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Abstract

This paper studies market competition when firms can influence consumers’

ability to compare market alternatives, through their choice of price “formats”.

We introduce random graphs as a tool for modelling limited comparability of

formats. Our main results concern the interaction between firms’ equilibrium

price and format decisions and its implications for industry profits and consumer

switching rates. We show that narrow regulatory interventions that aim to facil-

itate comparisons may have adverse consequences for consumer welfare. Finally,

we argue that our limited-comparability approach provides a new perspective

into the phenomenon of product differentiation.

1 Introduction

Standard models of market competition assume that consumers are able to form a

ranking of all the alternatives they are aware of. The ranking may reflect informational

constraints, but it is complete nonetheless. In reality, consumers do not always carry

out all the comparisons that “should” be made. Moreover, whether consumers are able

to make comparisons often depends on how alternatives are described, or “framed”:

∗A former version of this paper, henceforth referred to as Piccione and Spiegler (2009), was circu-
lated under the title “Framing Competition”. We thank Noga Alon, Eddie Dekel, Kfir Eliaz, Sergiu
Hart, Emir Kamenica, Ariel Rubinstein, Jakub Steiner, Jonathan Weinstein and numerous seminar
participants. Spiegler acknowledges financial support from the European Research Council, Grant no.
230251, as well as the ESRC (UK).

†London School of Economics. E-mail: m.piccione@lse.ac.uk.
‡University College London and Tel Aviv University. URL:

http://www.homepages.ucl.ac.uk/~uctprsp. E-mail: r.spiegler@ucl.ac.uk.

1



• Prices and quantities may be defined for different units of measurement that
consumers often find difficult to convert to a common standard. For example,

the repayment structure of a loan can be defined in terms of various time units.

Interest on a bank deposit can be presented in various forms. And nutritional

contents of a food product can be specified for various units of weight or volume.

• Price schedules in several industries condition on a large number of diverse con-
tingencies. For instance, a fee structure for banking services specifies different

fees for different classes of transactions. Similarly, a calling plan conditions rates

on the destination, according to some classification of all possible destinations.

Different firms often utilize different, partly overlapping classifications in the

presentation of their price schedules, and this complicates the task of comparing

them.1

Marketers and regulators alike have long recognized the importance of limited com-

parability as an obstacle to market competition. Nutritional information on food prod-

uct labels is required to conform to rigid formats which include standardized units of

measurement.2 As to regulation of retail financial services, the following quotes from

recent consumer protection reports are representative:

“The possibility to switch providers is essential for consumers to obtain

the best deal. However, the Consumer Market Scoreboard 2009 showed

that only 9% of consumers had switched current bank account during the

previous two years. The causes again relate among others to difficulties to

compare offers on banking services...” (EC (2009), p. 4)

“In order to achieve the aims of comparable and comprehensible product

information, the Commission approach has been, for some products and ser-

vices...to promote the standardization of pre-contractual information oblig-

ations within carefully designed and tested formats...” (EC (2009), p. 10)

“When deciding whether to switch to another bank, consumers need clear

readily available information that they can understand, as well as the finan-

cial capability and desire to evaluate it. Ease of comparison will be affected

1Of course, different classifications partly reflect differences in the cost structure and distribution of
consumer preferences that the firms face. However, they have the additional consequence of hindering
comparisons, and this may be among the reasons firms adopt them in the first place.

2See http://en.wikipedia.org/wiki/Nutrition_facts_label.
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by the structure of current account pricing. The ease with which consumers

are able to compare current accounts is likely to affect their desire to do so

and thus feed through to the competitive pressures that banks face.” (OFT

(2008), p. 89)

This paper develops a model of market competition under limited comparability.

In our model, firms choose both how to price their product and how to frame pricing,

so that consumers’ “ease of comparison” is a function of the firms’ framing decisions.

Our analysis is motivated by the following questions: What are the implications of lim-

ited comparability for the competitiveness of the market outcome? How do regulatory

interventions aimed at enhancing comparability perform when firms respond strategi-

cally to these interventions? What is the relationship between the firms’ pricing and

framing decisions? How does limited comparability affect the consumer’s propensity

to switch products?

Our model takes textbook Bertrand competition as a starting point, and compli-

cates it in the direction of limited comparability. Two profit-maximizing firms facing

a single consumer produce perfect substitutes at zero cost. They play a simultaneous-

move game in which each firm i chooses a price pi and a pricing structure xi for its

product, referred to as a format. The price is the actual payment the consumer makes

to the firm when he chooses it, whereas the format is the way in which the price is

presented to the consumer. The consumer has a unit demand and a reservation value

that is identical for both firms, regardless of their format decisions. Given the firms’

price and format decisions, the consumer chooses as follows. He is initially assigned to

one firm at random, say firm 1. We interpret the consumer’s initial firm assignment

as a default option arising from previous consumption decisions. With probability

π (x1, x2), the consumer makes a price comparison and chooses the rival firm’s product

if strictly cheaper. Otherwise, he buys from the firm 1. When π(x, y) = 1 for all formats

x, y, comparability is perfect and the model collapses to Bertrand competition. When

π (x, y) = π (y, x) for all formats x, y - a property we dub “order independence” - price

comparisons are independent of the order in which the consumer considers alternatives.

The consumer’s decision procedure exhibits prudence, or “inertia”. Whenever the

consumer is unable to compare his default option to a new alternative, he chooses the

former. Consequently, when the consumer is initially assigned to firm i, he selects it

with probability one when pj ≥ pi and with probability 1 − π(xi, xj) when pj < pi.

This bias in favor of the default is consistent with the notion that, when consumers face

complex decision problems, they are likely to fall back on a default option, if they have

3



one. This behavioral trait has received experimental support (see, for example, Iyengar

and Lepper (2000) and Iyengar, Huberman and Jiang (2004)) and appears to be highly

realistic in market contexts. In industries such as communication, electricity or retail

banking, consumers tend not to switch away from their current (default) provider when

comparison is difficult. Indeed, the above-cited consumer protection reports emphasize

consumer inertia driven by limited comparability as a major cause of low switching

rates and weak competitive forces in these industries.

We represent the comparability structure π as a random graph, where the set of

nodes corresponds to the set of formats, and π (x, y) is the probability of a directed

link from node x to node y. A link from format x to format y means that y is easy

to compare to x. The graph representation entails no loss of generality: its role is to

visualize comparability structures that involve many formats, suggest fruitful notions

of comparability and simplify the exposition of results. By allowing the graph to be

probabilistic, we capture heterogeneity among consumers, in that π(x, y) can be viewed

as the firms’ (common) belief over the consumer’s ability to compare y to x.

It should be emphasized that while our model is partly motivated by practical

questions that concern consumer protection, our contribution here is theoretical. Our

aim is to obtain an abstract understanding of the implications of limited comparability

on market competition and consumer welfare. To attain this objective, we work with

the simplest possible market model and sacrifice realism in every dimension in order

to attain considerable generality in the novel feature of the model, namely consumers’

limited and frame-sensitive ability to compare between alternatives. For this reason,

our model cannot be descriptively faithful to any real-life industry.

1.1 An Illustrative Example: The “Star” Graph

We use a simple example to illustrate the model and some of our main insights. Con-

sider a product that can be priced inm+1 different currencies, one major andm minor

ones. The consumer is able to compare prices denominated in different currencies only

if he knows the exchange rate. Let q be the probability that the consumer knows

the exchange rate between the major currency and any minor one (whether there is

correlation between minor currencies is immaterial). For simplicity, let’s assume that

the consumer does not know the exchange rates between the minor currencies. The

resulting comparability structure can be represented as a “star” graph, such as the one
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given by Figure 1:

 

q
q

q

q

(Figure 1)

A star graph has one “core” node, representing prices denominated in the major

currency, and m “peripheral” nodes (m = 4 in Figure 1) representing prices denom-

inated in a minor currency. Every node is linked to itself with probability one. In

addition, the core node is linked to each of the “peripheral” nodes with probability

q ∈ (0, 1).3

The star graph admits no pure-strategy Nash equilibrium. On one hand, a perfectly

competitive outcome with zero profits is inconsistent with equilibrium because when a

firm charges a price p > 0 and randomizes over all peripheral formats, it ensures that,

with positive probability, the consumer will fail to make a price comparison. On the

other hand, a non-competitive outcome is inconsistent with pure-strategy equilibrium

by a simple undercutting argument. Since every format is perfectly comparable to

itself, a firm can always mimic its opponent’s format and slightly undercut its price.

Thus, equilibrium strategies are necessarily mixtures over price-format pairs, reflecting

a dispersion of prices and formats in the market. The question is how these two

components are related.

Symmetric mixed-strategy Nash equilibrium is unique. Its structure turns out to

depend on the expected number of minor currencies the consumer knows how to convert

into the major currency (and vice versa). When mq > 1, the firms’ price and format

decisions are perfectly correlated. Specifically, there exists a cutoff price pm, such that

firms adopt the core format with probability one conditional on charging a price below

pm, and firms randomize uniformly over all peripheral formats conditional on charging

3In this paper, diagrams that represent order-independent graphs are drawn as non-directed graphs
and not as directed graphs with symmetric link probabilities. The difference is that in the latter, the
link between x and y is realized independently of the link between y and x, whereas in the former
they are realized simultaneously. The two are payoff-equivalent for firms. In addition, throughout the
paper, diagrams suppress self-links.
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a price above pm. In contrast, when mq ≤ 1, the firms’ pricing decisions are identical
across formats. In particular, the equilibrium marginal (mixed) format strategy λ∗ has

the property that when one firm plays λ∗, its rival is indifferent among all formats

because they all induce the same probability of a price comparison.

