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Abstract A potential source of instability of many economic models is that agents
have little incentive to stick with the equilibrium. We show experimentally that
this can matter with price competition. The control variable is a price floor, which
increases the cost of deviating from equilibrium. According to traditional theory,
a higher floor allows competitors to obtain higher profits. Behaviorally, the oppo-
site result obtains with two (but not with four) competitors. An error model, which
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builds on Luce (Individual Choice Behavior, 1959), can adequately describe supra-
Nash pricing with a low-floor, but then fails to capture the overall pro-competitive
effect of a high-floor seen for duopolies.

Keywords Price competition · Price floors · Bertrand model · Experiment · Luce
model

JEL Classification Numbers C72 · C92 · D43 · L13

1 Introduction

Students in microeconomics classes are often baffled by the classical prediction
that competitive markets with free entry result in zero long-run profits. They won-
der why firms would be willing to produce if they gain nothing by doing so. In
addition, their own casual observations suggest that profits are non-negligible even
in mature markets with close substitutes. Textbooks mostly try to bridge this gap
by pointing out that one or more assumptions underlying the zero-profit result
may not be met (e.g., by introducing capacity constraints, market power through
product differentiation, costly entry, etc.). However, they rarely address the awk-
wardness of the zero-profit outcome in the standard case. One interpretation of the
students’ uneasiness with this prediction is in terms of lack of cost of deviating
from the equilibrium. Why should firms exhibit rational equilibrium behavior if at
the equilibrium they have no incentive to do so?

The Bertrand model of price competition, one of the most important pillars of
modern oligopoly theory, predicts an equally stark outcome even with as few as two
firms.1 When both firms have the same constant marginal costs, their incentives to
capture more market will result in cut-throat competition, driving prices down to
marginal costs and eliminating all profits. Again the lack of cost of deviating from
the equilibrium casts doubt on the predictive power of this result. In equilibrium,
a firm’s expected profit function is completely flat and any price (greater than or
equal to the marginal cost) yields the same expected payoff. Moreover, if there is
a slight chance that the rival will price above marginal cost, a firm is better off
setting a higher non-competitive price as well.

One way to restore a non-negligible cost of deviating from equilibrium is by
introducing minimum prices, or price floors, which are regularly employed in a
wide spectrum of markets. For example, it is rather common that suppliers impose
bounds on the pricing of retailers (see Ippolito (1991)), governments sometimes
introduce minimum prices for certain goods (e.g., a minimum wage), and auc-
tioneers may introduce ‘bid caps’ (like ‘minimum bid constraints’ in procurement
auctions) as part of auction rules. With a price floor, the competing parties still
have an incentive to undercut their rivals as in the standard Bertrand game, but if
prices spiral downwards as a result, the final price level will be above marginal cost
yielding some positive profit. Choosing a sufficiently high price floor thus ensures
a non-negligible costs of deviating from equilibrium, and improves the drawing
power of the Bertrand-Nash solution.

1 See Tirole (1994, Chap. 5) for a textbook presentation. The model is named after Bertrand
(1883).



Price floors and competition 213

Against this background, our goal is to examine the impact of price floors on
competition experimentally. We consider four treatments, which differ in terms of

• The size of the price floor (low-floor or high-floor), and
• Whether there are two or four competitors (duopoly or quadropoly).

We incorporate the second treatment because previous research has indicated
that the predictive power of the Bertrand model may crucially depend on the num-
ber of competitors (see e.g., Dufwenberg and Gneezy (2000)), so it seems natural
to check whether the anti- or pro-competitiveness of price floors depends on the
number of competitors.2

We test a decision-error model that incorporates in an intuitive way the afore-
mentioned idea that the drawing power of equilibrium depends on the associ-
ated costs of deviations. Following Lopez-Acevedo (1997) and Baye and Morgan
(2004), we generalize the classic Luce (1959) model. The Luce model incorporates
boundedly rational choice in that players choose better responses with higher prob-
abilities, but not necessarily the best response with probability one. More precisely,
the choice probabilities for specific strategies are proportional to the expected pay-
offs associated with such strategies. We augment this framework by including a
free parameter λ that determines how sensitive behavior is with respect to payoffs.
Depending on λ, completely random behavior and Nash equilibrium appear as
different limiting cases. The model is analytically tractable, and we derive testable
predictions concerning the impact of price floors (which are new) and concerning
the number of competitors (which appear also in Lopez-Acevedo (1997)).3

Section 2 describes the theory in more detail. Section 3 presents the experimen-
tal design. Section 4 contains the experimental results. Section 5 is a discussion,
including suggested directions for follow-up research.

