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Information

Abstract

Purpose: This study investigates -theoretically and empirically- if call auc-

tions incorporate asymmetric information into prices.

Design/methodology/approach: First, this study introduces a new model

of price formation in a call auction with insider information. In this call auction

model, insider trading gives rise to an asymmetric information component of

transaction costs. Next, this study estimates the model using twenty stocks

from Euronext Paris and investigates if the asymmetric information component

is present.

Findings: The theoretical analysis reveals that call auctions incorporate

asymmetric information into prices. The empirical analysis finds strong evi-

dence for the asymmetric information component. Testable implications pro-

vide further support for the model.

Practical implications: Call auctions have recently been proposed as an

alternative to continuous limit order book markets to overcome problems associ-

ated with high frequency trading. However, it is still an open question whether

call auctions efficiently aggregate asymmetric information. The findings of this

study imply that call auctions facilitate price discovery and, therefore, are a

viable alternative to continuous limit order book markets.

Originality/value: There is no generally accepted measure of trading costs

for call auctions. Therefore, the measure introduced in this study is of great

value to anyone who wants to (i) quantify trading costs in call auctions; (ii)

understand the determinants of trading costs in call auctions; or (iii) compare

trading costs and their components between continuous markets and call auc-

tions. This study also contributes to the literature devoted to estimating the
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probability of information-based trading.

JEL Classification: D82, G14, C11

Key words: transaction costs, asymmetric information, Bayesian econometrics,

informational efficiency

Page 2 of 30Submission to Studies in Economics and Finance

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Studies in Econom
ics and Finance

1 Introduction

During the last couple of years problems associated with high frequency trading have

become a major concern. High frequency trading leads to excessive and inefficient

investment in speed; it increases the cost of liquidity provision; and it is a cause

of market instability. As a solution to these problems, several studies propose to

replace the continuous limit order book market with frequent call auctions (Budish,

Cramton, and Shim, 2014, Budish, Cramton, and Shim, 2015, Farmer and Skouras,

2012, Wah and Wellman, 2013). In a call auction, orders that arrive within a given

time interval are accumulated in the order book. At the end of that time interval

orders are executed at the same time and at the same price. This uniform transaction

price is chosen to maximize the quantity of shares that are traded.

Whereas call auctions can solve the problems mentioned above, it is not clear

if they perform as good as continuous limit order book markets in terms of price

discovery. Price discovery is the process by which transaction prices adjust to new

information. Imperfect price discovery favours traders with superior information at

the expense of uninformed traders. In a continuous limit order book market there

are two parties to each transaction: a liquidity trader who submits a limit order to

the order book and a second trader who accepts the limit order. Liquidity traders

are worried that their orders are picked up by traders with superior information.

To protect themselves from this adverse selection problem, they adjust their limit

prices to reflect the possibility that their counterpart in this transaction has superior

information (Handa, Schwartz, and Tiwari, 2003).

In a call auction the transaction price and quantities are determined by the

interplay of many market participants. It is therefore not obvious if liquidity traders

face a similar adverse selection problem and if so, how they can protect themselves

against it. According to Pagano and Schwartz (2003) ‘the call auction is the least

understood of the three major trading regimes’ (p. 440). Empirical evidence from

the opening auction at the London Stock Exchange suggests that the call auction is

not suitable when information asymmetries are large (Ellul, Shin, and Tonks, 2005).

The aim of this study is to empirically assess the call auction’s ability to aggregate
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asymmetric information. To this end we present a simple model of price formation in

a call auction with insider trading. Based on this model, we derive a new measure of

transaction costs in call auctions and decompose transaction costs into a difference in

valuation part and an asymmetric information part. These components are similar

to the ones obtained by Handa, Schwartz, and Tiwari (2003) for the bid-ask spread in

continuous limit order book markets. The model provides the testable implication

that the difference in valuation component is decreasing in liquidity whereas the

asymmetric information component is not directly affected by liquidity.

We illustrate the estimation of the model using data from a trading category at

Euronext Paris that comprises stocks that are only traded in morning and afternoon

call auctions without a continuous trading phase inbetween.1 This trading category

has received little attention in the literature so far.2

The main result of the call auction model is that the asymmetric information

impact is reflected in the liquidity traders’ limit prices and thus translates into

the transaction price. This will give rise to an asymmetric information component

of transaction costs. The remaining part of transaction costs is the difference in

valuation component.

The empirical analysis supports the results of the model. The call auction model

with asymmetric information explains the data significantly better than a model that

ignores the presence of insider information for 19 out of 20 stocks. The fact that the

estimated difference in valuation component is greater than previous estimates for

continuous limit order book markets indicates that liquidity traders incorporate the

asymmetric information impact in their limit prices. The empirical analysis confirms

the testable implication. The difference in valuation component is decreasing in

liquidity but there is no relationship between the asymmetric information component

and liquidity.