The threshold q∗ = 1
m
is of interest. When mq > 1, the core format dominates

peripheral formats in terms of comparability, in that adopting it leads to a higher

comparison probability regardless of the rival firm’s format decision. In contrast, when

mq < 1, each format can induce a higher probability of a price comparison, depending

on the rival firm’s format strategy. The equilibrium format strategy λ∗ is precisely

the distribution that equalizes the probability of price comparison across formats, thus

neutralizing the relevance of format decisions for comparability.

The equilibria in the two parameter regions are also fundamentally different in

terms of industry profits. When gauging the competitiveness of a market outcome, our

benchmark is max-min profits: each firm earns the minimal profit enabled by the con-

sumers’ bounded rationality as defined by the comparability structure. When mq > 1,

firms earn equilibrium profits above the max-min level. When firm 1 charges the high-

est price in the equilibrium distribution (equal to the consumer’s reservation value), it

adopts a peripheral format because it minimizes comparability. For firm 2 to act as

competitively as possible (so as to push firm 1’s payoff to the max-min level), it should

adopt the core format because it maximizes comparability. In equilibrium, however,

whenever firm 2 charges a price above pm, it adopts the less comparable, peripheral

formats, thus lowering the overall probability of price comparison and giving firm 1 ad-

ditional market power which yields profits in excess of the max-min level. In contrast,

when mq ≤ 1, equilibrium profits achieve the max-min level by a straightforward ap-

plication of the Minimax Theorem. In particular, the fact that the equilibrium format

strategy λ∗ induces a comparison probability that is independent of the opponent’s

format choice implies that λ∗ both max-minimizes and min-maximizes the probability

of a price comparison. As a result, when a firm charges the reservation value (the

highest price in the equilibrium distribution), it earns max-min profits.

What are the theoretical implications of this equilibrium analysis for market regula-

tion? Current regulatory practice seeks to harmonize product description and minimize

the number of formats. Indeed, in the case of the star graph, industry profits and ex-

pected prices increase withm and decrease with q. This is consistent with the intuition

that simplifying comparison is beneficial for consumer welfare. However, as we shall

see later, in environments that are only slightly more complex than the star graph, this

intuition can be misleading, and regulatory interventions that enhance comparability
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can make the market outcome less competitive, once the firms’ equilibrium response to

the intervention is taken into account. In addition, we will show that there is a subtle,

non-trivial connection between comparability and the amount of consumer switching

that occurs in equilibrium.

1.2 Overview of the Main Results

After presenting the model in Section 2, we analyze Nash equilibria for general order-

independent graphs in Section 3. The analysis highlights a novel graph-theoretic prop-

erty, called “weighted regularity”, which extends the familiar notion of regular graphs,

and turns out to be the appropriate way to generalize the distinction between the

mq > 1 and mq ≤ 1 regions made in the context of the star graph. A graph is

weighted-regular if nodes can be assigned weights, such that each node has the same

total weighted expected number of links. Under weighted regularity, all formats are

equally comparable, once the frequency with which they are used is factored in.

We show that if a graph is weighted-regular, there exists a symmetric Nash equi-

librium in which the firms’ price and format strategies are statistically independent,

and their payoffs are equal to the max-min level. Conversely, if firms’ price and for-

mat strategies are statistically independent in some Nash equilibrium, the graph must

be weighted-regular and firms necessarily earn max-min payoffs in this equilibrium.

Moreover, their marginal pricing strategies must be identical. Thus, correlation be-

tween price and format decisions is a necessary (observable) manifestation of “collusive”

equilibrium profits.

In Section 4, we turn to a class of order-independent graphs, referred to as “bi-

symmetric”, which generalize the star graph. In bi-symmetric graphs, the set of for-

mats is partitioned into two categories, such that the probability of a link between two

formats depends only on their categories. We provide a complete characterization of

the (unique) symmetric Nash equilibrium for bi-symmetric graphs. We use this char-

acterization to demonstrate that regulatory interventions that enhance comparability

may have subtle and unexpected implications for equilibrium profits and consumer

switching.

In Section 5, we relax order independence and examine the extent to which our

equilibrium characterization for order-independent graphs can be extended. Section 6

is devoted to a discussion of the relation between our model and the more conventional

view of product differentiation based on preference heterogeneity.
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1.3 Related Literature

Our paper joins recent attempts to formalize in broad terms the various ways in which

choice behavior is sensitive to the “framing” of alternatives. Rubinstein and Salant

(2008) study choice behavior, where the notion of a choice problem is extended to

include both the choice set and a frame, interpreted as observable information which

should not affect the rational assessment of alternatives but nonetheless affects choice.

A choice function assigns an element in the choice set to every “frame-augmented”

choice problem. Rubinstein and Salant conduct a choice-theoretic analysis of such ex-

tended choice functions, and identify conditions under which extended choice functions

are consistent with utility maximization. Bernheim and Rangel (2007) use a similar

framework to extend standard welfare analysis to situations in which choices are sen-

sitive to frames. Our notion of “frame dependence” differs from the one in the above

models. First, we associate frames (i.e., formats) with individual alternatives, rather

than entire choice sets. Second, in our model framing creates preference incomplete-

ness but never leads to preference reversal. Finally, our focus is on market implications

rather than choice-theoretic analysis.

This paper is closely related to Eliaz and Spiegler (2007), which first formalized

the idea that framing (and marketing in general) affects preference incompleteness by

influencing the set of alternatives that consumers subject to their preference ranking.

There are two major differences. First, Eliaz and Spiegler (2007) assume that the

consumer’s propensity to consider a new market alternative is a function of its frame

and the default’s payoff-relevant details. Second, in the market applications analyzed

in Eliaz and Spiegler (2007), framing decisions are costly and price setting is assumed

away. The resulting market model is substantially different from ours, emphasizing

the firms’ trade-off between increasing their market share and economizing on their

fixed marketing costs. Chioveanu and Zhou (2009) analyze a many-firms variant on

our model in which the comparability structure is a reduced form of the star graph

and consumers lack default options. They show that the market equilibrium need not

converge to the competitive outcome as the number of firms tends to infinity.

More generally, our paper contributes to a growing theoretical literature on the

market interaction between profit-maximizing firms and boundedly rational consumers.

Rubinstein (1993) analyzes monopolistic behavior when consumers differ in their abil-

ity to understand complex pricing schedules. Piccione and Rubinstein (2003) study

intertemporal pricing when consumers have diverse ability to perceive temporal pat-

terns. Spiegler (2006a,b) analyzes markets in which profit-maximizing firms compete

over consumers who rely on naive sampling to evaluate each firm. Gabaix and Laib-
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son (2006) and Eliaz and Spiegler (2008) study interaction with consumers having

limited awareness of future contingencies. Spiegler (2006b) and Gabaix and Laibson

(2006) are specifically preoccupied with ways firms strategically use “confusing” pricing

schemes to increase consumers’ decision errors. Other papers (Carlin (2008), Ellison

and Wolitzky (2008) and Wilson (2008)) model obfuscation as a deliberate attempt to

increase rational consumers’ search costs.

Finally, our paper can be viewed as an extension of a well-known model due to

Varian (1980), in which consumers are divided into two groups: those who make perfect

price comparisons, and those who are “loyal” to the firm they are initially assigned to

and thus make no comparison with other market alternatives. In equilibrium, firms

play a mixed pricing strategy. In Varian’s model, the fraction of “loyal” consumers is

exogenous, whereas in our model it is a function of the formats that firms adopt for

their products. An interesting aspect of our analysis is the characterization of cases

(captured by the notion of weighted regularity) in which format decisions become

irrelevant in equilibrium, such that our model effectively collapses into Varian’s.

2 The Model

A graph is a pair (X,π), where X is a finite set of nodes and π : X ×X → [0, 1] is a

function that determines the probability π(x, y) with which a directed edge links node

x to node y. Let n denote |X|. We refer to nodes as formats, as they represents various
ways in which firms can frame the pricing of an intrinsically homogeneous product. A

graph π is deterministic if for every distinct x, y ∈ X, π(x, y) ∈ {0, 1}. A graph π is

order independent if π(x, y) = π(y, x) for all x, y ∈ X. Assume that π(x, x) = 1 for

every x ∈ X - that is, every format is linked to itself.4

Consider a market consisting of two identical, expected-profit maximizing firms and

one consumer. The firms produce a homogenous product at zero cost. The consumer

is interested in buying one unit of the product. His willingness to pay for the product

is 1, independently of the firms’ format decisions. The firms play a simultaneous-move

game with complete information. A pure strategy for firm i is a pair (pi, xi), where

pi ∈ [0, 1] is a price and xi ∈ X is a format. We allow firm i to employ mixed strategies

of the form
¡
λi, (F

x
i )x∈Supp(λi)

¢
, where λi ∈ ∆(X) and F x

i is a cdf over [0, 1] conditional

on x ∈ Supp(λi). We refer to λi as firm i’s format strategy and to F x
i as firm i’s

pricing strategy at x. The marginal pricing strategy induced by a mixed strategy

4This assumption is made for expositional simplicity. All our results continue to hold (subject to
minor modifications in the case of Section 4) if we assume instead that π(x, x) > 0 for all x ∈ X.
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¡
λ, (F x)x∈Supp(λ)

¢
is

F =
X

x∈Supp(λ)

λ(x)F x

Given a cdf F on [0, 1], let F− denote its left limit. For any subset non-empty Z ⊆ X,

U(Z) denotes the uniform distribution over Z.