2 Theory

We consider a simple variant of the classic Bertrand duopoly game, where n ≥ 2
competing firms simultaneously and independently choose prices for a homoge-
neous good produced at zero costs. Demand has a ‘box’ structure; there is demand
for one unit of the good for prices up to a reservation value, and beyond that value
demand falls to zero. Prices are constrained to be in the range p ∈ [pL, pH], where

2 Experimental research on price competition goes back to Fouraker and Siegel (1963). See
Plott (1989) and Holt (1995)) for surveys and Brown-Kruse et al. (1994), Cason (1995), Cason
and Davis (1995), Mason and Phillips (1997), Dufwenberg and Gneezy (2000), Huck et al.
(2000), and Selten and Apesteguia (2005) for some more recent work. These studies typically
do not explore the role of price floors. Murphy (1966) comes closest, showing that behavior is
influenced by whether or not profits are negative in equilibrium. However, the study is not about
price floors that guarantee positive profits, and differs in many other ways from our design (like
having a repeated game, and having incomplete information about profits). Isaac and Plott (1981)
and Smith and Williams (1981) introduce price controls (floors and ceilings) in a different mar-
ket institution: double auctions. Unlike Bertrand duopoly games, these are well known for their
extraordinarily competitive properties in experiments, and some of the price controls considered
reduce competition and may be the source of some inefficiency.

3 The spirit of the Luce model is similar to McKelvey and Palfrey (1995) notion of logit equi-
librium. It is harder, however, to derive comparative statics properties of the logit equilibria in
the games we consider.
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pL > 0 is the price floor and pH is the reservation value (consumers’ maximum
willingness to pay). Under the homogeneity assumption, the lowest-price firm sells
one unit of the good and higher-price firms sell nothing. If m, with 1 < m ≤ n,
firms tie for the lowest price each of these sells one mth of a unit. The Nash equi-
librium prediction for this game is easy to derive: Any strategy profile where some
firm i chooses a price higher than pL cannot be an equilibrium; firm i could increase
its profit from zero to at least pL/n > 0 by choosing its price equal to pL. On the
other hand, for each firm to choose price equal to pL is a (strict) equilibrium, in
fact the unique equilibrium of the game.

We next derive predictions of the Luce (1959) model, which assumes boundedly
rational players that are prone to mistakes with the probability of a mistake being
inversely related to its cost. In other words, in the Luce model, choice probabili-
ties are positively correlated with expected payoffs although not perfectly so, i.e.,
players choose better options more frequently but not necessarily the best one
with probability one. There are several ways to parameterize decision-error mod-
els of this kind.4 The original Luce (1959) model, where choice probabilities are
proportional to expected payoffs, is arguably one of the simplest possible formula-
tions. Here we consider a one-parameter generalization, which assumes that choice
probabilities are proportional to expected payoffs raised to the power of λ.

In contrast to simple decision-making tasks where errors simply add ‘noise’
around the optimal choice, they can have a compounding effect in interactive con-
texts such as games. In the Bertrand duopoly pricing game, for example, an upward
error by one player makes higher prices by others more profitable, and hence more
likely, which reinforces the original error. This way, endogenous errors can cause
decisions to be systematically different from Nash predictions. Here we investigate
the equilibrium effects of errors in the Bertrand game in the presence of a price
floor.

Let πe(p) denote a firm’s expected payoff from choosing a price p ∈ [pL, pH].
The expected payoff depends on the distribution of the rivals’ prices, denoted by
F(p), with associated density f(p):

πe(p) = p(1 − F(p))(n−1). (1)

In the generalized Luce model, choice frequencies are proportional to expected
payoffs raised to the power λ:

f (p) = (πe(p))λ
∫ pH

pL
(πe(y))λdy

. (2)

The denominator in (2) is a constant independent of p that ensures that the den-
sity integrates to one. The exponent λ is a ‘precision’ parameter that determines
how sensitive choices are with respect to expected payoffs. When λ is small, payoff
differences are irrelevant and behavior is completely random. At the other extreme,
as λ tends to infinity, the decision rule in (2) limits to the perfect-maximization

4 For instance, Rosenthal (1989) considers a model where choice probabilities are linear in
expected payoffs. McKelvey and Palfrey (1995) quantal response equilibrium allows for a general
class of choice functions.
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rule; the best option is chosen with probability one. Note that (2) is not an explicit
solution since the densities f(p) on the left side also appear on the right side through
the expected payoff function. Instead (2) defines a first-order differential equation
for the distribution F(p), which can be solved analytically (see Lopez-Acevedo
(1997); Baye and Morgan (2004)).