1If call auctions are combined with continuous trading, traders –apart from selecting limit prices

and order quantities– have the additional choice of the trading mechanism. Brooks and Su (1997)

show that liquidity traders can reduce trading costs by trading at the opening call and not waiting

for continuous trading to start.

2A notable exception is Venkataraman and Waisburd (2007).
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This study is related to Kyle (1989) and Madhavan (1992). Both of these stud-

ies show that in Bayes-Nash equilibrium call auction prices aggregate asymmetric

information. Whereas Madhavan (1992) assumes that all traders hold different but

equally valuable information, Kyle (1989) distinguishes between informed and un-

informed traders, which is closer to the setup of the present study. The theoretical

models of these two studies do not lend themselves to estimation and it is there-

fore not obvious that the positive properties of the Bayes-Nash equilibrium of these

models also materialize in real world call auctions. The model in the present study

shares the basic features of these two studies, but it goes further in that it allows

for direct estimation of transaction costs as well as the decomposition of transac-

tion costs into the difference valuation component and the asymmetric information

component.

The empirical evidence on call auctions and their impact on price discovery

is mixed. Pagano and Schwartz (2003) and Pagano, Peng, and Schwartz (2013)

study the effect of the introduction of opening and closing call auctions on Euronext

Paris and Nasdaq, respectively. Both studies find that the introduction of call

auctions helped to improve price efficiency. Ellul, Shin, and Tonks (2005) study

traders’ choices between a dealership market and a call auction on the London

Stock Exchange. They find that while trading costs are generally lower for the call

auction, the dealership market has lower trading costs when the presence of insider

information is large. This contradicts the theoretical result of Madhavan (1992).

The present study is also related to the large literature devoted to estimating the

probability of information-based trading in continuous markets (see, e.g., Easley,

Kiefer, O’Hara, and Paperman, 1996; Duarte and Young, 2009; and Kryzanowski

and Tran, 2018). The present study is the first to estimate the difference in valuation

component and asymmetric information component in call auctions. The presence

of a significant asymmetric information component implies that call auction prices

incorporate insider information.

Finally, it should be noted that the insights of this study are not limited to

stock markets. The question of whether a call auction, or a uniform-price auction, is

preferable to sequential trade, or a discriminatory-price auction, is also important for

3
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electricity markets (Fabra, von der Fehr, and Harbord, 2006) and treasury auctions

(Binmore and Swierzbinski, 2000). By extending our understanding of the role

of asymmetric information in call auctions, this study contributes to this broader

literature on the design of institutions.

2 A Stylized Model of a Call Auction

The precise design of call auction mechanisms can vary considerably. For this anal-

ysis, we consider the most basic call auction algorithm. Traders can place limit

orders and market orders during the order accumulation phase. The order book is

closed, i.e., traders do not observe orders made by other traders during the order

accumulation phase.3 While market orders are executed with certainty (provided

there are orders on the other side of the order book), limit buy (sell) orders are only

executed when the associated limit price is higher (lower) than the transaction price.

The order accumulation phase ends at a specified time and the transaction price is

determined such that: i) all market orders execute and ii) all limit sell orders with

a limit price lower than the transaction price and all limit buy orders with a limit

price higher than the transaction price execute. If there is a range of prices that

satisfy these conditions the transaction price is the midpoint of this range. The asset

traded in this call auction and the traders participating in the auction are described

in the next subsection.

2.1 Model Assumptions

One risky asset is traded in the call auction. The asset’s true value at time t, νt,

follows a random walk with drift:

νt = µ+ νt−1 + εt , (1)

where µ is the drift parameter and εt ∼ N(0, σ2) reflects news potentially available

to an insider but unobservable to other market participants prior to the end of

3The assumption of a closed order book is not critical. The results of the theoretical analysis

remain valid if the order book was open.

4
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auction t.4 After auction t, the realization of εt becomes common knowledge. The

news shock, εt, is uncorrelated over time.

There are two types of risk-neutral liquidity traders: buyers and sellers. They

differ in their valuation of the stock. Buyers are willing to pay a premium on the price

of the stock while sellers demand a discount. These differences represent personal

portfolio considerations such as individual tax brackets and liquidity shocks (see

Foucault, 1999 and Handa, Schwartz, and Tiwari, 2003).5 More specifically, buyer k

is characterized by a premium k she is willing to pay, where k is uniformly distributed

on the interval [k, k]. Hence, buyer k’s personal valuation of the asset is νt+k. Each

buyer submits one limit buy order for one unit of the asset. The decision problem

is to set an upper limit price bkt for the buy order to maximize the payoff

Ukb,t =


νt + k − pt if bkt ≥ pt,

0 if bkt < pt ,

(2)

where pt is the transaction price determined according to the rules specified above.

Similarly, there is a continuum of sellers characterized by a discount on the value

of the stock of size k.6 Seller k’s personal valuation of the asset is νt − k. Each

potential seller places one limit sell order for one unit of the stock with limit sell

price skt in order to maximize the payoff

Uks,t =


pt − (νt − k) if skt ≤ pt,

0 if skt > pt.