Given a realization (pi, xi)i=1,2 of the firms’ strategies, the consumer chooses a firm

according to the following rule. He is randomly assigned to a firm - with probability
1
2
for each firm. Suppose that he is assigned to firm i. If there is a direct link from xi

to xj - an event that occurs with probability π(xi, xj) - the consumer makes a price

comparison and chooses firm j if pj < pi. In all other cases, the consumer chooses the

initially assigned firm i.

To illustrate the firms’ payoff function, consider the graph given by Figure 2. Let

X = {x, y}, π (x, y) = q and π(y, x) = 0. Suppose that firm 1 adopts the format x

while firm 2 adopts the format y. If p1 < p2, firm 1 earns a payoff of 1
2
p1 while firm 2

earns 1
2
p2. If p1 > p2, firm 1 earns p1 · (12 −

1
2
q) while firm 2 earns p2 · (12 +

1
2
q).

 

yx q

(Figure 2)

When firm i plays the mixed strategy
¡
λi, (F

x
i )x∈Supp(λi)

¢
, we can write firm j’s

expected payoff from the pure strategy (p, x) as follows:

p

2
· {1 +

X
y∈X

λi(y) · [(1− F y
i (p)) · π(y, x)− F y−

i (p) · π(x, y)]}

Is consumer choice rational?

Fully rational consumers with perfect ability to make comparisons are represented by

a complete graph - i.e. π(x, y) = 1 for all x, y ∈ X. Rational consumers always make a

price comparison, and in this case the model is reduced to standard Bertrand competi-

tion. For a typically incomplete graph, the consumer’s choice behavior is inconsistent

with maximizing a random utility function over price-format pairs.
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To see why, consider the following deterministic, order-independent graph: X =

{a, b, c}, π(x, y) = 1 for all x, y ∈ X except for π(a, c) = 0. Suppose that p < p0 < p00.

When faced with the strategy profile ((p, a), (p0, b)), the consumer chooses (p, a) with

probability one. Similarly, when faced with the strategy profile ((p0, b), (p00, c)), the

consumer chooses (p0, b) with probability one. However, when faced with the strategy

profile ((p, a), (p00, c)), the consumer chooses each alternative with probability 1
2
. No

random utility function over [0, 1]×X can rationalize such choice behavior. The reason

is that the graph represents a binary relation which is intransitive, and this translates

into intransitivity of the implied revealed preference relation over price-format pairs.

In general, our model of consumer choice with deterministic graphs is a special case

of incomplete preferences over [0, 1]×X, where both strict and weak preference relations
may be intransitive, yet the strict preference relation is acyclic. A probabilistic graph

merely represents a distribution over such incomplete preferences.

2.1 Hide and Seek

Our analysis will make use of an auxiliary two-player, zero-sum game, which is a

generalization of familiar games such as Matching Pennies. The players (not to be

identified with the firms) are referred to as hider and seeker, denoted h and s. The

players share the same action space X. Given the action profile (xh, xs), the hider’s

payoff is −π(xh, xs) and the seeker’s payoff is π(xh, xs). We will refer to this game as
the hide-and-seek game associated with (X, π). Given a mixed-strategy profile (λh, λs)

in this game, the probability that the seeker finds the hider is

v (λh, λs) =
X
x∈X

X
y∈X

λh (x)λs (y)π (x, y)

To see the relevance of this auxiliary game to our model, suppose that firm 1’s

marginal format and price strategies are λ and F , respectively, where the latter is

continuous over the support [pl, pu]. When firm 2 considers charging the price pu, it

should select a format that minimizes the probability of a price comparison. Hence,

it behaves as a hider in the hide-and-seek game, where the seeker’s strategy is λ.

Similarly, when firm 2 considers charging the price pl, it should select a format that

maximizes the probability of a price comparison. Hence, it behaves as a seeker in the

hide-and-seek game, where the hider’s strategy is λ. When a firm considers charging

an intermediate price, it reasons partly as a hider and partly as a seeker.
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The value of the hide-and-seek game is

v∗ = max
λs
min
λh

v (λh, λs)

The max-min payoff of a firm in our model is thus 1
2
(1 − v∗). The reason is that the

worst-case scenario for a firm is that its opponent plays p = 0 and adopts the seeker’s

max-min format strategy, to which a best-reply is to play p = 1 and minimize the

probability of a price comparison.

2.2 Discussion

We devote this sub-section to a discussion of several features of our model.

Irrelevance of prices for comparability

Although our framework is quite general, it does rely on a strong, admittedly prob-

lematic assumption: the comparability of market alternatives depends only on their

formats, and not on the actual prices. Since the modeler could always incorporate

prices into the definition of formats, the real assumption made here is that a firm’s

choice of format does not restrict the set of prices it can charge.

This assumption clearly entails a loss of generality. Suppose, for example, that

firms sell a product with attributes A and B; a format is a price pair (pA, pB), and

the price paid by the consumer is pA + pB. Then, a firm’s choice of format uniquely

determines its price, contrary to our assumption. One may wonder whether we could

redefine the set of formats in a way consistent with our assumption. The answer is

negative. For example, it is natural to assume that consumers are able to compare

two different price pairs if and only if one dominates the other. It can be verified that

there does not exist a set of formats which represents this comparability structure and

at the same time satisfies the assumption that a firm’s format choice does not restrict

its set of feasible prices. An interesting generalization would assume that every format

x ∈ X is associated with a set of feasible prices P (x).

Default bias

Although the default bias inherent in the consumer’s choice procedure is backed by

experimental evidence and everyday intuition, one could contemplate alternative as-

sumptions as to how consumers choose when confronting hard-to-compare formats.

For example, they could randomize between firms, or switch away from the default

with probability one. It should be emphasized that in the case of order-independent
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graphs, these alternative assumptions (as well as any rule that does not discriminate

between firms 1 and 2) are equivalent for equilibrium analysis, as they all induce the

same payoff function for firms; the distinction between them is relevant only for our

discussion of consumer switching. Only when order independence is relaxed does the

distinction matter for firms’ equilibrium behavior.

Reservation values

In our model firms cannot use their format decisions to fool consumers into paying

a price above the reservation value, even when they are unable to compare formats.

One could argue that if consumers have limited ability to understand the price they

are facing, firms should be able to charge prices above their willingness to pay. This

difficulty with the interpretation of the reservation value is shared by many market

models with boundedly rational consumers. One justification is that there is an implicit

ex-post participation constraint, which prevents firms from charging prices above the

reservation value. This justification makes particularly strong sense, given the default

component of our model. Even if a consumer does not understand the price structure of

the default option, he can appreciate whether he actually pays more than his reservation

value and quit buying from that firm.

Exogeneity of the comparability structure

Our model takes the comparability structure as given: the function π represents an

exogenous distribution over an unobservable characteristic of consumers, namely their

ability to compare formats. We view this as a primitive of the consumers’ choice pro-

cedure, analogous to their preferences. The comparability structure could be derived

from a larger decision problem, in which the consumer (optimally) chooses in a prior

stage whether to acquire this ability by incurring “thinking costs”. For example, in the

“star graph” example of Section 1.1, the reason why the consumer fails to convert one

currency into another could be his choice not to memorize the exchange rate. However,

for many purposes, it makes sense to regard π as exogenous. Even if the consumer’s

mastery of exchange rates is a consequence of prior optimization, it is probably ob-

tained taking into account a multitude of market situations, in addition to the one in

question. In other words, it is optimization in a “general equilibrium” sense, whereas

we focus on a “partial equilibrium” analysis.

Simultaneity of price and format decisions

Our model assumes a firm simultaneously chooses a price and a format. An alternative

modeling strategy would be to assume that firms compete in prices only after commit-

ting to the format. We opt for the former because we believe that in most situations of

13



interest - particularly in modern online environments - determining a product’s price

and how to present it are naturally joint decisions; it would be implausible to allow

commitment in formats but not in prices. One could argue that in reality, prices seem

to fluctuate more than formats. However, note that real-life price fluctuations are a

result of many other factors (such as changing costs), from which our model abstracts.

At any rate, analyzing the alternative, two-sage model is straightforward. For

simplicity, consider the case of order-independent graphs. For a given profile (x1, x2)

of the firms’ first-stage format decisions, the price competition second-stage subgame

proceeds exactly as in Varian (1980), where the probability that the consumer makes a

comparison is fixed at π(x1, x2). In the first stage, firms make their format decisions as

if they play a common-interest game in which both share the payoff function −π, such
that in equilibrium, each firm i chooses a format strategy λi that minimizes v(·, λj).
For example, whenever the graph has two formats x and y such that π(x, y) = 0, it

is an equilibrium for one firm to choose x and the other to choose y in the first stage,

with both firms playing p = 1 in the second stage.

2.3 Basic properties of Nash equilibria

We will conduct a detailed analysis of Nash equilibria in the following sections. In

this section, we present two preliminary results. The first characterizes the support

of the marginal pricing strategies when both firms make positive profits. The second

provides a simple necessary and sufficient condition for the equilibrium outcome to be

competitive (that is, both firms charge zero prices).

