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Abstract 

Markets have the capacity to resolve complex coordination problems. Hayek [1945] asked 

how privately held market information is organized through the trading process to arrive at 
competitive equilibrium. We propose strategies for sellers and buyers in a double auction 

(DA) market that result in transaction prices at or near competitive equilibrium in a variety 

of market environments. 

A large experimental literature documents convergence in many market environments to 

competitive equilibrium, but the theoretical literature treating the bargaining behavior in 
this institution is relatively small, and the models presented to date do not account for the 
many regularities observed in the data from experiments. We provide a model that accounts 

for several important regularities of double auction data. 
We model an informationally decentralized decision making procedure for sellers and buy

ers. Sellers form beliefs that an ask will be taken by some buyer. Similarly, buyers form beliefs 
that a bid will be taken by a seller. These beliefs are formed on the basis of observed market 

data, including frequencies of asks, bids, accepted asks, and accepted bids. Then traders 

choose an action that maximizes their own expected surplus. While traders in this model 

form beliefs about the probability that a given action they choose will result in a transaction, 

they have no beliefs about the types (costs or valuations) or strategies of other traders. The 

trading activity resulting from these beliefs is sufficient to achieve transaction prices near 
competitive equilibrium and complete market efficiency after several periods of trading. 

We would like to thank Vernon Smith and Arlington Williams for providing data for comparison 

with the theory in this paper. We thank Dan Friedman, Leo Hurwicz, John Ledyard, Kevin McCabe, 
Charlie Plott, Vernon Smith, and Arlington Williams for helpful discussions. We would like especially 

to thank Jim Jordan for his help with the formulation of this model. 
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I Introd uction 

A variety of financial instruments and commodities trade in organized markets which are 

variants of an "open outcry" market. In these markets prices form via interactions of 

several traders. Many variations of the trade execution procedures used in these markets 

are possible. For example, in a clearinghouse (CH) market, sellers submit a quantity and 

the minimum price at which they are willing to trade this quantity, and buyers submit 

a quantity and the maximum price at which they are willing to buy that quantity. The 

trade execution algorithm then specifies that a price be chosen which maximizes quantity 

traded. All buyers with bids above the specified price then purchase units at that price 

from sellers with asks at or below that price. Results of theoretical investigation of the 

CH can be found in Rustichini, Satterthwaite, and Williams [1994] and references therein. 

Another common institution is the continuous double auction (DA) market. In this auction 

sellers submit ask prices and buyers submit bid prices until there is an ask less than or 

equal to the current high bid, or until a bid meets or exceeds the current low ask, at which 

point a trade is executed. The clearinghouse market and double auction market are two 

among a wide variety of trading institutions, each of which can be thought of as a composite 

mapping from the economic environment to outcomes or allocations, as in Hurwicz [1972] 

or Smith [1982]. The first mapping in this composition is the behavioral function from 

traders' characteristics and current market history to messages. The second is the map 

from traders' messages to outcomes or allocations. 

While many specifications of trading institutions are possible, many security and com

modity markets - such as the New York Stock Exchange or the Chicago Mercantile Exchange 

- are organized as variants of the DA. Since the environments of markets such as the NYSE 

involve assets yielding uncertain dividends, and since the valuations, costs, and information 

of traders cannot be observed, the data of laboratory double auctions - where these aspects 

of the environment can be controlled - provide a natural place to begin developing a theory 

of the price formation process. 

Although competitive equilibrium theory has been a powerful tool in the investigation of 

economic phenomena for over a century, the interpretation of the theory as a description of 

the price formation process is problematic. Equilibrium theory is silent on the issue of how 

information is coordinated and market clearing prices are attained. The usual interpretation 

of the price formation process in the 'tatonnement' literature is that an 'auctioneer' calls 

out prices and traders submit net trades desired at these prices. The auctioneer then 

adjusts prices so that excess demand in the markets is reduced, and desired net trades 

at the new prices are submitted by traders. Hahn [1987] discusses several features of the 

tatonnement process which do not correspond closely to features of actual markets. The 

following exemplify these features. 

Tatonnement processes typically involve movement toward equilibrium in many markets 

simultaneously. In markets such as the NYSE, prices form in each market separately. In 

addition, price formation in the tatonnement process involves repeated reporting of excess 

demand to a central auctioneer who then responds with adjustments to the price vector. 

In actual markets, the adjustment process takes place in real time with out of equilibrium 

trades being common. Hahn states that equilibrium in the tatonnement framework is not 

based on a theory of the interactions of rational market participants, and goes on to claim 
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that "Tatonnement ... sidesteps the important question of the coordinating power of the 

price mechanism." 

