the one giving the best BIC value is

model 14, which considers oil, coal and gas returns as exogenous variables. The p-values

from the likelihood ratio (LR) test are generally very low, which indicates that adding en-

ergy variables adds a good amount of explanatory power to the benchmark GARCH(1,1)

model. We can not reject the hypothesis that the GARCH(1,1) is better than or equal

to the ARMAX models with only electricity and only oil as explanatory variables at the

1% level, but at the 5% level the null hypothesis can be rejected in all cases. Parameter

values for all of these models when fitted to the in-sample data can be found in appendix

C.9. We see that the coefficient of natural gas is statistically significant at the 1% level in

all models. Brent oil and coal are in every case significant at the 5% but not always at the

1% level. Electricity is the least significant variable, as it is only statistically significant

in model 1 and model 5.
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Before we use our models for the predictions, we apply the Ljung-Box Q-test to confirm

that the GARCH models we use adequately explains the variance in the return series.

The null hypothesis of no autocorrelation among the squared standardized residuals can

not be rejected, as can be seen in appendix C.10. This is in line with our expectations

and means that the models are well fitted to the data.

Model k L̂ BIC LR-test p-value

GARCH(1,1) 5 2140.8 -4247.3
Model 1 6 2143.6 -4246.0 19.237 · 10−3

Model 2 6 2143.2 -4245.3 28.973 · 10−3

Model 3 6 2146.8 -4252.5 0.5217 · 10−3

Model 4 6 2148.7 -4256.2 0.0750 · 10−3

Model 5 7 2147.3 -4246.6 1.5285 · 10−3

Model 6 7 2148.1 -4248.2 0.6801 · 10−3

Model 7 7 2149.6 -4251.1 0.1600 · 10−3

Model 8 7 2150.9 -4253.7 0.0431 · 10−3

Model 9 7 2153.1 -4258.1 0.0048 · 10−3

Model 10 7 2152.8 -4257.6 0.0062 · 10−3

Model 11 8 2151.7 -4248.5 0.0737 · 10−3

Model 12 8 2153.5 -4252.2 0.0126 · 10−3

Model 13 8 2152.9 -4250.9 0.0240 · 10−3

Model 14 8 2156.6 -4258.4 0.0006 · 10−3

Model 15 9 2156.6 -4251.6 0.0023 · 10−3

Table 7: ARMAX-GARCH model estimation results, compared to the optimal model
without exogenous inputs, i.e. the GARCH(1,1). k is the number of estimated parameters,
L̂ is the maximized value of the log-likelihood objective function, and BIC is the Bayesian
information criterion. LR-test p-value is the p-value obtained from a likelihood ratio test,
where we reject the null hypothesis, i.e. that the benchmark model (GARCH(1,1)) is at
least as good as the tested model, when the p-value is sufficiently low, as described in section
3.5.

5.2 Results from prediction

Results from predicting the standard deviations of the returns with the GARCH(1,1)

model can be seen in figure 5. We see that volatility clustering seems to be featuring in

the out-of-sample data as well, and the model partially captures it.

Prediction results for all of our ARMAX(0,0,b)-GARCH(1,1) models can be seen in table

8, along with the benchmark GARCH(1,1). Also included in the table are two AR-

GARCH models to illustrate that they indeed perform worse than the ARMAX-GARCH
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Figure 5: Results from predicting the standard deviations of the EUA returns with the
GARCH(1,1) model, plotted along with the absolute values of the returns in the out-of-
sample period.

models, just as most of the BIC values suggested. Moreover, the information criteria sug-

gestion that most ARMAX-GARCH models should do better than the standard GARCH

model is backed up by the actual prediction results. Even though the differences in the

MSE and MAE between the models are quite small, the benchmark GARCH model per-

forms worse in both error measures than each and every ARMAX-GARCH model. This

confirms that incorporating exogenous inputs in the mean equation enhances prediction

power. We note that models 1-4, i.e. the models that only consider one exogenous vari-

able at a time, are overall performing quite badly (with the sole exception of the MSE

of model 1), especially in mean absolute error. Taking both error measures in account,

we see that the best two performances are given by model 5 (electricity and oil) and

model 11 (electricity, oil and coal). In general, the models that include electricity as

an exogenous variable perform better. Aatola et al. (2013) find that electricity is the

market fundamental which has the biggest impact on the changes in the price of EUAs.