Proposition 1 In any Nash equilibrium in which firms make positive profits, there

exists a price pl ∈ (0, 1) such that, for i = 1, 2: (i) the support of Fi is [pl, 1]; (ii) Fi is

strictly increasing on [pl, 1].

Proposition 2 Let Fi be a Nash equilibrium marginal pricing strategy for firm i = 1, 2.

Then, F1 (0) = F2 (0) = 1 if and only if there exists a format x∗ ∈ X such that

π(x, x∗) = 1 for every x ∈ X.

A corollary of Proposition 1 is that if firm i earns the max-min payoff 1
2
(1− v∗) in

Nash equilibrium, firm j’s format strategy conditional on p < 1 is a max-min strategy

for the seeker in the associated hide-and-seek game.

The proofs of these results rely on price undercutting arguments that are somewhat

more subtle than familiar ones. For instance, suppose that firm 1’s marginal pricing
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strategy has a mass point at some price p∗ which belongs to the support of firm 2’s

marginal pricing strategy. In conventional models of price competition, there is a clear

incentive for firm 2 to undercut its price slightly below p∗. In our model, however,

price undercutting may have to be accompanied by a change in the format strategy in

order to be effective. Adopting a new format strategy may be undesirable for firm 2

because it could change the probability of a price comparison when the realization of

firm 1’s pricing strategy is p 6= p∗.

For the rest of the paper, we assume that the necessary and sufficient condition for

a competitive equilibrium outcome is violated.

Condition 1 For every x ∈ X there exists y 6= x such that π(y, x) < 1.

This condition ensures that the firms’ max-min payoff is strictly positive - or, equiv-

alently, that the value of the associated hide-and-seek game is strictly below one. Once

competitive equilibrium outcomes have been eliminated, any Nash equilibrium must be

mixed. To see why, assume that each firm i plays a pure strategy (pi, xi). If 0 < pi ≤ pj,

then firm j can profitably deviate to the strategy (pi− ε, xi), where ε > 0 is arbitrarily

small. If pi = 0, firm i earns zero profits, contradicting the observation that the firms’

max-min payoffs are strictly positive. From now on, we will take it for granted that

Nash equilibrium is strictly mixed. We favor a population interpretation of symmetric

mixed-strategy equilibrium. According to this interpretation, there is a “sea” of firms

and consumers, and the two competing firms that each consumer faces are randomly

drawn from this population. A mixed equilibrium strategy represents cross-section

price-format dispersion.

3 Nash Equilibrium under Order Independence

In this section, we analyze mixed strategy equilibria for order-independent graphs.

The analysis hinges on a notion of “uniform comparability” across formats. From a

graph-theoretic point of view, the familiar concept of regular graphs is perhaps the

most basic notion of uniform comparability. An order-independent graph is regular ifP
y∈X π (x, y) = v̄ for all x ∈ X. In a regular graph, all formats are equally comparable

in that all formats have the same expected number of links. However, this notion of

uniform comparability ignores the frequency with which different formats are adopted.

If, for example, x is an isolated node yet both firms adopt it with probability one, the
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consumer will make a price comparison with probability one. Hence, a proper notion of

uniform comparability should take into account the frequency of adoption of different

formats.

Definition 1 An order-independent graph (X, π) is weighted-regular if there exist β ∈
∆(X) and v̄ ∈ [0, 1] such that

P
y∈X β (y)π (x, y) = v̄ for any x ∈ X. We say that β

verifies weighted regularity.

Regularity thus corresponds to a special case in which the format strategy that

verifies weighted regularity is U(X). Note that the set of distributions that verify
weighted regularity is convex. The following are examples of weighted-regular, order-

independent graphs.

Example 3.1: Equivalence relations. Consider a deterministic graph that in which

π(x, y) = 1 if and only if x ∼ y, where ∼ is an equivalence relation. Any distribution
that assigns equal probability to each equivalence class verifies weighted regularity.

Example 3.2: A cycle with random links. LetX = {1, 2, ..., n}, where n is even. Assume
that for every distinct x, y ∈ X, π(x, y) = 1

2
if |y − x| = 1 or |y − x| = n − 1, and

π(x, y) = 0 otherwise. A uniform distribution over all odd-numbered nodes verifies

weighted regularity.

Example 3.3: Linear similarity. Consider the following deterministic graph. Let X =

{1, 2, ..., 3L}, where L ≥ 2 is an integer. For every distinct x, y ∈ X, π(x, y) = 1 if

and only if |x− y| = 1. A uniform distribution over the subset {3k− 1}k=1,...,L verifies
weighted regularity.

The star graph of Section 1.1 is weighted regular whenever mq ≤ 1. Let xc denote
the core node. The format strategy that verifies weighted regularity in this case is λ∗,

defined by the following equation, which holds for every peripheral format x 6= xc:

λ∗(xc) · 1 + (1− λ∗(xc)) · q = λ∗(xc) · q + λ∗(x) · 1 + (1− λ∗(xc)− λ∗(x)) · 0

The L.H.S. is the probability of a price comparison of the format xc, while the R.H.S.

is the probability of a price comparison of any peripheral format x 6= xc.

An equivalent definition of weighted regularity makes use of the auxiliary hide-and-

seek game. A graph is weighted-regular if and only if the associated hide-and-seek

game has a symmetric Nash equilibrium.
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Lemma 1 The distribution λ ∈ ∆(X) verifies weighted regularity in a graph (X,π) if

and only if (λ, λ) is a Nash equilibrium in the associated hide-and-seek game.

Proof. Suppose that λ verifies weighted regularity. If one of the players in the as-
sociated hide-and-seek game plays λ, every strategy for the opponent - including λ

itself - is a best-reply. Now suppose that (λ, λ) is a Nash equilibrium in the associ-

ated hide-and-seek game. Denote v(λ, λ) = v̄. If some format attains a higher (lower)

probability of a price comparison than v̄, then λ cannot be a best-reply for the seeker

(hider). Therefore, very format generates the same probability of a price comparison -

namely v̄ - against λ.

An important feature of our model is that it allows firms to condition their pricing

strategy on the format they adopt. It is therefore of interest to know when they choose

not to do so in equilibrium, especially as this turns out to have important welfare

implications. A mixed strategy
¡
λ, (F x)x∈Supp(λ)

¢
exhibits price-format independence

if F x = F y for any x, y ∈ Supp(λ). The next proposition establishes a link between

weighted regularity, price-format independence and equilibrium profits. Define the cdf

G∗(p) = 1− 1− v∗

2v∗
· 1− p

p
(1)

with support [
1− v∗

1 + v∗
, 1].

Proposition 3 Consider a graph (X,π).

(i) Suppose that λ1 and λ2 verify weighted regularity. Then, there exists a Nash equi-

librium in which firm i, i = 1, 2, plays the format strategy λi and the pricing strategy

F x
i ≡ G∗ for all x ∈ X, and earns max-min payoffs.

(ii) Let
¡
λi, (F

x
i )x∈Supp(λi)

¢
i=1,2

be a Nash equilibrium in which both firms’ strategies

exhibit price-format independence. Then, λ1 and λ2 verify weighted regularity, firms

earn max-min payoffs, and their marginal pricing strategy is given by 1.

Proof. (i) Suppose that firm i plays the format strategy λi. By the definition of

weighted regularity, every format that the rival firm j may adopt attains the same

probability of a price comparison v∗ against λi. We can thus assume that the probability

of a price comparison is exogenously fixed at v∗. Construct a cdf F such that every p ∈
[
1− v∗

1 + v∗
, 1] generates the same expected payoff. This leads to the following functional

equation:
1− v∗

2
=

p

2
· [1 + v∗(1− F (p))− v∗F (p)]
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The unique solution is G∗. It is straightforward to verify that no firm would want to

deviate to a price p <
1− v∗

1 + v∗
.

(ii) By assumption, F x
i = Fi for any x ∈ Supp(λi), i = 1, 2. Therefore, x ∈

argmin v(·, λi) for every x ∈ Supp(λj) - otherwise, it would be profitable to deviate

to the pure strategy (1, y) for some y ∈ argmin v(·, λi). Similarly, x ∈ argmax v(·, λi)
for every x ∈ Supp(λj) - otherwise, it would be profitable to deviate to the pure

strategy (pl, y) for some y ∈ argmax v(·, λi). It follows that (λ1, λ2) and (λ2, λ1)

are Nash equilibria of the associated hide-and-seek game. Hence, as λ1 and λ2 max-

minimize as well as min-maximize v, (λ1, λ1) and (λ2, λ2) are also Nash equilibria of the

associated hide-and-seek game. By Lemma 1, both λ1 and λ2 verify weighted regularity.

Relatively standard arguments (see Proposition 1 in Spiegler (2006)) establish that the

equilibrium pricing strategy for each firm must be given by (1) if the probability of a

price comparison is exogenously fixed at v∗.

Formula (1) is precisely the equilibrium strategy in the two-firm case of Varian’s

model described in Section 1.3 (Varian (1980)). When firms in our model play a format

strategy that verifies weighted regularity, they neutralize the relevance of the format

decision because this strategy enforces uniform comparability across formats. There-

fore, the model is effectively reduced to Varian’s model, which does not incorporate

format decisions. It should be noted that, for weighted regularity alone, it suffices that

the support of the pricing strategies is the same at all formats in the support.