Proposition For 0 ≤ λ < 1/(n − 1),

F(p) = 1 −
(

pλ+1
H − pλ+1

pλ+1
H − pλ+1

L

) 1
1−λ(n−1)

for p ∈ [pL, pH] (3)

constitutes a symmetric Luce equilibrium for the Bertrand game with price floor
pL. The distribution of market prices is given by

Fmarket(p) = 1 −
(

pλ+1
H − pλ+1

pλ+1
H − pλ+1

L

) n
1−λ(n−1)

for p ∈ [pL, pH]. (4)

For λ ≥ 1/(n − 1) the Luce equilibrium coincides with the Nash equilibrium with
both firms choosing prices equal to the price floorpL, which is also the market
price.

To see how the Proposition is derived, notice that the denominator in (2) is
a constant, K(λ), independent of p. Hence, (2) can be written as: dF(p)/dp =
K (λ) · pλ · (1 − F(p))λ(n−1). It is readily verified that (3) is the unique sym-
metric solution to this differential equation that satisfy the boundary conditions
F(pL) = 0 and F(pH) = 1. The market price is the lowest of the two firms’ prices,
so its distribution is simply Fmarket(p) = 1 − (1 − F(p))n .

Note from (3) that when λ= 0, prices are uniformly distributed on [pL, pH].
In contrast, as λ tends to 1/(n − 1), the exponent in (3) diverges to infinity and
since the term between the brackets is less than one, the distribution tends to 1
everywhere. In other words, in this limit the Luce model predicts a spike of mass
1 at the Nash prediction p = pL. For higher values of λ, the Nash equilibrium
remains the unique symmetric Luce equilibrium.

Note that (in this game) the Nash prediction is not obtained only as a limit-
ing case with perfectly rational players. While the decision rule in (2) limits to
the perfect-maximization rule as λ tends to infinity, the Nash prediction requires
only that λ ≥ 1/(n − 1). For example, if n = 2, the Nash prediction obtains
if λ ≥ 1/(2 − 1) = 1, and λ = 1 is the case where choice probabilities are
proportional to expected payoffs.

Our main interest is in the comparative statics properties of the Luce equilib-
rium, in particular how changes in the number of players and the price floor affect
average and market prices. The explicit solutions in (3) and (4) make a comparative
statics analysis straightforward. Note that as n increases the exponents on the right
side of (3) and (4) increase, and since the term in the large brackets is less than
1, the distributions F(p) and Fmarket(p) increase. Likewise, if the price floor pL
increases, the term in the large brackets increases, so the distributions Fi(p) and
Fmarket(p) falls. We thus have:
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Corollary For 0≤ λ < 1/(n − 1), the Luce equilibrium predicts that (i) an
increase in the number of players results in an decrease in average and market
prices in the sense of first-degree stochastic dominance, and (ii) an increase in
the price floor results in an increase in average and market prices in the sense of
first-degree stochastic dominance.

Our experiment tests these comparative statics predictions.

3 Experiment

For the experiment we consider discretized versions of the games described in
Sect. 2 (similar to the games of Dufwenberg and Gneezy (2000)). We have a 2 × 2
design. In low-floor treatments each player (simultaneously) chooses a number
from the set {1, 2, . . . , 100}; in high-floor treatments each player chooses a num-
ber from the set {10, 11, . . . , 100}. In duopoly treatments there are two players;
in quadropoly treatments there are four players. In each game, the player who
chooses the lowest number gets paid in proportion to the number chosen, and the
other player(s) get(s) 0. Ties are split. The Nash equilibrium is for each player to
choose 1 in the low-floor games,5 and for each player to choose 10 in the high-floor
games.

The duopoly treatments were conducted at the Technion in Haifa. Students
were recruited using posters on campus. We had five sessions for each of the two
floor treatments. The number of participants was 12 in all sessions, and an extra
student assisted us. That is, in total, 120 students participated in the duopoly games.
Each session operated for ten periods. In each period six pairs of participants were
grouped together according to a random matching scheme, and then each pair
played the relevant game.