Therefore it comes as no surprise that lagged returns of the electricity price are good for

predicting.
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MSE MAE

Model Value Rank Value Rank

GARCH(1,1) 1.0118·10−3 16 2.2889·10−2 16
AR(1)-GARCH(1,1) 1.0124·10−3 17 2.2916·10−2 18
AR(2)-GARCH(1,1) 1.0202·10−3 18 2.2912·10−2 17
Model 1 1.0045·10−3 1 2.2757·10−2 12
Model 2 1.0117·10−3 14 2.2774·10−2 14
Model 3 1.0094·10−3 9 2.2770·10−2 13
Model 4 1.0118·10−3 15 2.2827·10−2 15
Model 5 1.0054·10−3 2 2.2633·10−2 2
Model 6 1.0066·10−3 3 2.2737·10−2 9
Model 7 1.0079·10−3 5 2.2754·10−2 11
Model 8 1.0098·10−3 12 2.2684·10−2 6
Model 9 1.0116·10−3 13 2.2724·10−2 7
Model 10 1.0092·10−3 8 2.2751·10−2 10
Model 11 1.0070·10−3 4 2.2621·10−2 1
Model 12 1.0088·10−3 7 2.2663·10−2 3
Model 13 1.0084·10−3 6 2.2731·10−2 8
Model 14 1.0095·10−3 11 2.2674·10−2 5
Model 15 1.0094·10−3 10 2.2670·10−2 4

Table 8: Prediction results for all of our ARMAX-GARCH models along with GARCH(1,1)
as well as AR(1)- and AR(2)-GARCH(1,1) results. MSE is short for mean squared error,
and MAE is short for mean absolute error. We have also included the rank of each model
when ordered both after their MSE and MAE values.
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6 Conclusion

In this thesis we construct several models to model the return and the volatility of the

most traded EUA futures contracts. We find that the logreturns of EUA continuous

futures contracts is a stationary time series, which exhibits excess kurtosis and is t-

distributed. We find that our ARMA(r,m) coefficients are overall much lower than those

of earlier papers. In particular our AR(1) coefficient is close to zero and not statistically

significant, which differs substantially from, among others, Benz and Trück (2009), who

based their research on data from phase one. Based on the statement of Fama (1970)

that a lack of autocorrelation indicates an efficient market, we conclude that the market

has become more efficient.

We find conditional heteroskedasticity in the residuals, like in previous research, and

we introduce a GARCH model to capture the volatility clustering, again in line with

existing literature. We try a few different GARCH models but the best results are ob-

tained from a simple GARCH(1,1) model. We note that an ARMA model for the mean

equation adds no explanatory power according to the BIC. After the fitting of GARCH

models, the Ljung-Box Q-test confirms that the ARCH effects have been removed since

the squared standardized residuals are independent and identically distributed.

We allow for exogenous inputs in the mean equation of our model, and find that lagged

returns of electricity, Brent oil, coal and natural gas prices are statistically significant.

Lagged returns of a paper price index as well as a stock index are not significant, and are

therefore disregarded. When allowing for exogenous inputs we find that the mean equa-

tion of an ARMAX-GARCH model is best modeled through an ARMAX(0,0,b) model.

The statistical significance of improved performance when incorporating exogenous vari-

ables in our model is confirmed with the likelihood ratio test. The Bayesian information

criterion suggests that one-day lagged oil, coal and gas returns are the optimal variables.

When using our models for predicting the MAE and MSE confirm that all ARMAX(0,0,b)-

GARCH(1,1) models perform better than the models without exogenous variables. This

supports our second hypothesis of improved predicting performance when allowing for

exogenous inputs. Adding autoregressive terms to our mean equation does not improve

the performance. The model with the best out-of-sample performance, considering both

the MAE and the MSE, is either the model with electricity and oil as exogenous variables

or the model with electricity, oil and coal as exogenous variables. In general, electricity

adds the most predictive power out of our exogenous variables.
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A Methods

A.1 ARMA and GARCH models

We use several methods for estimating returns. Beginning with the simplest autoregres-

sive models, AR(r) where r denotes the amount of lag steps considered. The formula for

the AR(r) model is

yt = c+
r∑

i=1

φiyt−i + ǫt (4)

where c and φi are real constants, typically estimated using an ordinary least squares