The double auction is a non-tatonnement price formation mechanism. In this mecha

nism, sellers place ask prices (also called offers) and buyers post bids. There is a specified 

time period for trading, and bids and asks arrive continuously during this time period. 

Trade takes place any time there is a 'crossing' of asks and bids. Empirical investigation 

of trader behavior and of market performance within this mechanism began with Smith 

[1962]. Smith induced supply and demand conditions by giving buyers a redemption value 

for each unit of an abstract commodity purchased, and by giving sellers a cost for each unit 

of this abstract commodity sold. Buyers receive surplus equal to the difference between 

this redemption value and the purchase price negotiated with a seller, and sellers receive 

surplus equal to the difference between the purchase price paid by the buyer and the unit 

cost. Since reservation prices - and therefore supply and demand conditions - are known 

when this procedure is employed, the procedure makes comparison between experimental 

outcomes and theoretical predictions possible. The basic result found by Smith [1962] in 

these experiments is that prices do converge quickly to within a few cents of competitive 

equilibrium prices in markets with stationary supply and demand. Smith and many other 

economists in the 30 years since his pioneering work have also documented features of the 

path of convergence to equilibrium in a variety of market environments. For summaries of 

these results see Plott [1982] and Smith [1982]. 

In this paper we model individual decision making in the DA which leads to market 

equilibrium prices. In the decision procedure developed here, proposed prices come from 

market participants rather than from an external agent such as an auctioneer responsible for 

determining market prices. In this respect, the behavioral rules and institution we describe 

corresponds more closely to actual markets than the tatonnement literature does. 

Gode and Sunder [1993] show that in markets with a single commodity, random behavior 

within the DA is sufficient to achieve efficient outcomes. We demonstrate that it is possible 

to achieve competitive equilibrium outcomes (prices and allocations) in a market when 

individual choices are made myopically using heuristic beliefs, and that these beliefs are 

flexible enough that traders will respond to unanticipated changes in market conditions by 

moving to the new market equilibrium. 

The organization of the paper is as follows. Four models of the double auction are 

discussed in Section II. The model is formulated in Section III. Simulations of the model 

are shown and some important statistical properties of these simulations are summarized 

in Section IV. Section V concludes. 

II Theories of DA Price Formation 

Several theories of the price formation process in the double auction have been proposed. 

These theories are listed below in increasing order of the degree of rationality attributed to 

market participants. We provide a model that accounts for a set of empirical regularities 

of behavior and market outcomes that no other model predicts or replicates in simulations. 

The first theory models traders who are neither adaptive nor strategic. The next two model 

behavior which is adaptive but not strategic, and in the last theory behavior is both adaptive 

and strategic. 
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Zero intelligence traders 

Gode and Sunder [1993] model Zero Intelligence (ZI) traders who have no memory of past 

market activity, and choose their actions randomly. Each trader has an equal probability 

of being the next trader to make a bid or an ask. Sellers make asks which are random and 

uniformly distributed on the interval [c, M], where c is the seller's cost, and M is some upper 

bound on their set of possible choices. Buyers make bids that are uniformly distributed on 

[0, v], where v is the buyer's valuation. No learning takes place in this model. The actions 

of sellers and buyers do not change on the basis of previous experience in the market. 

Easley-Ledyard model 

Easley and Ledyard [1993] model traders who form strategies based directly on ob

served market data, rather than on choices determined from beliefs about characteristics 

and strategies of other traders. Buyers bid up as in a reduced form English auction to a 

reservation price which is formed on the basis of observed market data. Traders observe P n' 

the minimum transaction price or ask price in period n, and P n , the maximum transaction 

price or bid in that period. In period n + 1, reservation prices are formed by buyers on the 

interval [min{v,Pn},min{v,Pn}]. In effect, this results in trading activity which narrows 

across periods to intervals determined by the prices (and offers and bids) observed in the 

previous period, allowing for convergence to equilibrium across several periods of trading. 

The clearest difference between their model and the model presented in Section III of this 

paper is the case of markets in which traders experience changes in supply or demand con

ditions, as shown in figure 7. In the model of Section III, prices will adjust within a few 

transactions to the new equilibrium in markets of this type, whereas in the Easley-Ledyard 

model, prices in period n + 1 remain within the range [P n' Pn]. The traders modeled in 

Section III also make use of a larger set of information from past trading activity in forming 

beliefs and strategies than do traders in the Easley-Ledyard model. 