In each session, after all 13 students entered the experimental room, they re-
ceived a standard-type introduction, and were told they would be paid 20 New
Israeli Shekels (20 NIS; about $5 at the time of the experiment) for showing up.
Then they took an envelope from a box, which contained 13 envelopes. Twelve of
the envelopes contained numbers (A1, . . . , A12). These were called “registration
numbers”. We asked participants not to show their registration number to the oth-
ers. One envelope was labeled “Monitor”, and determined who was the person who
assisted us and checked that we did not cheat. That person was paid the average of
all other subjects in that session.

Each participant then received the instructions for the experiment (see http://
econ.arizona.edu/downloads/working_papers/Econ-WP-04-18-updated.pdf), and
ten coupons numbered 1, 2, . . . , 10. After reading the instructions and asking ques-
tions (privately), each participant was asked to fill out the first coupon with her/his
registration number and the chosen number – henceforth referred to as a “price”,

5 Also (2, 2) is a Nash equilibrium in the duopoly low-floor game, but the theoretical under-
pinning is most secure for (1, 1) which is supported by a variety of differently motivated solution
concepts: (1, 1) is the game’s only strict equilibrium; 1 is the only evolutionarily stable strategy,
the only survivor of iterated elimination of weakly dominated strategies, and the game’s only
maxminimizer; {1} is the game’s only fully permissible set (as defined by Asheim and Dufwenberg
(2003)). In terms of economic intuition both profiles (1, 1) and (2, 2) are in line with the Bertrand
solution: all players make close to zero profit relative to what is available in principle.
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although we did not use that word in the instructions – for period 1. Participants
were asked to fold the coupon, and put it in a box carried by the assistant. The assis-
tant randomly took two coupons out of the box and gave them to the experimenter.
The experimenter announced the registration number on each of the two coupons
and the respective prices. If one price was larger than the other, the experimenter
announced that the low price won as many NIS, and the high price won nothing. If
the prices were equal the experimenter announced a tie, and said that each person
won half as many NIS. The assistant wrote this on a blackboard so that all the
participants could see it for the rest of the experiment. Then the assistant took out
another two coupons randomly, the experimenter announced their content, and the
assistant wrote it on the blackboard. The same procedure was carried out for all
the 12 coupons. Then the subsequent periods were conducted the same way. After
period 10 payoffs were summed up, and participants were paid privately.

The quadropoly treatments were added later. The results of Dufwenberg and
Gneezy (2000) suggest that as the number of competitors increase the predictive
power of the Bertrand model improves. We thus had a strong prior [independent
of part (ii) of our Corollary in Sect. 2] that if the number of competitors were four
then prices would be higher with a (high enough) price floor. However, after seeing
the somewhat surprising results for the duopoly treatments (reported in Sect. 4.1
below), we felt slightly less confident about this. So, in order to dispel any fear
that our conjecture be invalid, we decided run some sessions involving quadropoly
Bertrand games, with low and high floors. These treatments were similar to the
duopoly treatments, except that there were four competitors. The sessions were
conducted at the University of Chicago, with comparable stakes.6 We had two
sessions for each treatment.

4 Results

We next present our results on the impact of price floors in the duopoly games
(Sect. 4.1) as well as a comparison with the quadropoly games (Sect. 4.2). We only
present some aggregate statistics, and refer to a working paper version for the com-
plete raw data set; see http://econ.arizona.edu/downloads/working_papers/Econ-
WP-04-18-updated.pdf

4.1 The duopoly games

From the viewpoint of traditional theory, an increase in the price floor should raise
the level of prices. Recall that Nash equilibrium pricing is at 1 (or possibly 2) in
the low-floor treatment and at 10 in the high-floor game. The generalized Luce
model allows that predictions are systematically biased away from Nash levels; cf.
the Proposition and the case where λ < 1/(n − 1). However, as part (ii) of our

6 Our subject pool is divided across Haifa and Chicago, but this problem is mitigated in that our
main comparison concerns the impact of different floors within a market structure. For each of
the duopoly and quadropoly conditions all subjects were recruited in one and the same location.
As pointed out by a referee, it seems unlikely that Chicago students respond to price floors very
differently from Haifa students.
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Fig. 1 a Mean prices over time in the duopoly treatments. b Mean winning prices over time in
the duopoly treatments

Corollary shows, the generalized Luce model maintains that a higher price floor
leads to less competitive pricing.

Our data do not bear this prediction out. In fact, Fig. 1 suggests the opposite
pattern. After the starting periods, all price measures are higher in the low-floor
treatment than in the high-floor treatment! Moreover, the gaps seem to widen over
time.