(3)

In addition, there is a potential insider. Dalko and Wang (2016) provide ample

evidence that, despite insider trading law, insider trading is prevalent in financial

4The drift parameter µ is not important for the theoretical analysis and might be set equal to

zero. However, it will later be useful as an interpretation of the intercept of the estimation model

in the empirical part.

5Alternatively, different premiums and discounts across liquidity traders can be thought of

reduced-form representations of differences in risk tolerance or divergent expectations (see Davis,

Pagano, and Schwartz, 2007).

6The assumption that there is a continuum of liquidity buyers and sellers is not crucial for our

main result that liquidity traders adjust their limit prices for the presence of an insider.
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markets around the world. With probabilities λ this trader learns the sign of the

realization of εt. The interpretation of such a signal is that the insider knows some

company-related news before it is revealed to the public, but she is uncertain about

the reaction of the market and hence the exact impact on the asset’s true value.

With probability 1− λ the insider does not receive a signal. In this case the insider

experiences a liquidity shock. A positive liquidity shock means the insider values

the stock at a premium of ki; a negative liquidity shock implies a discount of size

ki. Positive and negative liquidity shocks are equally likely.

The potential insider is assumed to be risk-neutral and trades an amount of α

assets via market sell or market buy orders.7 Assuming a premium of ki her payoff

is

Ui,t =


α (νt + ki − pt) for a market buy order,

α (pt − (νt + ki)) for a market sell order .

(4)

If the potential insider values the stock at a discount of ki the sign of ki in equation

(4) is reversed.

The presence of the potential insider serves two purposes: Firstly, for λ > 0,

it introduces asymmetric information into the model and secondly, it captures the

randomness of the order flow.8 While, on average, the number of buy and sell

orders are the same, in each particular auction, there is a positive or negative order

imbalance of size α. Hence λ measures the degree of information asymmetries and α

can be interpreted as the volatility of the order flow and, thus, provides a measure

for the liquidity of the market.

All traders are active for only one period. After an auction has ended a new,

identical group of traders arrives at the market.

7We will later show that, given an upper bound on α, the assumption that the potential insider

trades only via market orders can be dispensed with.

8In this sense the potential insider is very similar to the ‘large traders’ in Diamond and Verrecchia

(1991).
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3 Equilibrium Order Strategies and Implications

Given these three types of traders and the basic call auction algorithm described

above we obtain the following equilibrium:

Proposition 1 If the order imbalance is not too large, i.e., if

α ≤ min{
(1− λ)

√
2/π σ − k

2 (k̄ − k)
,
ki − k − λ

√
2/π σ

2 (k̄ − k)
} ,

the following strategies constitute an equilibrium:

� bkt = νt−1 + µ+ k + λ
√

2/π σ ,∀k ∈ [k, k]

� skt = νt−1 + µ− k − λ
√

2/π σ ,∀k ∈ [k, k]

� the insider places a market buy (sell) order when she observes a positive (neg-

ative) realization of the noise component or when she receives no information

and has a positive (negative) liquidity shock.

The upper bound on α ensures that the insider is indifferent between placing a

limit order or a market order, i.e., if she were to place a limit order, her limit price

would not be binding. The first part of the upper bound refers to situation where

the insider received a signal about the stock’s value. The second part corresponds

to the situation where the insider has no superior information but faces a liquidity

shock.

Proposition 1 shows that the liquidity traders’ limit prices consist of three parts:

(1) the asset’s unconditional expectation, E(νt) = νt−1+µ, (2) the personal premium

or discount, k, and (3) the informational impact of the potential insider trading in

the same direction, λ
√

2/π σ. Note that it is not important that a liquidity trader

observes the order of the potential insider, because in equilibrium her limit price

can only be binding when the potential insider trades in the same direction. This

implies that the strategies in Proposition 1 are also an equilibrium when there is

transparency of the order book during the order accumulation phase.

There exist multiple equilibria, e.g., a buyer of type k > k + (k̄ − k)α can set

any limit buy price greater than νt−1 + µ+ k+ (k̄− k)α+ λ
√

2/π σ since her order

7
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will always be executed and her limit price will never be binding. We are primarily

interested in transaction prices resulting from these equilibrium strategies and since

transaction prices are given by the limit prices of liquidity traders who know that

their limit prices are binding, these prices are unique.

[Figure 1 about here.]

3.1 The Transaction Price

Given the equilibrium strategies in Proposition 1, the order book of auction t can

be illustrated by one of the two panels in Figure 1. Figure 1(a) depicts the situation

where the potential insider places a market buy order. The market order shifts the

orders of the buyers α units to the right so that the last limit buy order that can

be executed is that of buyer k + (k̄ − k)α . The limit price of this buyer determines

the transaction price. Figure 1(b) shows the case where the potential insider sells.

Here the transaction price is the limit price of the seller with discount k+ (k̄− k)α .