To demonstrate this result, let us revisit some of the examples presented in the

previous sub-section. In Example 3.2, suppose that firm 1 (2) plays a format strategy

which is a uniform distribution over all odd-numbered (even-numbered) nodes. Both

distributions verify weighted regularity. Suppose further that both firms play indepen-

dently the pricing strategy given by (1), where v∗ = 2
n
. This strategy profile constitutes

a Nash equilibrium.

In Example 3.3, suppose that both firms play a format strategy which mixes uni-

formly over the subset of nodes {3k − 1}k=1,...,L. This distribution verifies weighted
regularity. Suppose further that both firms play independently the pricing strategy

given by (1), where v∗ = 1
L
. This strategy profile constitutes a symmetric Nash equi-

librium, in which the consumer makes a price comparison if and only if the firms adopt

the same format. In this equilibrium, the formats played with positive probability are

“local monopolies”: when the consumer faces two different formats, he adheres to his

default. Price comparisons occur only when both firms use the same format.
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While correlation between prices and formats is necessary for “collusive” equilib-

rium profits, it is not sufficient. In particular, there exist weighted regular graphs

that admit Nash equilibria in which price and format decisions are correlated, and yet

firms earn max-min payoffs. This is trivially the case when we take a weighted-regular

graph and replicate one of its nodes, such that the new graph contains two distinct

formats x, x0 with π(x, y) = π(x0, y) for every y ∈ X. In this case, we can construct an

equilibrium in which the format strategy verifies weighted regularity (hence firms earn

max-min payoffs), yet the format x is associated with low prices while the format x0 is

associated with high prices. In Piccione and Spiegler (2009) we provide a non-trivial

example that does not rely on duplicating nodes.

Unlike the link between price-format independence and weighted regularity, we

conjecture that there is a logical equivalence between weighted regularity and max-

min equilibrium payoffs. However, at present we can only prove partial results that are

consistent with this conjecture. For example, suppose that we impose the restriction

that at least one firm plays an equilibrium format strategy that has full support.

Proposition 4 Consider a Nash equilibrium
¡
λi, (F

x
i )x∈Supp(λi)

¢
i=1,2

. If firm 1 earns

max-min payoffs and λ2(x) > 0 for all x ∈ X, then (X, π) is weighted-regular.

The proof of this result relies entirely on the associated hide-and-seek game. It

shows that if the seeker in the hide-and-seek game has a max-min strategy with full

support, there must exist a symmetric Nash equilibrium in this game.

4 Bi-Symmetric Graphs

In this section, we provide a complete characterization of symmetric Nash equilibria

in a special class of graphs, which extends the star graph of Section 1.1. An order-

independent graph (X, π) is bi-symmetric if X can be partitioned into two sets, Y and

Z, such that for every distinct x, y ∈ X:

π(x, y) =

⎧⎪⎨⎪⎩
qY if x, y ∈ Y

qZ if x, y ∈ Z

q if x ∈ Y , y ∈ Z

wheremax{qY , qZ , q} < 1. Let nI denote the number of formats in category I ∈ {Y,Z}.
In the star graph, nZ = 1, nY = m, qZ = 1 and qY = 0.
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Bi-symmetric graphs are attractive because with simple parameter restrictions they

capture various instances of comparability. When q < min{qY , qZ}, we may interpret
formats within each of the two categories Y and Z as relatively similar and therefore

relatively easy to compare, whereas formats from different categories as more difficult

to compare. In contrast, when qY < q < qZ , we may interpret the formats in category

Z as inherently simpler than those in Y (possibly because they contain translations or

conversion guides that are absent from the formats in Y ).

Define the “average connectivity” within category I ∈ {Y,Z} as

q∗I =
1 + qI · (nI − 1)

nI

Without loss of generality, assume q∗Z ≥ q∗Y .

One can verify (see the proof of Proposition 5 in the Appendix) that a bi-symmetric

graph is weighted-regular if and only if

(q∗Y − q)(q∗Z − q) ≥ 0

The star graph satisfies q∗Z = 1 and q∗Y =
1
m
, such that this inequality holds if and

only if mq ≤ 1. When q∗Y = q∗Z = q, there is a continuum of format strategies that

verify weighted regularity. Otherwise, the unique format strategy that verifies weighted

regularity assigns probability (q∗Y − q)/[(q∗Y − q) + (q∗Z − q)] to the set Z, and mixes

uniformly within Y and within Z. The value of the hide-and-seek game under weighted

regularity is

v∗ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
q when q∗Y = q∗Z = q

q∗Y q
∗
Z − q2

(q∗Y − q) + (q∗Z − q)
otherwise

(2)

By Proposition 3, if weighted regularity holds, there is a symmetric equilibrium

in which the firm’s marginal format strategy verifies weighted regularity, while their

(format-independent) pricing strategy is given by (1).

When the condition for weighted regularity is not satisfied - i.e., when q is strictly

between q∗Y and q∗Z - the value of the hide-and-seek game is v
∗ = q, since there is

a Nash equilibrium in this game in which the seeker (hider) plays U(Z) (U(Y )). It
can be verified that there exists a equilibrium with the following “cutoff” structure.

There exists a price pm ∈ (pl, 1), such that the format strategy conditional on any price

20



p ∈ [pl, pm) is λL ≡ U(Z), the format strategy conditional on any price p ∈ (pm, 1] is
λU ≡ U(Y ). The marginal pricing strategy F satisfies:

F (pm) =
q − q∗Y
q∗Z − q∗Y

(3)

To compute the firms’ equilibrium payoff, let us write down the payoff that a firm

earns when it plays the pure strategy - which belongs to the support of the equilibrium

mixed strategy - consisting of the price p = 1 and some format y ∈ Y :

1

2
· [F (pm) · (1− q) + (1− F (pm) · (1− q∗Y )]

Plugging in (3), we obtain the expression:

1

2
· [ q − q∗Y
q∗Z − q∗Y

· (1− q) +
q∗Z − q

q∗Z − q∗Y
· (1− q∗Y )] (4)

which strictly exceeds the max-min payoff 1
2
(1 − q). We omit the full description of

the conditional pricing strategies for the sake of brevity. The following proposition

characterizes the symmetric equilibria of bi-symmetric graphs.

Proposition 5 Let (X,π) be a bi-symmetric graph. In any symmetric Nash equilib-

rium:

(i) If (q∗Y −q)(q∗Z−q) ≥ 0, firms play a format strategy that verifies weighted regularity.
In particular, if (q∗Y − q)(q∗Z − q) > 0, the pricing strategy at each x ∈ X is given by

(1), where v∗ is given by (2). Firms earn the max-min payoff 1
2
(1− v∗).

(ii) If (q∗Y −q)(q∗Z−q) < 0, firms play the cutoff equilibrium characterized by (λL, λH , F )
above. Their equilibrium payoff is given by (4).

Thus, when parameter values fit situations in which the categorization of formats

captures their relative complexity, the firms’ equilibrium strategy displays perfect price-

format correlation and firms earn “collusive” profits. In contrast, when parameter

values fit situations in which the categorization of formats captures their similarity,

the equilibrium strategy displays price-format independence and firms earn max-min

payoffs.
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4.1 Does Greater Comparability ImplyMore Competitive Out-

comes?

Proposition 5 has interesting implications for relationship between industry profits

(equivalently, the expected price paid by the consumer) and comparability. Imagine

a regulator who wishes to impose a product description standard that will enhance

comparability. Suppose that q∗Y < q < q∗Z . If the regulator’s intervention increases

the values of q and q∗Y , the intervention will lower equilibrium profits. If, however, the

intervention causes an increase in the value of q∗Z (without changing q and q∗Y ), the

intervention will raise equilibrium profits.

The intuition is as follows. In the cutoff equilibrium, the probability that a firm

charging p = 1 faces a price comparison is a weighted average of q and q∗Y . The para-

meter q∗Z affects this probability only indirectly, by changing the equilibrium weights.

Specifically, a higher q∗Z gives expensive firms a stronger incentive to adopt the “hiding”

formats that constitute Y . As a result, the equilibrium cutoff price pm changes and

firms are more likely to charge a price above pm (and thus adopt the format strategy

λH). Since the intervention leaves q and q∗Y unchanged, and since q > q∗Y , the overall

probability that an expensive firm faces a price comparison decreases. Hence, expensive

firms gain greater market power and greater profits.

Thus, “local” improvements in comparability may have a counter-intuitive, detri-

mental impact on consumer welfare. Finding a general characterization of the class

of transformations of π that lead to unambiguously more competitive outcomes is a

challenging comparative-statics problem. For instance, in weighted-regular graphs,

equilibrium profits unambiguously decrease with π. The reason is that the equilib-

rium profits are 1
2
(1− v∗), where v∗ is the value of the hide-and-seek, which increases

whenever any entry in the seeker’s payoff function is increased.

4.2 Consumer Switching

The consumer protection reports quoted in the Introduction convey the message that

greater market competitiveness goes hand-in-hand with consumers switching more fre-

quently, and that limited comparability plays a significant role in this regard. The case

of bi-symmetric graphs illustrates some subtleties in the relationship between compa-

rability and switching.

In a symmetric equilibrium, the probability with which the consumer switches firm

conditional on making a price comparison (a quantity known in the marketing liter-

ature as the “conversion rate”) is 1
2
. The reason is simple. Conditional on making
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a comparison, the consumer faces a symmetric posterior probability distribution over

price profiles (p1, p2). Since the marginal equilibrium pricing strategy is continuous,

the probability that the default is the more expensive option is 1
2
.