(OLS) procedure, and yt is the return at time t. The residuals ǫt are assumed to be

independent and identically distributed with zero-mean and constant variance. An ex-

tension of this is an autoregressive moving average (ARMA) model, proposed by Whittle

(1951), which also depends on lagged residuals of the time series. The formula for an

ARMA(r,m) model is

yt = c+
r∑

i=1

φiyt−i +
m∑

j=1

θjǫt−j + ǫt (5)

where θj are constant parameters. However, the assumption that variance is constant

over time (i.e. the time series is homoskedastic) is not always true. As shown in for

example Benz and Trück (2009), there is reason to believe that this is not the case for

emission allowance returns. The autoregressive conditional heteroskedastic (ARCH(q))

model proposed by Engle (1982) deals with this problem. In the simplest case it is

assumed that the time series yt is zero-mean, and then one models the residuals ǫt split

up into a stochastic part, ut, and a time-dependent standard deviation term σt. The

ARCH(q) model considers q lagged terms

yt = ǫt, and ǫt = utσt, with σ2

t = a0 +

q∑

k=1

akǫ
2

t−k (6)

where ak are the parameters of the model. It is assumed that ut are i.i.d. with zero

mean and variance equal to 1. Typically, the distribution of ut is assumed to be either

standard normal or standardized t. By using not only the past ǫt-values but also a

moving average of past σt to model the conditional variance, a generalized autoregressive

conditional heteroskedastic model (GARCH(p, q)) is obtained. This model, put forward

by Bollerslev (1986) is defined as

yt = ǫt, and ǫt = utσt, with σ2

t = α0 +

q∑

i=1

αiǫ
2

t−i +

p∑

j=1

βjσ
2

t−j (7)
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where ω, αi and βj are real constants and ǫt are as before. The parameters have to satisfy

Σαi + Σβj < 1 to ensure that the variance stays finite, and αi, βj ≥ 0, ω > 0 so that we

have stationarity and positive variance. The GARCH model is quite sophisticated regard-

ing variance, but the actual values of yt are just assumed to be i.i.d., zero-mean random

variables. By combining an ARMA(r,m) process for the mean with a GARCH(p, q)

model for the variance one obtains an auspicious model for the price dynamics.

A.2 MSE and MAE formulas

The formula for calculating the mean squared error is

MSE =
1

n

n∑

i=1

(Ŷi − Yi)
2

where Ŷi is a vector of predicted values, Yi a vector of the actual values and n is the

number of predictions. To calculate the mean absoulte error we use

MAE =
1

n

n∑

i=1

|Ŷi − Yi|
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B Figures

Figure 6: The price and returns of our exogenous variables, i.e. electricity, Brent oil, coal
and natural gas prices converted to EUR, from November 2009 to November 2013. The
dashed line indicates where the out-of-sample period starts.
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C Tables

C.1 Variables and abbreviations

Abbreviation Explanation

ADF Augmented Dickey-Fuller
AIC Akaike information criterion
AR Autoregressive
ARA Amsterdam-Rotterdam-Antwerp
ARCH Autoregressive Conditional Heteroskedasticity
ARMA Autoregressive Moving Average
ARMAX ARMA with exogenous inputs
BIC Bayesian information criterion
CO2 Carbon dioxide
ECB European Central Bank
ECX European Climate Exchange
EEX European Energy Exchange
ETS Emissions Trading System
EU European Union
EUA European Union Allowance
GARCH Generalized Autoregressive Conditional Heteroskedasticity
GARCHX GARCH with exogenous inputs
GHG Greenhouse gas
GJR-GARCH Glosten-Jagannathan-Runkle GARCH
ICE IntercontinentalExchange
IID Independent identically distributed
KPSS Kwiatkowski-Phillips-Schmidt-Shin
LLF Log-likelihood function
LM Lagrange multiplier
LR Likelihood ratio
MA Moving Average
MAE Mean absolute error
MSE Mean squared error
OLS Ordinary least squares
TGARCH Threshold GARCH
UK United Kingdom
US United States
VIF Variance inflation factor

Table 9: Summary of the abbreviations used in this thesis, ordered alphabetically.
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Variable Explanation

r The number of autoregressive (AR) terms in the mean equation of the
ARMAX-GARCH model.

m The number of moving average (MA) terms in the mean equation of the
ARMAX-GARCH model.