We represent the two possible constellations of the order book with the indicator

variable qt: qt = 1 denotes a market buy order by the insider, qt = −1 denotes a

market sell order by the insider. Hence, the transaction price of auction t can be

written as

pt = νt−1 + µ+ (k + (k̄ − k)α) qt + λ
√

2/π σ qt . (5)

Equation (5) highlights that transaction prices in a call auction incorporate asym-

metric information. They are a function of the probability that a trader has superior

information, λ, and of the value of that information,
√

2/π σ. If qt = 1 , the transac-

tion price pt exceeds the unconditionally expected true value of the asset; if qt = −1 ,

pt falls below that value by the same amount. This symmetry of the transaction

price around the unconditional expectation of the asset’s true value leads to our

definition of transaction costs.

3.2 Measures of Transaction Costs

In continuous limit order book markets, transaction costs are measured by the bid-

ask spread. But there is no such generally accepted concept of transaction costs

8
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for call auctions. In call auctions, the bid-ask spread is defined as the difference of

the prices corresponding to the lowest limit sell and highest limit buy orders that

were not executed. Since, usually, no trade takes place at these prices, this concept

of the bid-ask spread is not appropriate for measuring actual transaction costs. As

an alternative, some studies use the measure proposed by Roll (1984) to estimate

transaction costs in call auctions (e.g. Haller and Stoll, 1989 and Stoll and Whaley,

1990).

We define transaction costs as the difference in the transaction price that would

result from a buy order by the potential insider and the price corresponding to a

market sell order. Of course, for each particular auction only one of these two prices

is observed.

Definition 1 Transaction costs in a call auction are defined as the difference be-

tween the two transaction prices that would result from a market buy order and a

market sell order, respectively:

S = pt(qt = 1)− pt(qt = −1) .

It should be stressed that this measure does not capture the transaction costs faced

by an individual trader.9 It reflects the deviation of transaction prices from the

unconditional expectation of the asset’s true value caused by order imbalances and

asymmetric information.

Plugging the expression for the transaction price (equation (5)) in our definition

of transaction costs we obtain an expression for transaction costs in call auctions.

Proposition 2 Transaction costs in a call auction are given by

S = 2(k + (k̄ − k)α) + 2λ
√

2/π σ . (6)

Transaction costs consist of a ‘difference in valuation’ component, 2(k + (k̄ − k)α),

and an ‘asymmetric information’ component, 2λ
√

2/π σ.

Thus, in a call auction market, transaction costs consist of two components. The

first component is the difference in valuation of the buyer with the lowest limit buy

9This is also pointed out in Theissen (2000).

9
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price and the seller with the highest limit sell price whose orders are being executed.

The second component is the asymmetric information component which is a positive

function of the impact of private information on the order book, λ, and the variance

of the potentially available news, σ2 (see, e.g., Glosten and Milgrom, 1985). These

two components of transaction cost in a call auction have similar interpretations as

those Handa, Schwartz, and Tiwari (2003) find for the bid-ask spread in continuous

limit order book markets. Note, however, that transaction costs in a call auction

are minimized for α = 0, whereas Handa, Schwartz, and Tiwari (2003) show that

the bid-ask spread in continuous limit order book markets is largest for a zero order

imbalance.

Proposition 3 The difference in valuation component is increasing in the order

imbalance (α).

The asymmetric information component is increasing in (1) the probability that the

potential insider receives information, λ, and (2) the uncertainty of the asset’s value,

σ.

Proposition 2 and 3 are supported by empirical evidence from opening and clos-

ing auctions at the London Stock Exchange. Ellul, Shin, and Tonks (2005) find

that transaction costs in these auctions are increasing in the order imbalance and

asymmetric information.

Madhavan (1996) and Kehr, Krahnen, and Theissen (2001) define trading costs

as the difference between the two hypothetical transaction prices which result from

adding an additional market buy order and an additional market sell order of the

same size, say ∆ , respectively. For an order size equal to the order imbalance,

∆ = α, this definition is equal to the measure proposed in the present study.

3.3 The Transaction Return Process

We can use the expression of transaction prices in equation (5) to obtain the trans-

action returns. Taking the first difference of equation (5) and substituting equation

(1) yields

pt − pt−1 = µ+ (k + (k̄ − k)α)(qt − qt−1) + λ
√

2/π σ (qt − qt−1) + εt−1 . (7)

10
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Letting rt = pt − pt−1 and using the expression of transaction costs in equation (6)

we obtain

rt = µ+
S

2
(qt − qt−1) + εt−1 . (8)

Equation (8) implies negative serial correlation between successive transaction re-

turns. The result that order imbalances lead to negative serial correlation in call

auction returns has been previously noted by Ho, Schwartz, and Whitcomb (1985);

in the present model this negative correlation is further augmented by the asym-

metric information component.