Bayesian game against nature 

Friedman [1991] models the agents' decision problem as a Bayesian game against nature 

(BGAN). The traders in his model "neglect strategic feedback effects" and playas though 

asks, bids, and acceptances come from distributions which are unaffected by the trader's 

own strategy choice. This assumption is analogous to price taking behavior in the theory of 

competitive markets. The analogy is that traders take the distributions of asks, bids, and 

acceptances as given, and do not behave as though their own actions will affect the beliefs 

held or strategies chosen by other players. The model in Section III shares this feature with 

the BGAN model. 

One conclusion that can be drawn from the performance of the model in this paper is that 

the mathematical consistency of Bayesian updating is not necessary to achieve equilibrium 

price formation. Also, as shown in Gjerstad [1995], our model produces negative autocorre

lation of price changes. Friedman's model predicts positive autocorrelation of price changes, 

whereas there is substantial evidence that in markets with stationary supply and demand 

conditions, successive price changes in double auctions are negatively autocorrelated. 
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Bayes-Nash equilibrium model 

Wilson [1986] formulates a model in which prices form as the Bayes-Nash equilibrium 

of a game of incomplete information. This approach to modeling the double auction ex

tends earlier work (e.g., Chatterjee and Samuelson [1984]) on bargaining under asymmetric 

information. Wilson formulates the problem as a sequence of bilateral matchings of sellers 

and buyers. Each seller and each buyer has prior beliefs on the distribution of types (cost 

and valuation parameters) and on the equilibrium strategies of other traders. The collec

tion of these prior beliefs for the traders is common knowledge. After observing ask, bid 

and transaction data each trader updates beliefs about the distribution of types optimally 

(according to Bayes' rule). 

Since the structure of Bayes-Nash equilibrium depends on the assumption of common 

knowledge of the beliefs of traders about the distribution of types, and common knowledge 

of the equilibrium strategies employed by other traders, and since in practice subjects come 

into experiments with very little information about the environment or the strategies likely 

to be employed by other traders, Wilson's approach overstates the extent of rationality 

required to produce a model of the price formation process. Moreover, Ledyard [1986] shows 

that the Bayes-Nash equilibrium concept is capable of accounting for any outcome in a game 

that does not involve a player choosing a dominated strategy, as long as traders' cardinal 

utility functions and prior beliefs about the distribution of players types and strategies are 

not controlled. 

These four models and the model of Section III can be classified according to two criteria. 

All the models with the exception of the Gode and Sunder model are adaptive. Traders 

acquire information through the trading process; use of this information allows traders to 

make decisions that result in some stability of transaction prices. While the ZI traders of 

Gode and Sunder are able to extract most of the rents in markets populated with other ZI 

traders, these strategies do not lead to the formation of an equilibrium market price or a 

narrow range of transaction prices. A second criterion is strategic behavior. The Wilson 

model is the only strategic model, in the sense that traders anticipate the effects of their 

actions on the strategies of the othe:r; traders. As noted above, Wilson's approach does not 

address how beliefs are formed. In addition, the computational complexity inherent in that 

formulation makes it difficult to implement the model and evaluate outcomes for various 

belief specifications. Moreover, Wilson models the trading process within a single trading 

period and makes no prediction about the price paths across periods. The motivation 

for our model is to strike a balance between the approach taken by Wilson and that of 

Gode and Sunder, and at the same time consider beliefs which avoid the rigidity of prices 

found in the Easley-Ledyard model, and avoid the positive autocorrelation of price changes 

found in Friedman's model. In formulating the trading in a double auction as the Bayes

Nash equilibrium of a game of incomplete information, Wilson's model depends on the 

assumption of common knowledge of beliefs and strategies, but we do not know what 

beliefs participants in a double auction hold about the distribution of types and strategies, 

and we certainly don't know that the collection of these beliefs is common knowledge. On 

the other hand, in the ZI model traders make choices randomly, making no use of the 

information from trading that we know participants do have. The Easley-Ledyard model 
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and Friedman's model circumvent these problems: nevertheless, our model is consistent 

with a set of empirical features that is not found in anyone of the four alternative models 

(see Gjerstad [1995]). Perhaps most importantly, though, the model in Section III is the 

only existing model of DA price formation which has been implemented in simulations and 

converges to (approximate) competitive equilibrium prices. This allows investigation of the 

path of convergence to equilibrium, and provides a basis for extension to more complex 

environments. 
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III The Model 

The double auction is an example of a microeconomic system as in Hurwicz [1972] and Smith 

[1982]. The primary features of an economic system are the environment E, consisting of the 

characteristics of the economic agents, and the institution I, which includes the messages 

that traders may send to one another, the allocation rules, and the adjustment process 

rules. A micro economy is an economic system S = (E, I) - together with behavioral actions 

f3i for market participants - as shown in figure 1. 