b The number of exogenous inputs in the mean equation of the
ARMAX-GARCH model.

p The number of lagged variances (GARCH terms) considered in the
variance equation of the ARMAX-GARCH model.

q The number of lagged squared residuals (ARCH terms) considered in
the variance equation of the ARMAX-GARCH model.

yt Logreturn of the EUA continuous futures contract at time t.
We have that yt = ln(st)− ln(st−1).

c Constant in the mean equation of the ARMAX-GARCH model.
φi The AR parameter at lag i.
θj The MA parameter at lag j.
ηk The exogenous variable coefficient at lag k.
dk,t−1 Logreturn of the k:th exogenous variable at time t− 1.
ǫt The residual of the EUA return at time t. The difference

between the actual and the estimated value of yt.
ut Independent and identically distributed random variables that

are zero-mean and have unit variance.
σt The standard deviation of the EUA return at time t.
α0 Constant in the variance equation of the ARMAX-GARCH model.
αi The ARCH parameter at lag i.
φj The GARCH parameter at lag j.

L̂ Maximized value of the log-likelihood function.
k Number of parameters in a model.
n Amount of observations.
D Likelihood ratio test statistic.
Q Ljung-Box Q-test statistic.
ρ̂k Sample autocorrelation at lag k.
l Number of lags considered in the Ljung-Box Q-test.
st Price of an EUA continuous futures contract at time t.
ν Degrees of freedom for the t-distribution.

Table 10: Summary of the variables used in this thesis, in order of appearance.
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C.2 Summary statistics for exogenous variables

Dataset Size Mean Min Max Std. Dev. Skew. Kurt.

Electricity
In-sample 953 -0.0003 -0.0326 0.1535 0.0098 4.5703 68.1653
Out-of-sample 90 -3.6 · 10−5 -0.0166 0.0199 0.0067 0.3922 3.4114

Brent oil
In-sample 953 0.0002 -0.0369 0.0293 0.0067 -0.1600 4.7084
Out-of-sample 90 -2.2 · 10−5 -0.0135 0.0148 0.0055 -0.0677 3.4085

Coal
In-sample 953 5.4 · 10−5 -0.0242 0.0277 0.0056 0.3312 5.9448
Out-of-sample 90 0.0002 -0.0166 0.0139 0.0046 -0.3876 5.0420

Natural gas
In-sample 953 0.0003 -0.0416 0.0661 0.0097 1.1093 9.7272
Out-of-sample 90 0.0004 -0.0072 0.0156 0.0037 1.2932 6.8613

Paper
In-sample 953 0.0001 -0.0118 0.0233 0.0016 4.4210 65.8129
Out-of-sample 90 -0.0001 -0.0052 0.0033 0.0009 -1.7555 15.4867

Stock index
In-sample 953 0.0002 -0.0488 0.0691 0.0113 -0.1460 6.1663
Out-of-sample 90 0.0012 -0.0181 0.0231 0.0066 0.3344 4.2927

Table 11: Summary statistics for the exogenous variables returns. Std. Dev. refers to
standard deviation, Skew. to the skewness, and Kurt. to the kurtosis.
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C.3 Stationarity

ADF t-statistic p-value lags

EUA -9.4781 <0.01 15
Electricity -15.4545 <0.01 3
Oil -23.1724 <0.01 1
Gas -18.8322 <0.01 3
Coal -16.0751 <0.01 3

KPSS

EUA 0.0915 >0.1 7
Electricity 0.2953 >0.1 7
Oil 0.1581 >0.1 7
Gas 0.0761 >0.1 7
Coal 0.4424 0.0588 7

Table 12: Statistics for the Augmented Dickey-Fuller (ADF) test and the KPSS test on
the logarithmic return series. The low p-values of the ADF test means that we can reject
the null hypothesis of a unit root at the 1% significance level. The KPSS test confirms
stationarity at the 5% significance level.