Roll (1984) uses a return process similar to equation (8) together with the as-

sumption that εt−1 is uncorrelated with qt and qt−1 to derive the implicit bid ask

spread

SRoll = 2
√
−COV (rt, rt−1). (9)

In a call auction with asymmetric information, the insider’s behaviour introduces

a correlation between εt−1 and qt−1. Suppose the insider placed a buy order in

auction t. By Proposition 1 there are two possibilities: The insider learned that εt

is positive or the insider experienced a positive liquidity shock. Liquidity shocks are

uncorrelated with εt. But when the insider receives a signal, which happens with

probability λ, a buy order coincides with a positive realization of εt. Similarly, with

probability λ a market sell order (qt = −1) coincides with a negative realization of

εt. As a result, εt and qt are positively correlated. Thus, the Roll measure cannot

be used to measure transaction costs in call auctions when λ > 0.

The next section shows how equation (8) can be used to estimated transaction

costs and decompose them into a difference in valuation component and asymmetric

information component.

4 Estimation

When estimating equation (8) it should be noted that conditional on qt , εt is no

longer normally distributed. The distribution of εt given qt is normal with proba-

11
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bility (1− λ) and truncated normal with probability λ , i.e.

εt| qt =


qt · εt|(εt > 0) with prob. λ ,

εt with prob. (1− λ) .

(10)

Therefore, we estimate equation (8) using the following mixture model

rt = µ+
S

2
· (qt − qt−1) + ζt−1 · qt−1 · εt−1|(εt−1 > 0) + (1− ζt−1) · εt−1 , (11)

where, for each t, the latent variable ζt equals 1, if the insider received a signal about

the direction of εt, and zero otherwise. In this mixture model specification, λ is a

hyperparameter that represents the probability that ζt = 1 . Using the estimates

for λ and σ, we can calculate the asymmetric information component. Subtracting

the asymmetric information component from the estimated transaction costs, S, we

obtain the difference in valuation component.

The generalization that the order imbalance might be zero for a particular auc-

tion is easy to accommodate in our model. Although liquidity traders will adjust

their limit prices if they are able to observe that the potential insider does not trade,

equation (5) still holds if in the case of a zero order imbalance the transaction price

is the mid-point between the lowest limit buy and the highest limit sell price which

are being executed.

We estimate the mixture model of equation (11) with this extension. Of course,

ζt cannot equal 1 when qt = 0 and thus λ is the proportion of informed trades

relative to the total number of trades by the potential insider.

The prior distributions of the unknown parameters µ, S, λ and σ are chosen to be

noninformative. The joint prior of µ, S and σ is p(µ, S, σ) ∝ σ−2 and λ ∼ beta(1, 1).

Since the posterior distribution is not analytically tractable, we use numerical

techniques to draw inferences. Random draws from the joint posterior distribution

of the parameters are obtained using a Gibbs sampler with 3000 iterations, where

the draws of the first 1000 iterations are discarded. Tests with simulated data and

repeated estimation with different starting values have shown that this number of

iterations is enough for the Gibbs sampler to converge.

For each draw of S, λ and σ we calculate the asymmetric information component

Λ = λ
√

2/π σ and difference in valuation component K = S
2 − Λ . The mean and

12
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standard deviation of the marginal distributions of these parameters are presented

in Table 2.

5 Empirical Analysis

5.1 Data

To illustrate estimation of the model we use data from the “Fixing” trading cate-

gory at Euronext Paris that consists of stocks that trade in two call auctions per day

only. As of January 2017 this trading category comprised 118 stocks, which make

up approximately 21% of all firms listed at Euronext Paris.10 For the analysis we

randomly chose twenty of the most actively traded companies. Data on transaction

prices as well as best bid and ask prices and trading volume are taken from the Paris

Intraday BBO-2006 data set which was purchased from Euronext NextHistory. Ta-

ble 1 presents summary statistics for these stocks for the period between 1/01/2006

and 31/12/2006.

There were 255 trading days in 2006. Thus, with two call auctions a day there

were 510 possible observations per stock. However, not all auctions had sufficient

demand and supply to facilitate trade. If the limit buy and limit sell orders of a

particular auction could not be matched, i.e., if there was no transaction price that

generated positive trading volume, this observation is discarded. Therefore only

auctions that resulted in a transaction price are considered. The number of auctions

varies across stocks between 45 and 488 (see the first column of Table 1).

The indicator variable qt is set to 1, if the transaction price of auction t is closest

to the best ask price that remains in the order book after the auction, and it is set

to -1, if the transaction price is closest to the best bid price.11 In some instances

10Euronext Paris assigns less actively traded stocks (fewer than 2,500 order book transactions

per year) to the “Fixing” category; presumably because these stocks would have very wide bid-

ask spreads, if they were traded continuously. Muscarella and Piwowar (2001), however, fail to

find significant improvements in liquidity for less actively traded stocks that move from continuous

trading to call auction trading.

11This procedure is analogous to trade indicator classification in continuous markets (see, e.g.,

13
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these three prices coincide. This can be interpreted as the potential insider not

participating in that day’s auction and thus all orders being executed. In these

cases the indicator variable is set to zero.