Since the conversion rate is 1
2
, it follows that the switching rate is half the prob-

ability that consumers make a price comparison. When the bi-symmetric graph is

weighted-regular, the equilibrium strategy displays price-format independence, and the

probability of a price comparison is given by expression (2). Since equilibrium payoffs

are equal to the max-min level in this range of parameter values, any improvement in

comparability leads to a higher switching rate and lower equilibrium profits.

In contrast, when the bi-symmetric graph is not weighted-regular, the equilibrium

probability of price comparison is

[F (pm)]2q∗Z + 2F (p
m)(1− F (pm)q + [1− F (pm)]2q∗Y

The co-movement of this expression with the competitiveness of the market outcome is

ambiguous because, as we already showed, equilibrium profits in the relevant parameter

range increase with q∗Y and decrease with q∗Z. Thus, when prices and formats are

correlated, the positive link between the switching rate and market competitiveness

breaks down.

5 Order-Dependent Graphs

In this section we explore some properties of Nash equilibria for graphs that violate

order independence. We begin by extending the notion of weighted regularity.

Definition 2 A graph (X,π) is weighted-regular if there exist β ∈ ∆(X) and v̄ ∈ [0, 1]
such that

P
y∈X β (y)π (x, y) =

P
y∈X β (y)π (y, x) = v̄ for all x ∈ X. We say that β

verifies weighted regularity.

The equivalence between weighted regularity and the existence of symmetric equi-

librium in the associated hide-and-seek game, established for order-independent graphs,

needs to be qualified when order independence is relaxed.

Lemma 2 (i) If λ verifies weighted regularity, then (λ, λ) is a Nash equilibrium in the
hide-and-seek game; (ii) If (λ, λ) is a Nash equilibrium in the hide-and-seek game and

λ(x) > 0 for every x ∈ X, then λ verifies weighted regularity.
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Proof. The proof of part (i) is identical to the order-independent case. Let us turn
to part (ii). Suppose that (λ, λ) is a Nash equilibrium in the hide-and-seek game.

Let μx ∈ ∆(X) denote a degenerate probability distribution that assigns probability

one to node x. Since λ is a best-reply for the hider against λ, v(μx, λ) ≥ v(λ, λ) for

every x ∈ X. By the full-support assumption, if there is a frame x ∈ X for which

v(μx, λ) > v(λ, λ), then
P

x∈X λ(x)v(μx, λ) > v(λ, λ). The L.H.S. of this inequality is

by definition v(λ, λ), a contradiction. Similarly, since λ is a best-reply for the seeker

against λ, v(λ, μx) ≤ v(λ, λ) for every x ∈ X. By the full-support assumption, if there

is a frame x ∈ X for which v(λ, μx) < v(λ, λ), then
P

x∈X λ(x)v(λ, μx) < v(λ, λ), a

contradiction. It follows that for every x ∈ X, v(μx, λ) = v(λ, μx) = v(λ, λ).

To see how the full support assumption is necessary for the second part of this

lemma, consider the following example. Let X = {a, b, c}, π(a, b) = π(a, c) = 1 and

π(x, y) = 0 for all other distinct x, y. The hide-and-seek game induced by this graph

has a symmetric Nash equilibrium in which both the hider and the seeker play b and

c with probability 1
2
each. However, the graph is not weighted-regular.

The full-support qualification carries over to the next result, which is a variation

on Proposition 3. The proof is close as well, and therefore omitted.

Proposition 6 (i) Suppose that λ1 and λ2 verify weighted regularity. Then, there

exists a Nash equilibrium in which each firm i = 1, 2 plays the format strategy λi and

the pricing strategy F x
i ≡ G∗ for all x ∈ X, and earns max-min payoffs.

(ii) Let
¡
λi, (F

x
i )x∈Supp(λi)

¢
i=1,2

be a Nash equilibrium in which both firms’ strategies

exhibit price-format independence and the format strategies have full support. Then,

λ1 and λ2 verify weighted regularity, firms earn max-min payoffs, and their marginal

pricing strategy is given by (1).

One can extend the notion of bi-symmetric graphs by allowing asymmetric connec-

tivity between the sets Y and Z - that is, π(y, z) = qY Z and π(z, y) = qZY for every

y ∈ Y , z ∈ Z, where qY Z 6= qZY (while maintaining the assumption that connectivity is

symmetric and constant within each of the two sets). The reader can easily verify that

such graphs are never weighted regular. It turns out that these graphs can give rise to

patterns of price-format correlation that are different from those captured by the cutoff

equilibria of Section 4. Recall the graph given by Figure 2: X = {x, y}, π (x, y) = q and

π (y, x) = 0. There is a symmetric Nash equilibrium in which the firms play a format

strategy that satisfies λ (x) = 1−q
2−q , and a pricing strategy for which the supports of F

x
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and F y are [ 1
3+q

, 1] and [ 1−q
3−q2 ,

1
3+q
]. Thus, the supports of the format-dependent price

strategies are nested in one another. Firms earn max-min payoffs in this equilibrium.

6 Asymmetric Firm Assignment

Equilibrium analysis under order dependence is greatly simplified if the assumption

that the consumer’s initial firm assignment is symmetric is dropped. Suppose that

the consumer is initially assigned to firm 1, referred to as the Incumbent. Firm 2 is

referred to as the Entrant. In this case, firm 1’s max-min payoff is 1 − v∗, while firm

2’s max-min payoff is zero.

Proposition 7 Any Nash equilibrium
¡
λi, (F

x
i )x∈Supp(λi)

¢
i=1,2

of the Incumbent-Entrant

model has the following properties:

(i) (λ1, λ2) constitutes a Nash equilibrium in the associated hide-and-seek game in which

firm 1 (2) is the hider (seeker).

(ii) Firm 1’s equilibrium payoff is 1−v∗ while firm 2’s equilibrium payoff is v∗(1− v∗).

(iii) The firms’ marginal pricing strategies over [1− v∗, 1) are given by:

F1(p) = 1− 1− v∗

p

F2(p) =
1

v∗
· [1− 1− v∗

p
]

and F1 has an atom of size 1− v∗ at p = 1.

The simplicity of the equilibrium characterization in this case results from the

firms’ unambiguous incentives when choosing their format strategies. The Incumbent

has an unequivocal incentive to avoid a price comparison (because then it is chosen

with probability one), while the Entrant has an unequivocal incentive to enforce a price

comparison (because otherwise it is chosen with probability zero).

7 Concluding Remarks: Framing and Product Dif-

ferentiation

This paper studies the implications of limited, format-sensitive comparability for mar-

ket competition. Throughout the paper, we adopted a complexity-based interpretation
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of the comparability structure. A format was interpreted as a way of presenting prices,

and the function π measured the “ease of comparison” between price formats.

However, building on Eliaz and Spiegler (2007), we can offer a broader interpreta-

tion of the graph (X, π) and interpret a format as any utility-irrelevant aspect of the

product’s presentation which affects the propensity to make a preference comparison.

In particular, a format can represent an advertising message, a package design or a

positioning strategy. According to this interpretation, a link from x to y can mean

that the format x reminds the consumer of the format y, or creates mental associations

that eventually lead him to pay attention to any product framed by y. From this point

of view, our framework is applicable to many aspects of marketing and framing.

However, adopting this broader interpretation of formats makes the assumption

that formats are utility-irrelevant less obvious. For example, while the package of a

new product may affect the probability that consumers notice it and thus consider it as

a potential substitute for their default product, consumers may also derive direct utility

from certain aspects of the package design. We are thus led to a comparison between

our limited-comparability approach and conventional models of product differentiation

(e.g., see Anderson, de Palma and Thisse (1992)). The firms’ mixing over formats

in Nash equilibrium of our model can be viewed as a type of product differentiation.

Since in our model the firms’ product is inherently homogenous, such differentiation

in formats is a pure reflection of the firms’ attempt to avoid price comparisons. By

comparison, in conventional models product differentiation is viewed as the market’s

response to consumers’ differentiated tastes.

To understand the relationship between the two approaches, it may be useful to

think of our model in spatial terms. Suppose that firms are stores and graph nodes

represent possible physical locations of stores. A link from one location x to another

location y indicates that it is costless to travel from x to y. The absence of a link

from x to y means that it is impossible to travel in that direction. According to this

interpretation, the consumer follows a myopic search process in which he first goes

randomly to one of the two stores (independently of their locations). Then, he travels

to the second store if and only if the trip is costless. Finally, the consumer chooses the

cheaper firm that his search process has elicited (with a tie-breaking rule that favors

the initial firm).

This re-interpretation is not given here for its realism, but because it is reminiscent

of conventional models of spatial competition. However, there is a crucial difference. In

conventional models of spatial competition, consumers are attached to specific locations

and choose between stores according to their price and the cost of travelling to their

26



location. In particular, a consumer who is attached to a location x does not care at

all about the cost of transportation between two stores if none are located at x. In

contrast, consumer choice in our model is always sensitive to the probability of a link

between the firms’ locations. Recall that in our model consumer choice is typically

impossible to rationalize with a random utility function over pairs (p, x). In contrast,

conventional models of spatial competition (and product differentiation in general) are

by construction consistent with a random utility function over price-location pairs.

Our model and the more conventional spatial-competition analogue are also dif-

ferent at the level of equilibrium predictions. Consider the star graph with q = 0.