C.4 ARCH LM test

F -statistic p-value

AR(0) 31.210 0.00183
AR(1) 31.234 0.00182
AR(2) 27.502 0.00654
AR(3) 27.876 0.00577
AR(4) 27.246 0.00712
MA(1) 31.240 0.00181
MA(2) 28.633 0.00447
ARMA(1,1) 32.696 0.00107
ARMA(2,2) 28.203 0.00517

Table 13: Results from the ARCH LM test at 12 lags.
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C.5 Model evaluation with errors normally distributed

Model k L̂ BIC

AR(0) 2 1802.7 -3591.7
AR(1) 3 1803.2 -3585.8
AR(2) 4 1813.9 -3600.3
AR(3) 5 1815.2 -3596.1
AR(4) 6 1819.5 -3597.9
MA(1) 3 1803.4 -3586.2
MA(2) 4 1811.7 -3597.2
ARMA(1,1) 4 1805.2 -3582.9
ARMA(2,2) 6 1819.3 -3597.5
GARCH(1,1) 4 2094.0 -4160.5
AR(1)-GARCH(1,1) 5 2094.8 -4155.2
MA(1)-GARCH(1,1) 5 2094.8 -4155.2
AR(2)-GARCH(1,1) 6 2094.8 -4148.4
MA(2)-GARCH(1,1) 6 2094.8 -4148.4
ARMA(1,1)-GARCH(1,1) 6 2094.8 -4148.4
ARMA(2,2)-GARCH(1,1) 8 2095.5 -4139.4
GARCH(2,2) 6 2101.1 -4161.0
GJR-GARCH(1,1) 5 2097.1 -4160.0

Table 14: Basic performance evaluation of the estimated models, with errors normally
distributed. k is the number of parameters, L̂ is the maximized value of the log-likelihood
objective function, and BIC is the Bayesian information criterion. When comparing these
values to the those in table 3, where we assume that the errors are t-distributed, one sees
that indeed the models with errors t-distributed give better L̂ and BIC values.

C.6 Choosing exogenous variables

Variable η1 S.D. p-value

Electricity -0.2022 0.0610 0.0010
Oil -0.2479 0.0859 0.0040
Coal -0.4037 0.1008 0.0001
Gas -0.2696 0.0569 0.0000
Paper 0.3017 0.4150 0.4673
Stock index -0.1056 0.0584 0.0708

Table 15: Results from ARMAX(0,0,1)-GARCH(1,1) evaluations. η1 is the parameter for
the exogenous variable and S.D. is the standard deviation of the parameter. The variables
with a p-value higher than 0.05 are disregarded.
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C.7 Correlation of energy variables

Electricity Oil Coal Gas

Electricity 1
Oil 0.1457 1
Coal 0.3720 0.0466 1
Gas 0.4121 0.1245 0.2882 1

Table 16: Cross-correlations of exogenous variables.

C.8 Variance inflation factors

Variable R2 VIF

Electricity 0.248 1.330
Oil 0.027 1.027
Coal 0.195 1.243
Gas 0.161 1.191

Table 17: Variance inflation factors for our four exogenous variables. If the VIF value is
higher than 5 then problematic multicollinearities may be present.
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C.9 ARMAX-GARCH parameter values

Model c ηe ηo ηc ηg α0 α1 β1 ν

GARCH(1,1) -2 · 10−4 6 · 10−6** 0.117*** 0.883*** 5.406***
(0.001) (3 · 10−6) (0.022) (0.019) (0.800)

Model 1 -1 · 10−4 -0.202*** 6 · 10−6** 0.117*** 0.883*** 5.304***
(0.001) (0.061) (3 · 10−6) (0.022) (0.019) (0.794)

Model 2 -1 · 10−4 -0.248*** 6 · 10−6** 0.113*** 0.887*** 5.348***
(0.001) (0.086) (3 · 10−6) (0.021) (0.019) (0.787)

Model 3 -1 · 10−4 -0.404*** 5 · 10−6** 0.115*** 0.885*** 5.414***
(0.001) (0.101) (3 · 10−6) (0.021) (0.019) (0.801)

Model 4 -4 · 10−5 -0.270*** 5 · 10−6** 0.109*** 0.891*** 5.203***
(0.001) (0.057) (3 · 10−6) (0.021) (0.018) (0.756)

Model 5 -1 · 10−4 -0.175*** -0.215** 6 · 10−6** 0.112*** 0.888*** 5.265***
(0.001) (0.062) (0.085) (3 · 10−6) (0.021) (0.018) (0.782)

Model 6 -1 · 10−4 -0.105 -0.323*** 5 · 10−6** 0.116*** 0.884*** 5.376***
(0.001) (0.071) (0.110) (3 · 10−6) (0.022) (0.019) (0.801)