The second column of Table 1 shows the volatility of the transaction returns.

Volatility varies between 0.68 and 9.46 with an average of 2.44. Average prices vary

from ¿1.55 to ¿6118.35. Column four provides average bid-ask spreads in 2006,

where the bid-ask spread is defined as the difference between the lowest limit sell

and the highest limit buy price that remained in the order book after the auction

had cleared divided by their midpoint. Average bid-ask spreads range from 0.53%

to 15.81% with a cross-section average of 3.25%.

[Table 1 about here.]

5.2 Results

5.2.1 Transaction Costs

Table 2 shows the results of the estimation for each of the twenty assets. The

first column shows the estimated transaction costs. They vary between 0.40 and

5.45 with an average of 1.85. As expected, these actual transaction costs are, on

average, lower than the bid-ask spreads. The only two stocks for which transaction

costs exceed the bid-ask spread are Banque de la Reunion and Credit Agricole Oise.

This provides additional support for the claim that bid-ask spreads are not a good

measure of trading costs in call auctions since they overestimate actual costs.

[Table 2 about here.]

Kehr, Krahnen, and Theissen (2001) apply their measure of transaction costs to

the opening call auction of fifteen stocks on the Frankfurt Stock Exchange in 1996

and find average transaction costs of 0.33 and 2.37 for small and large order sizes,

respectively.12 Thus, the estimates of transaction costs we obtain are roughly com-

Finucane (2000) for a discussion).

12Kehr, Krahnen, and Theissen (2001) also calculate transaction costs for the noon and closing

14
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parable with the previously-documented transaction costs in call auctions, especially

those for large order sizes.

5.2.2 The Difference in Valuation Component

The second column of Table 2 shows the difference in valuation component K =

k + (k̄ − k)α . The average difference in valuation component is 0.74 across the

twenty stocks. If traders within each group are relatively homogeneous, i.e., k̄ −

k is small, differences in valuation are largely attributable to personal portfolio

considerations and thus do not depend on the details of the trading mechanism.

With this assumption we can, therefore, check the results of our decomposition by

comparing the estimates of the difference in valuation with the estimates obtained

by Handa, Schwartz, and Tiwari (2003) for the continuous limit order book market.

The average difference in valuation in the call auction mechanism is higher than the

estimates of the difference in valuation Handa, Schwartz, and Tiwari (2003) find for

the continuous limit order book market on Euronext Paris but the difference is not

statistically significant.13

The decomposition of transaction costs by subtracting λ
√

2/π σ from S
2 is only

correct if liquidity traders assess the asymmetric information component correctly.

If liquidity traders underestimate the informational impact of the potential insider

by underestimating λ or σ, transaction costs will be too low. As a result the decom-

position attributes too large a component of transaction costs to asymmetric infor-

mation and the estimated difference in valuation component will be too small. The

fact that our estimate of the difference in valuation is comparable to and even higher

than the difference in valuation component found by Handa, Schwartz, and Tiwari

(2003) suggests that, on average, liquidity traders correctly incorporate asymmetric

auction but the opening auction is the most appropriate auction to compare with pure call auction

trading, since it is preceded by the longest interval where no trading takes place.

13Handa, Schwartz, and Tiwari (2003) assume two types of traders: one type values the stock

at Vh the other at Vl . The difference Vh − Vl relative to the mid-quote corresponds to 2K in the

present model. The average difference in valuation for their sample of 40 stocks on Euronext Paris

CAC40 index amounts to 1.04% compared to 2K = 1.48% for the 20 stocks in the present study.
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information in their limit prices.

5.2.3 Asymmetric Information Component

Column 3 reports the average asymmetric information component Λ = λ
√

2/π σ .

The average over the twenty stocks is 0.18. It varies between 0.03 and 0.93. Since λ

is restricted to lie between 0 and 1 and σ is strictly positive, the asymmetric infor-

mation component, Λ, cannot be negative. Thus, we cannot assess the significance

of the asymmetric information component by looking at the t-statistics. But clearly,

Λ is significantly greater than zero, whenever λ is significantly greater than zero.

The average probability that the potential insider has superior information is

17% across the twenty stocks. For Credit Foncier Communal d’Alsace only 4% of

the orders submitted by the potential insider were triggered by inside information.

For Banque de la Reunion the potential insider was informed in 64% of the auctions

she participated in. Handa, Schwartz, and Tiwari (2003) estimate the probability of

trading with an informed investor to be 34%, on average, ranging from 10% to 57%.

The large average probability seems to be specific to the sample of stocks considered

in their study. Handa, Schwartz, and Tiwari (2003) focus on stocks in the CAC40

index, 40 of the most liquid stocks traded at the Paris Stock Exchange, for the period

January and February 1995. Lai, Ng, and Zhang (2014) estimate the probability of

informed trading (PIN) for 829 stocks traded on the Paris Stock Exchange during

the period from 1996 to 2010 using the procedure proposed by Duarte and Young

(2009). They find an average PIN of 20.6% with half of the values between 14.9%

and 25.0%.