The conventional model admits asymmetric equilibria in which firms adopt different

nodes and charge p = 1. In contrast, recall that our model rules out pure-strategy

equilibria that sustain non-competitive outcomes. In addition, it can be shown that

the anomalous comparative statics of equilibrium profits with respect to link strength

in bi-symmetric graphs cannot be reproduced in the conventional spatial-competition

analogue of our model.

The two perspectives have very different welfare implications. Consider again the

star graph. As the number of peripheral formats m increases, equilibrium profits

rise. Thus, increasing the number of formats has an unambiguously negative effect

on consumer welfare. In contrast, in a standard differentiated-taste model, increasing

the number of available brands has an ambiguous effect. On one hand, it weakens

competitive forces and thus raises prices (as in our model). On the hand other, it

increases the number of available alternatives and thus raises the maximal utility that

each consumer can obtain. This latter feature is absent from the limited-comparability

perspective.

The two contrasting approaches to product differentiation can be conveniently in-

tegrated. Suppose that a consumer type θ is characterized by two primitives: a graph

πθ and a willingness-to-pay function uθ : X → {0, 1}. The function uθ essentially

describes the set of product formats (or brands) that type θ likes, whereas the graph

πθ determines the type’s ability to make price comparisons. Exploring this model, and

particularly its ability to account for real-life consumer behavior data, is an interesting

challenge for future work.
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8 Appendix: Proofs

8.1 Proposition 1

Consider a Nash equilibrium in which firms earn strictly positive payoffs. For each firm

i = 1, 2, let pli denote the infimum of the support of Fi. Clearly, pl1 = pl2. For instance,

if pl1 < pl2, firm 1 makes higher profits by increasing pl1 at some node. Hence, let p
l

denote the infimum of the support of F1 and F2. Since profits are positive, pl > 0.

Suppose that there is an interval (p, p0), pl < p < p0 ≤ 1, such that F2(p) = F−2 (p
0).

Without loss of generality, we can assume that F2(p00) < F2(p) for p00 < p. It follows

that F1(p) = F−1 (p
0) since the profits of firm 1 from any strategy (p00, x), p00 ∈ (p, p0), in

the support of its equilibrium strategy are strictly lower than the profits from (p00+ε, x),

where ε > 0 is sufficiently small. We now show that there exists no x ∈ X such that

(p, x) is a best-reply for either firm. If neither F1 nor F2 have a mass point at p, then

firm i can profitably deviate from any (p − ε, x), where ε > 0 is sufficiently small, to
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(p00, x), p00 ∈ (p, p0). Suppose then that F x
2 has a mass point at p for some x ∈ X. Such

a mass point is a best-reply for firm 2 only if firm 1 also has a mass point at (p, y) for

some y for which π (x, y) > 0 - otherwise, deviating to (p + ε, x) would be profitable

for firm 2, for a sufficiently small ε > 0. But then firm 1 can profitably deviate from

(p, y) to (p− ε, y) for a sufficiently small ε > 0. This concludes the proof.

8.2 Proposition 2

Define XA = {x ∈ X : π (y, x) = 1 for all y ∈ X}. Suppose that F1 (0) = 1. Then,
firm 1 makes zero profits. It follows that F2 (0) = 1 and hence firm 2 also makes zero

profits. Obviously, Supp (λi) ⊆ XA, i = 1, 2, as if λi (x) > 0 and π (y, x) < 1 for some

y, firm j can make positive profits charging p = 1 and choosing y. Hence, XA is not

empty.

Suppose now that XA is not empty. If F1 (0) < 1, then firm 2 makes positive

profits. Thus, F2 (0) < 1 and firm 1 also makes positive profits. We first show that it is

impossible that π (x, y) = 1 for all x ∈ Supp (λ2), y ∈ Supp (λ1). Assume the contrary.

By Proposition 1, the upper bound of the support of Fi is equal to 1 for i = 1, 2. Take

a node z in the support of λ2 such that the upper bound of the support of F z
i is equal

to one. The profits of firm 2 are equal to

1

2

X
x∈X

¡
1− F x−

1 (1)
¢
λ1 (x)

Choosing a price equal to 1− ε and a node x∗ in XA, firm 2 obtains

(1− ε)

2

X
x∈X

(1− π (x∗, x)F x
1 (1− ε) + (1− F x

1 (1− ε)))λ1 (x)

Since firm 2’s payoff is positive, F x−
1 (1) < 1 for some x ∈ Supp (F1). But then,

for ε sufficiently small, the second expression is larger than the first expression, a

contradiction.

Now let p∗ be the lowest price p in Supp (F1) ∪ Supp (F2) for which there exist

x ∈ Supp (λj) and y ∈ Supp (λi), where i 6= j, such that p ∈ Supp (F y
i ) and π (x, y) < 1.

Obviously, p∗ > pl. Without loss of generality, suppose that p∗ ∈ Supp (F y
2 ). Firm 2’s

payoff from the pure strategy (p∗, y) is

p∗

2

X
x∈X

¡
1− π (y, x)F x−

1 (p∗) + π (x, y) (1− F x
1 (p

∗))
¢
λ1 (x)
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If firm 2 deviates to the pure strategy (p∗ − ε, x∗), x∗ ∈ XA, it will earn

p∗ − ε

2

X
x∈X

(1− π (x∗, x)F x
1 (p

∗ − ε) + (1− F x
1 (p

∗ − ε)))λ1 (x)

By the definition of p∗, if F x−
1 (p∗) > 0, then π (y, x) = 1. Since π (x, y) < 1 for some

x ∈ Supp (λ1), for ε sufficiently small, the second expression is larger than the first

expression, a contradiction.

8.3 Proposition 4

The proof is based on the following version of Farkas’ lemma. Let Ω be an l×m matrix

and b an l-dimensional vector. Then, exactly one of the following two statements is

true: (i) there exists β ∈ Rm such that Ωβ = b and β ≥ 0; (ii) there exists δ ∈ Rl such

that ΩT δ ≥ 0 and bT δ < 0.

Suppose that (X,π) is not weighted-regular. Let us first show that for every μ ∈
∆(X) such that μ (x) > 0 for all x ∈ X, there exists μ̃ ∈ ∆(X) such that, for all y ∈ X,X

x∈X
μ (x)π (x, y) <

X
x∈X

μ̃ (x)π (x, y)

Order the nodes so that X = {1, .., n}. Any β ∈ ∆(X) is thus represented by a row

vector (β1, ..., βn). Let Π be a n × n matrix whose ijth entry is π (i, j). Note that

Π = ΠT . Since (X, π) is not weighted-regular, there exist no β ∈ Rn and c > 0 such

that ΠβT = (c, c, ..., c)T . By Farkas’ Lemma, there exists a column vector δ ∈ Rn

such that Πδ ≥ 0 and (c, c, ..., c)δ < 0. Since π(i, i) = 1 for every i ∈ {1, ..., n} and
π(i, j) ≥ 0 for all i, j ∈ {1, ..., n}, we can modify δ into a column vector δ̃ such that

δ̃i > δi for every i, Πδ̃ > 0 and
P

i δ̃i = 0. Let μ ∈ ∆(X) and μ(i) > 0 for every

i ∈ {1, ..., n}. By the construction of δ̃, μ̃ = μ + αδ̃ is also a probability distribution

over X, for a sufficiently small α > 0. Then

Πμ̃T = ΠμT + αΠδ̃ > ΠμT

In particular, every component of the vector Πμ̃T is strictly larger than the correspond-

ing component of ΠμT .

By hypothesis, λ2(x) > 0 for all x ∈ X. We have shown that there exists another

format strategy λ̃ such that every format y ∈ X induces a strictly higher probability

of a price comparison than λ2. This contradicts that λ2 is a max-min strategy.
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8.4 Proposition 5

Consider a bi-symmetric graph (X, π). Define

a = 1 + qY (nY − 1)− qnY

b = 1 + qZ (nZ − 1)− qnZ

One can verify that weighted regularity holds if and only if the system"
a −b
nY nZ

#"
β1

β2

#
=

"
0

1

#
has a non-negative solution - that is, if and only if ab ≥ 0 (or, equivalently, if and only
if (q∗Y − q)(q∗Z − q) ≥ 0).
Let

¡
λ, (F x)x∈Supp(λ)

¢
be a symmetric Nash equilibrium strategy, and let F denote

the equilibrium marginal pricing strategy. Let Sx denote the support of F x, and let pxl

and pxu denote the infimum and supremum of Sx. Let vx(λ) be the probability that

the consumer makes a price comparison conditional on the event that one firm adopts

the format x, that is,

vx (λ) =
X
y∈X

λ (y)π (x, y) (5)

Note that for every x, x0 ∈ Y (similarly, for every x, x0 ∈ Z), vx (λ) = vx
0
(λ) if and

only if λ(x) = λ(x0).

The following claims establish Proposition 5.

Lemma 3 F (p) is continuous on [pl, 1].

Proof. It follows from standard arguments, due to the symmetry of equilibrium.

Lemma 4 λ (x) = λ (x0) for any x, x0 ∈ Y or x, x0 ∈ Z, i = 1, 2.