A closer statistical scrutiny, reflected in Table 1, mainly confirms this picture.7

The table reports comparisons of mean prices, median prices, mean winning prices,
and expected winning price (a recombination measure which takes the average of

7 p-Values are calculated using the Kruskal–Wallis test instead of the (in experimental eco-
nomics) more commonly used Wilcoxon test, since the variances in the two treatments are very
different (see Siegel and Castellan (1988), pp 137–144).
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Table 1 Chi-square results of Kruskal–Wallis test comparing different measures of the duopoly
sessions, low- versus high-floor treatments, for each period separately

Measures Mean price Median price Win price Expected win price

Period 1 0.88 0.011 0.53 0.53
Period 2 0.53 2.73* 2.44 2.45
Period 3 3.15* 3.93** 4.81** 4.81**
Period 4 0 3.93** 1.84 4.81**
Period 5 4.81** 4.81** 4.81** 3.93**
Period 6 6.81*** 5.77** 4.81** 5.77**
Period 7 3.93** 5.77** 3.53* 3.15*
Period 8 2.44♣ 3.93** 2.45♣ 2.45♣
Period 9 3.53* 3.93** 2.45♣ 2.45♣
Period 10 4.81** 2.45♣ 1.84♣ 2.45♣

***Significant at 1%-level; **significant at 5%-level; *significant at 10%-level; ♣p > 0.1 but
if we add the two low-floor sessions from Dufwenberg and Gneezy (2000) (cf. footnote 8) then
there is a significant difference at the 5%-level

winning prices of all possible combinations of matches within a period; cf. Mullin
and Reiley (2006)) for the two treatments. For mean and median prices, the differ-
ences are not significant in the early periods but mainly become so later on. For
mean winning and expected winning prices the tendency is analogous although we
get less clear statistical results.8

Statistical tests also suggest that the tendency for prices to change over time
is different in the treatments. In the high-floor treatment prices decrease in all five
sessions (r = 0.73 and p < 0.025, using Spearman–Rank correlation test). By
contrast, in the low-floor treatment, mean prices decrease significantly only in two
out of five sessions.

It seems that price floors stimulate competition. This finding becomes even
starker if one focuses on the occurrence of prices that are lower than or equal to
10. Figure 2 gives relative frequencies of prices in intervals of 1–10, 11–20, . . .,
91–100, for the final five periods. In the low-floor treatment there are only 9% price
choices lower than or equal to 10 (and none of those are Nash equilibrium choices
of 1 or 2). By contrast, in the high-floor treatment, where price choices of 1–9 are
not possible, 40% of the choices are at the equilibrium price of 10. In the final five
periods, a whopping 61% of the choices are of 10, while only 13% are at or below
10 in the low-floor treatment.

4.2 Comparing with quadropoly

Figure 3 shows mean prices and mean winning prices over time in the quadropoly
treatments. We ran only two sessions of each treatment, which is too little to admit

8 In the last periods, in one low-floor session the mean winning price is below 10, thus lower
than any high-floor session and therefore this session gets the lowest rank. Having only five
sessions for the two treatments, the Kruskall–Wallis test does not reject the null-hypothesis of
no difference. In Dufwenberg and Gneezy (2000) winning prices are far above 10 in their two
sessions with a similar low-floor treatment. If we include these two sessions in our analysis
(having 5 high-floor and 7 low-floor sessions) we obtain a significant difference between the two
treatments at the 5% level.
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Fig. 2 Relative frequencies of prices for the last five periods in the duopoly treatments

statistical testing.9 However, after round seven, average winning bids in the low-
floor treatment are below 10. We see no reason to revise our strong prior that price
floors in quadropoly markets raise prices.

Note, however, that our quadropoly and duopoly high-floor treatments share the
feature of making play at the Nash equilibrium more common than in the low-floor
treatments. In this sense, a high price floor seems to foster competition in duopoly
and quadropoly alike.

Part (i) of our Corollary predicts that an increase in the number of competitors
reduces prices for any level of the price floor. Our data goes well with this pre-
diction (as do the prior results of Dufwenberg and Gneezy (2000)). Since we only
ran two session of each quadropoly treatment we do not provide formal test results
however.

5 Discussion

From the viewpoint of traditional theory, raising price floors in Bertrand models
protects competitors from making low profits, and should thus be anti-competitive.
With our experiment we have shown that the opposite can be true: a higher price
floor may foster competition and may lead to lower prices under conditions of
duopoly.10

9 The justification is that, as explained towards the end of Sect. 3, based on the results of
Dufwenberg and Gneezy (2000) we already had a strong prior [independent of part (ii) of our
Corollary in Sect. 2] that prices would be higher with than without a floor if the number of
competitors were four rather than two.