5.2.4 Model Comparison

By assumption, λ is continuously distributed between 0 and 1. Hence, the probabil-

ity that λ is exactly equal to zero is zero. We can, however, assess the significance

of λ by evaluating the Bayes Factor for the mixture model versus the restricted

model with λ = 0 . Note that the restricted model is a simple regression of rt on

a constant and qt − qt−1 with normally distributed disturbances. This is precisely

the transaction return process that Roll (1984) uses to derive his measure for the
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implicit spread. Thus, for λ = 0 our model collapses to the Roll model and Roll’s

measure for the implicit spread could be used to measure transaction costs in call

auctions.

If we ascribe equal prior probabilities to the competing models, the mixture

model and the restricted model, the Bayes Factor, BM,R , is the posterior odds

ratio. Then, BM,R/(1 +BM,R) is the implied posterior probability that the mixture

model is the correct model, i.e., λ > 0 . This probability is reported in the last

column of Table 2.14 The probability that λ is positive exceeds 85% for all stocks

in the sample. For nineteen stocks, λ is significantly positive at a 10%-level and

seventeen stocks show significant insider trading at a 5%-level.

Since the asymmetric information component is a linear function of the probabil-

ity of inside information in an auction, λ , the asymmetric information component is

significantly positive whenever λ is significantly positive. This shows that the asym-

metric information component should not be neglected, and thus, the Roll measure

does not fully reflect transaction costs in call auctions.

6 Determinants of Transaction Costs

Proposition 3 states that the difference in valuation component is an increasing

function of the relative order imbalance, α . The order imbalance is closely related

to liquidity. The more liquid the market, the smaller the relative size of the in-

sider’s order. We, therefore, expect a negative relationship between the difference

in valuation component and liquidity.

We use the following proxies for liquidity:15 trading volume in 2005, the number

of days in 2005 with zero returns (Zeros), the Roll measure defined in equation (9)

14We simulate the Bayes factor with the bridge sampling technique proposed by Meng and Wong

(1996).

15For a discussion of these and other liquidity measures and their performance see Goyenko,

Holden, and Trzcinka (2009). Czauderna, Riedel, and Wagner (2015) provides a good treatment of

the limitations of the Amihud illiquidity measure.
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and the Amihud illiquidity measure, defined as

Amihud = Average
( |rt|
V olumet

)
.

The liquidity measures for the 20 stocks are presented in columns 5 to 8 in Table 1.

Table 3 shows the correlations of the difference in valuation component, K, with

these proxies for liquidity. The number of trading days with zero returns and the

Amihud measure are strongly correlated with the difference in valuation component;

the correlation coefficients are 0.753 and 0.657, respectively. The correlation between

the Roll measure and the difference in valuation component is only marginally sig-

nificant. The correlation coefficient for trading volume has the expected sign but

fails to be significant.

[Table 3 about here.]

By Proposition 3, the asymmetric information component should not be directly

affected by liquidity. Table 3 confirms that the asymmetric information component

(Λ) is not related to any of the proxies for liquidity. As predicted by our model this

implies that the relation between liquidity and transaction cost is largely attributable

to the difference in valuation component. This is in contrast to Easley, Kiefer,

O’Hara, and Paperman (1996), who find that, for continuous trading on the NYSE,

the probability of informed trade was decreasing in trading activity. A possible

explanation for these conflicting results is that an increase in the number of liquidity

traders increases the number of trades in a continuous market, but not the number of

auctions in a call auction market. Holding the trading activity of insiders constant,

an increase in trades that are initiated by liquidity traders will then reduce the

probability of informed trading in continuous markets, but it will not change the

number of call auctions with insider information.

7 Conclusions

The analysis in this study shows that asymmetric information is reflected in the

liquidity traders’ limit prices and therefore affects transaction prices. Furthermore,
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our call auction model implies that, just as in continuous limit order book markets,

the presence of an insider gives rise to an asymmetric information component of

transaction costs. The empirical analysis finds strong support for our call auction

model with asymmetric information. The asymmetric information component forms

a substantial and significant part of transactions costs.

Based on these findings we conclude that call auctions are well equipped to deal

with asymmetric information. Liquidity traders are aware of asymmetric informa-

tion problems and they adjust their limit prices to prevent themselves from being

systematically exploited by traders with superior information.

Appendix

Proof 1 To see that Proposition 1 constitutes an equilibrium, consider a buyer of

type k∗ and suppose that all other traders play the equilibrium strategies given in

Proposition 1. If the limit order of buyer k∗ is binding, i.e. if buyer k∗’s limit price

determines the transaction price, the insider must have placed a market buy order.