Model 7 -3 · 10−5 -0.090 -0.227*** 5 · 10−6** 0.110*** 0.890*** 5.206***
(0.001) (0.068) (0.062) (3 · 10−6) (0.021) (0.018) (0.764)

Model 8 -5 · 10−5 -0.218** -0.378*** 5 · 10−6** 0.110*** 0.890*** 5.321***
(0.001) (0.086) (0.100) (3 · 10−6) (0.021) (0.018) (0.781)

Model 9 5 · 10−5 -0.228*** -0.259*** 5 · 10−6** 0.106*** 0.894*** 5.174***
(0.001) (0.084) (0.057) (3 · 10−6) (0.020) (0.018) (0.749)

Model 10 -3 · 10−5 -0.287*** -0.210*** 5 · 10−6** 0.109*** 0.891*** 5.248***
(0.001) (0.105) (0.061) (2 · 10−6) (0.021) (0.018) (0.765)

Model 11 -3 · 10−5 -0.084 -0.207** -0.316*** 5 · 10−6** 0.111*** 0.889*** 5.298***
(0.001) (0.073) (0.085) (0.110) (3 · 10−6) (0.021) (0.018) (0.782)

Model 12 5 · 10−5 -0.064 -0.219*** -0.229*** 5 · 10−6** 0.106*** 0.894*** 5.172***
(0.001) (0.070) (0.085) (0.062) (3 · 10−6) (0.020) (0.018) (0.754)

Model 13 -3 · 10−5 -0.022 -0.274** -0.202*** 5 · 10−6** 0.110*** 0.891*** 5.250***
(0.001) (0.076) (0.111) (0.064) (2 · 10−6) (0.021) (0.018) (0.767)

Model 14 6 · 10−5 -0.212** -0.266** -0.206*** 5 · 10−6** 0.105*** 0.895*** 5.187***
(0.001) (0.085) (0.104) (0.061) (2 · 10−6) (0.021) (0.018) (0.767)

Model 15 6 · 10−5 -0.002 -0.212** -0.265** -0.205*** 5 · 10−6** 0.105*** 0.895*** 5.188***
(0.001) (0.079) (0.086) (0.111) (0.063) (2 · 10−6) (0.020) (0.018) (0.752)

Table 18: Parameter values of ARMAX-GARCH models. ηe, ηo, ηc and ηg are coefficients
for electricity, Brent oil, coal and gas respectively. Standard deviations are in parentheses.
*** indicates significance at 1% level, ** at 5% and * at 10%.
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C.10 Ljung-Box Q-test

Q(7) Q(12) Q(17)

Model Q-statistic p-value Q-statistic p-value Q-statistic p-value

GARCH(1,1) 3.4831 0.8370 5.8857 0.9217 6.9048 0.9847
AR(1)-GARCH(1,1) 3.5972 0.8248 6.0597 0.9130 7.0508 0.9828
AR(2)-GARCH(1,1) 3.5722 0.8275 5.9351 0.9193 6.8325 0.9856
Model 1 3.7597 0.8070 6.3156 0.8993 7.2698 0.9797
Model 2 3.6218 0.8221 6.0932 0.9113 7.1713 0.9812
Model 3 3.4111 0.8445 6.2019 0.9055 7.1660 0.9812
Model 4 3.7597 0.8070 6.3156 0.8993 7.2698 0.9797
Model 5 3.8323 0.7988 6.3982 0.8946 7.3709 0.9782
Model 6 3.5407 0.8309 6.3582 0.8969 7.2959 0.9793
Model 7 3.4924 0.8360 6.2144 0.9048 7.1020 0.9821
Model 8 3.6313 0.8211 6.4824 0.8898 7.4203 0.9774
Model 9 3.4641 0.8390 6.1778 0.9068 7.1023 0.9821
Model 10 3.2670 0.8592 6.1387 0.9089 7.0394 0.9830
Model 11 3.7012 0.8134 6.5573 0.8854 7.4726 0.9765
Model 12 3.5962 0.8249 6.3329 0.8983 7.2398 0.9802
Model 13 3.3084 0.8550 6.1881 0.9063 7.0864 0.9824
Model 14 3.4782 0.8375 6.3959 0.8948 7.2810 0.9796
Model 15 3.4821 0.8371 6.4009 0.8945 7.2855 0.9795

Table 19: Results from the Ljung-Box Q-test on the squared standardized residuals.
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