Proof. Suppose that λ (x) > λ (y) for some x, y ∈ Y . Firm i’s payoff from the pure

strategy (pxu, x) is

pxu

⎛⎝ qY λ (y) (1− F y (pxu))+P
x∈Y−(x,y) (1− F x (pxu)) qY λ (x) +

P
x∈Z (1− F x (pxu)) qλ (x) +

1

2
(1− vx (λ))

⎞⎠ ,
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If the firm deviates to the strategy (pxu, y), it earns

pxu

⎛⎝ λ (y) (1− F y (pxu))P
x∈Y−(x,y) (1− F x (pxu)) qY λ (x) +

P
x∈Z (1− F x (pxu)) qλ (x) +

1

2
(1− vy (λ))

⎞⎠ .
Since λ (x) > λ (y), v (λ) > vy (λ), hence the deviation is profitable. An analogous

argument for Z establishes the claim.

Lemma 5 For any p ∈ [pl, 1], F x (p) = F x0 (p) whenever x, x0 ∈ Y or x, x0 ∈ Z.

Proof. Suppose that F y (p) > F y0 (p) for y, y0 ∈ Y . Firm i’s payoff from the pure

strategy (p, y) is

p

⎛⎝ (1− F y (p))λ (y) + qY
¡
1− F y0 (p)

¢
λ (y)+P

x∈Y−(y,y0) (1− F x (p)) qY λ (x) +
P

x∈Z (1− F x (p)) qλ (x) +
1

2
(1− vy (λ))

⎞⎠
If the firm deviates to the pure strategy (p, y0), it earns

p

⎛⎝ ¡
1− F y0 (p)

¢
λ (y) + qY (1− F y (p))λ (y)+P

x∈Y−(y,y0) (1− F x (p)) qY λ (x) +
P

x∈Z (1− F x (p)) qλ (x) +
1

2

¡
1− vy

0
(λ)
¢
⎞⎠ .

By Lemma 4, λ(y) = λ(y0) and therefore vy (λ) = vy
0
(λ). It follows that the deviation

is profitable.

Lemma 6 If λ (x) = 0 for some x ∈ X, then λ verifies weighted regularity.

Proof. Suppose that λ(x) = 0 for some x ∈ Y . By Lemma 4, λ is a uniform

distribution over Z - thus, in particular, λ(y) = 0 for all y ∈ Y . Therefore, vz (λ) = q∗Z
for every z ∈ Z and vy (λ) = q for every y ∈ Y . If q∗Z 6= q, it must be profitable to

deviate either to the pure strategy (1, y) or to the pure strategy (pl, y). If q∗Z = q, then

λ verifies weighted regularity.

Lemma 7 Suppose that λ (x) > 0 for all x ∈ X. Then:

(i) If (X, π) is not weighted-regular, either pyu = pzl or pzu = pyl for any y ∈ Y and

z ∈ Z.

(ii) If pyu = pzl or pzu = pyl for any y ∈ Y and z ∈ Z, (X,π) is not weighted-regular.
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Proof. (i) Suppose that (X,π) is not weighted-regular and vz (λ) < vy (λ). By Lemma

5, the nodes in Y have the same F y and the nodes in Z have the same F z. Therefore,

Sy ∩ Sz 6= ∅, for any y ∈ Y and z ∈ Z. The following equations must hold in equilib-

rium.

λ (z) qnZ (1− F z (pyu)) +
1

2
(1− vy (λ)) =

λ (z) (1 + qZ (nZ − 1)) (1− F z (pyu)) +
1

2
(1− vz (λ))

λ (z) qnZ + (1 + qY (nY − 1))λ (y)
¡¡
1− F y

¡
pzl
¢¢¢

+
1

2
(1− vy (λ)) =

λ (z) (1 + qZ (nZ − 1)) + qnY λ (y)
¡¡
1− F y

¡
pzl
¢¢¢

+
1

2
(1− vz (λ))

which simplify to

bλ (z) (1− F z (pyu)) = bλ (z)− aλ (y)
¡
1− F y

¡
pzl
¢¢
=

vz (λ)− vy (λ)

2

Hence, b < 0. Since the graph is not weighted regular, a > 0. It can be easily verified

that the above equations hold only if F z (pyu) = 0 and F y
¡
pzl
¢
= 1. If vz (λ) > vy (λ),

a symmetric argument establishes the claim.

(ii) Suppose that pyu = pzl. Note that

vz (λ)− vy (λ) = bλ (z)− aλ (y)

In equilibrium

bλ (z) =
bλ (z)− aλ (y)

2

Since λ (y) , λ (z) > 0, we have ab < 0. A symmetric argument establishes the claim

for the case pzu = pyl.

Lemma 8 Suppose that λ (x) > 0 for any x ∈ X. If pyu 6= pzl and pzu 6= pyl for any

y ∈ Y and z ∈ Z, then λ verifies weighted regularity, max-min payoffs are obtained,

and F z (p) = F y (p) for any p ∈ [pl, 1].

Proof. Lemma 7 implies that if pyu 6= pzl and pzu 6= pyl for any y ∈ Y and z ∈ Z then

the graph is weighted-regular. As in the proof of Lemma 7, the following equilibrium

conditions must hold

bλ (z) (1− F z (pyu)) =
bλ (z)− aλ (y)

2
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bλ (z)− aλ (y)
¡
1− F y

¡
pzl
¢¢
=

bλ (z)− aλ (y)

2

First note that if either b = 0 or a = 0, then either λ (y) = 0 or λ (z) = 0. Hence,

suppose that ab > 0. Setting (1− F z (pyu)) = σ and
¡
1− F y

¡
pzl
¢¢
= δ, rewrite the

system in matrix notation as⎡⎢⎣ bσ − b

2

a

2
b

2
−aδ + a

2

⎤⎥⎦" λ (z)

λ (y)

#
=

"
0

0

#

This system has a non-null solution if and only if

−σ − δ + 2σδ + 1 = 0

which is only possible, for 0 ≤ δ, σ ≤ 1, when δ = 1, σ = 0 or δ = 0, σ = 1. In the

former case, vzi (λ) = vyi (λ) and thus λ verifies weighted regularity. In the latter case,

bλ (z) =
bλ (z)− aλ (y)

2

and hence positive solutions for λ (z) , λ (y) do not exist when ab > 0. Thus in equilib-

rium, F z (pyu) = 1, F y
¡
pzl
¢
= 0, and vz (λ) = vy (λ). Consequently, for any p ∈ [pl, 1]

bλ (z) (1− F z (p)) = aλ (y) (1− F y (p))

Since vz (λ)− vy (λ) = bλ (z)− aλ (y) = 0, we have F z (p) = F y (p).

Part (i) of the proposition follows from Lemmas 6, 7, and 8. If q∗Y < q < q∗Z , then a

symmetric Nash equilibrium must be a cutoff equilibrium by Lemmas 6 and 7. More-

over, by Lemma 5, it suffices to consider two cases: either λU is a uniform distribution

over Y and λL is a uniform distribution over Z, or λU is a uniform distribution over Z

and λL is a uniform distribution over Y . To pin down the format strategy λ, we use

the equilibrium condition that firms are indifferent between playing y ∈ Y and z ∈ Z

at the cutoff price pm (pm = pzu = pyl in the former case, and pm = pzl = pyu in the

latter case).

In the former case, the condition is given by the equation

λ (y)nY q − λ (z)nZq
∗
Z = λ (y)nY q

∗
Y − λ (z)nZq
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for arbitrary y ∈ Y and z ∈ Z. In the latter case, the condition is given by the equation

λ (z)nZq − λ (y)nY q
∗
Y = λ (z)nZq

∗
Z − λ (y)nY q

for arbitrary y ∈ Y and z ∈ Z. Since q∗Y < q < q∗Z, the latter case is ruled out, and the

former equation yields λ.

8.5 Proposition 7

(i) Whenever p1 ≤ p2, the consumer chooses firm 1 with probability one. Whenever

p1 > p2, the consumer chooses firm 2 if and only if he makes a price comparison.

Therefore, for every price p that lies strictly above the infimum of Supp(F2), firm 1’s

optimal format minimizes v(·, λL2 (p)), where λL2 (p) denotes firm 2’s format strategy

conditional on p0 < p. Similarly, for every price p that lies strictly below the supremum

of Supp(F1), firm 2’s optimal format maximizes v(λU1 (p), ·), where λU1 (p) denotes firm
1’s format strategy conditional on p0 > p. It can be verified that Proposition 1 extends

to the Incumbent-Entrant model. Therefore, Supp(F1) and Supp(F2) have the same

infimum pl < 1 and the same supremum pu = 1. Therefore, in Nash equilibrium,

firm 1’s format strategy conditional on p > pl and firm 2’s format strategy conditional

on p < 1 constitute a Nash equilibrium in the associated hide-and-seek game. These

format strategies are equal to the firms’ marginal equilibrium format strategies, because

as we will verify below, F1 does not have an atom on pl and F2 does not have an atom

on p = 1.

(ii) Since p = 1 is in the support of F1 and firm 2’s format strategy conditional on

p < 1 max-minimizes v, firm 1’s equilibrium payoff is 1 − v∗. Since firm 1 is chosen

with probability one when it charges pl, it follows that pl = 1− v∗. But since firm 1’s

format strategy conditional on p > pl min-maximizes v, it follows that firm 2’s payoff

is v∗ · (1− v∗).

(iii) The formulas of F1 and F2 follow directly from the condition that every

p ∈ (1 − v∗, 1) maximizes each firm’s profit given the opponent’s strategy, and the

characterization of firm 1’s format strategy conditional on p > pl and firm 2’s format

strategy conditional on p < 1.
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