Let qt be an indicator variable which is 1 if the insider places a buy order and -1 if

the insider places a sell order. The conditional expectation of εt given the insider’s

market buy order is E(εt| qt = 1) = λE(εt| εt > 0) = λ
√

2/π σ .16 Therefore the

maximum price buyer k∗ is willing to pay is νt−1 + µ+ k∗ + λ
√

2/π σ . If the buyer

chose a higher limit price, she might incur an expected loss, with a lower price she

might forgo expected profits. Thus, a limit buy price of νt−1 + µ+ k∗ + λ
√

2/π σ is

buyer k∗’s best response.

A symmetric argument applies for sellers.

Now consider the potential insider who receives the signal εt > 0 and assume

that all liquidity traders follow the equilibrium strategies. If the insider chooses a

market buy order of size α the transaction price is the limit buy price of the buyer

with premium k = k + (k̄ − k)α, i.e. b∗t = νt−1 + µ + k + (k̄ − k)α + λ
√

2/π σ .

16To see this, observe that the density of εt conditional on εt > 0 is

f(εt|εt > 0) = f(εt)/P (εt > 0) = 2f(εt) . Then, E(εt|εt > 0) = 2
∫∞
0
εtf(εt) dεt =√

2/π [−σ exp{−ε2t/(2σ2)}]∞0 =
√

2/π [0− (−σ)] =
√

2/π σ .
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(See also Figure 1.) Therefore, the insider’s utility from a market order is Umi,t =

α [E(νt|εt > 0)− b∗t ] = α[(1− λ)
√

2/π σ − k − (k̄ − k)α] .

If the potential insider chooses a limit order her utility is the same as for a

market order, whenever her limit price exceeds b∗t , and utility is zero for limit prices

lower than b
k
t = νt−1 + µ + k + λ

√
2/π σ , because these orders will not execute. If

the insider chooses a limit price between these two prices her order is only partially

executed. The potential insider’s utility from a limit buy order with limit price bi is

U li,t =


α((1− λ)

√
2/π σ − k − (k̄ − k)α), bi ≥ b∗t ,

bi−νt−1−µ−λ
√

2/π σ−k
k̄−k (E(νt|εt > 0)− bi), b

k
t ≤ bi < b∗t ,

0, bi < b
k
t .

(12)

Maximizing equation (12) with respect to bi shows that the insider chooses a limit

price of b∗t or above and is therefore indifferent between a limit and a market order

whenever α ≤ (1−λ)
√

2/π σ−k
2 (k̄−k)

.

If the potential insider does not receive a signal but adds a premium ki to the

value of the stock her utility from a market buy order is Umi,t = α [E(νt) + ki − b∗t ] =

α[ki − λ
√

2/π σ − k − (k̄ − k)α] . The utility from a limit buy order with limit buy

price bi is

U li,t =


α(ki − λ

√
2/π σ − k − (k̄ − k)α) , bi ≥ b∗t ,

bi−νt−1−µ−λ
√

2/π σ−k
k̄−k (E(νt) + ki − bi) , b

k
t ≤ bi < b∗t ,

0 , bi < b
k
t .

(13)

Maximizing equation (13) with respect to bi shows that the insider chooses a limit

price of b∗ or above and is therefore indifferent between a limit and a market order

whenever α <
ki−k−λ

√
2/π σ

2 (k̄−k)
.

Thus, the condition α ≤ min{ (1−λ)
√

2/π σ−k
2 (k̄−k)

,
ki−k−λ

√
2/π σ

2 (k̄−k)
} ensures that the in-

sider chooses a market buy order when i) she observes a good signal and ii) she

receives no signal and adds a premium to the value of the stock. Due to the symme-

try of the situation the same condition applies for a market sell order.
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Proof 2 Plugging equation (5) into the definition of transaction costs, yields

S = νt−1 + µ+ k + (k̄ − k)α+ λ
√

2/π σ − (νt−1 + µ− (k + (k̄ − k)α)− λ
√

2/π σ)

= 2(k + (k̄ − k)α) + 2λ
√

2/π σ.

Proof 3 Straightforward differentiation yields:

∂2(k + (k̄ − k)α)

∂α
= 2(k̄ − k) > 0

∂2λ
√

2/π σ

∂λ
= 2
√

2/π σ > 0

∂2λ
√

2/π σ

∂σ
= 2λ

√
2/π > 0 .
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Figure 1: The graphical representation of the order book and the transaction price.
In Panel (a) the potential insider places a market buy order of size α resulting in
transaction price p+

t = νt−1 +µ+k+ (k̄−k)α+λ
√

2/π σ . Panel (b) corresponds to
a market sell order and transaction price p−t = νt−1 + µ− k− (k̄− k)α− λ

√
2/π σ .
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Table 3: Correlation between the components of transaction costs and liquidity
measures. This table reports the Spearman correlation coefficients. p-values are
given in parentheses.

Difference in Asymmetric infor-
valuation component mation component

Roll 0.382 0.340
(0.097) (0.143)

Amihud 0.657 0.063
(0.002) (0.792)

Volume -0.349 0.092
(0.132) (0.700)

Zeros 0.753 0.246
(0.000) (0.296)
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