10 A caveat here is that this result may depend on other design details. An example concerns
the specific nature of the information feedback between rounds. In our design after each round
each participant was informated about co-players’ choices as well as about all other games in that
round of the session. Isaac and Walker (1985), Dufwenberg and Gneezy (2002), and Ockenfels
and Selten (2005) present evidence indicating that market outcomes may be more competitive if
there is less information feedback.
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Mean prices over time, separately for the
low floor and highfloor quadropoly

Mean winning prices over time, separately for
the low floor and highfloor quadropoly
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Fig. 3 a Mean prices over time in the quadropoly treatments. b Mean winning prices over time
in the quadropoly treatments

Our results may highlight a possible weakness of economic models in which
there is little incentives for decision makers to stick with the equilibrium. Bertrand
duopoly competition is just one example. In response, one may be lead to consider
models which incorporate the idea that the likelihood of an error is related to the
cost of making that error.

In this vein, we considered a generalized version of the Luce (1959) model
which assumes that the probability of making a particular choice is proportional to
the expected payoff associated with that choice raised to the power of a parameter
λ ∈ [0, ∞) (‘rationality increases’ with λ). For appropriate choices of λ the model
can predict supra-Nash pricing, but it fails to capture the overall pro-competitive
effect of a high floor seen for duopolies.
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Fig. 4 Relative frequency of prices (in ten period blocks) according to the simulation of the Luce
model with λ independently estimated for each duopoly treatment separately

How should one react to this finding? In closing this paper we suggest two
rather different lines of future research. The first one attempts to ‘fix things’ within
the generalized Luce framework, whereas the second one addresses a radically
different idea.

Reaction 1: Endogenize λ
To motivate this approach, let us first illustrate how well the generalized Luce

model can describe our data if we allow different values of λ across treatments.
Applying standard maximum-likelihood techniques to the pricing data of the low-
floor duopoly treatment, yields an estimate of λ = 0.85 (0.01), where the number
in parentheses denotes the standard error.11 The light bars of the histogram in Fig. 4
show the predictions corresponding to this λ estimate. Analogously, for the high-
floor duopoly treatment the maximum-likelihood estimate is λ = 0.95 (0.01).12

The dark bars in Fig. 4 represent the predictions for the high-floor treatment. Note
that the prediction histograms in Fig. 4 are remarkably similar to the actual data
histograms in Fig. 2.13

The higher λ estimate for the high-floor treatment is not surprising, but the
different λ-estimates do raise the question “what determines the precision

11 The loglikelihood −2309.2 on 600 observations.
12 The loglikelihood −2340.9 based on 600 observations.
13 Haile et al. (2004) have suggested that any observed data set can be explained by estimat-

ing a different λ for each treatment. Goeree et al. (2005) show that this is not true for regular
decision-error models where choice probabilities are monotone in expected payoffs, as in the
Luce model studied here. They show that regular decision-error models impose strong empirical
restrictions on the data even without any restrictions on the precision parameters.
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parameter?” In most applications of the Luce model (or related decision-error
models), λ is assumed to be a constant exogenous parameter. One might argue,
however, that λ is better seen as an endogenous variable.14 For example, experi-
mental data often show that precision rises with experience (learning), i.e., using
only data from later periods of the experiment typically yields higher λ estimates.
This is no different in our data, where both in the low-floor and the high-floor treat-
ment, estimated precision increases over time. Learning is more difficult, however,
in the low-floor treatment where behavior is more volatile, which partly could
explain the lower value of λ. Second, subjects may weight the benefits of being
more precise against the higher (mental) costs. Since the benefits differ across the
treatments, this results in different levels of the optimal precision parameter.

Reaction 2: Examine the available ‘punishments’
An interesting alternative may be to explore what factors other than costs of

error that may be influencing choice. Reinhard Selten suggested to us a behavioral
idea that could be relevant (cf. also Murphy 1966, who touches on related themes).
Perhaps players conceive of the general level of payoffs at some Nash equilibrium
as a ‘threat’, the size of which affects the ‘mode’ by which they play? In our low-
floor duopoly treatment the equilibrium payoffs are low and the threat severe, so
the subjects may attempt to avoid entering a competitive mode. With a higher price
floor, the equilibrium payoffs are higher, the threat less severe, and the players may
see less long-run reason to avoid initiating price wars.
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