The environment E consists of a set A = {I, 2, ... ,n} of agents. Each agent i has 

characteristics ei = (pi, yi, wi) where pi, yi, and wi are that agents' preferences, tech

nology, and endowment, respectively. The environment is then E = DiEA ei
. The in

stitution I consists of a message space Mi for each agent, an adjustment process rule 

specifying the sequence of agent messages, and an outcome function or allocation function 

h(mt) = (hl(md, h2 (mt), ... , hn(md), where mt = (mi, m;, ... , mf) E Mt = DiEJ Mi is 

the vector of agents' messages. 

According to Smith ([1982]' p. 930) 

"We want to measure messages because we want to be able to identify the behavioral 

modes, f3i (ei , J), revealed by the agents and test hypotheses derived from theories 

about agent behavior." 

When an environment E and an institution I are specified in a market experiment, and 

an outcome X is observed, the only elements remaining to be specified are the behav

ioral actions {f3i(Ht lei, I)}iEA, where Ht is the history of activity observed by agents 

through time t. The focus of the research in this paper is to specify forms of behavior 

{f3i (Ht I ei , I) hEA that are consistent with observations X for a variety of environments E 

when the institution I is the double auction. 

E P .. ----------------------------------, 
xi = hi( (f3j(Ht I ej , 1) )jEA) 

• 
M 

Figure 1: A dynamic microeconomic system. 

x 

Note 1 This notation for a dynamic adjustment process differs from the usual notation. 

Here the adjustment mt~l = f3i(Ht I ei , I) depends on the history H t of previous messages, 

rather than on only the most recent message mt. (A complete description of the history 

vector H t observed by market participants in this institution is given in Section B.3.) 
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This framework can be used to describe a double auction experiment. The environment 

of a DA experiment is described in Section A. The DA institution is described in Section B. 

The model of behavior is presented in Section C. 

A Environment 

The theory developed in this paper addresses the case of markets with the set A of traders 

partitioned into a group I of sellers and a group J of buyers. We interpret a market 

experiment as an example of an economic system. Both types of agents (sellers and buyers) 

are assumed to have preferences over monetary rewards that are monotonically increasing. 

Each seller i E I has a technology ys,i for aquisition of units of an abstract commodity 

at costs c;, cl, ... ,C";i, where c; is the cost to seller i of the first unit sold, cl the cost of 

the second unit, and so on. The gains to seller i on the kth unit sold are determined by 

the difference 7rs\(Pk, cf) = Pk - cf between the price Pk received from a buyer for that 

unit, and the co~t cf at which the unit is aquired. If seller i sells J.Li ::; mi units at prices 

PI, P2, ... , PJ.Li' then the utility to this seller is ui (2:~~1 (Pk - cf)), where ui (.) is assumed 

monotonically increasing. 

Each buyer j E J has a technology yb,j used for redemption of units of the abstract 

commodity at unit valuations vJ, v;, ... ,v? ' where vJ is the redemption value for the first 

unit aquired, V] is the redemption value for the second, and so forth. Buyer j has an 

endowment Wj of a trading currency that is sufficient to purchase each unit at a price up 

to the redemption value of the unit, i.e., Wj ~ 2:~~1 v;. Monetary rewards for buyers are 

the difference between the redemption values of units purchased and the price Pl paid to a 

seller: 
l ( l) l 7rb,j Pl, Vj = Vj - Pl· 

If buyer j purchases 1/j ::; nj units at prices PI, P2, ... , PVi the monetary gain from trading 

for buyer j is 2:~;1 (v; - Pl)' and the utility of this monetary gain is u
j (2:~;1 (v; - Pl)), 

where u j 
(.) is monotonically increasing. 

The environment is therefore 

e { (ui ys,i O)} U {(uj yb,j w.)} 
, 'iEI ' 'J jEJ 

{ (u
i
, Ci, O)}. U {(u

j
, vj, Wj)}. . 

~EI JEJ 

Example 1 Figure 2 shows supply and demand conditions for market trading experiment 

3pdaOl run in the experimental lab at the University of Arizona by Vernon Smith and 

Arlington Williams. In this market there are four buyers, each with positive valuations for 

three units, and four sellers, each with finite costs for three units. The vector of buyers' 

valuations is 

v = {VI, V2, V3, V4} 

= {{$3.30, $2.25, $2.10}, {$2.80, $2.35, $2.20}, 

{$2.60, $2.40, $2.15}, {$3.05, $2.35, $2.30}}. 



$4.00 

$3.50 

$3.00 

$2.50 

$2.00 

$1.50 

$1.00 

$0.50 

PRICE FORMATION IN DOUBLE AUCTIONS 

P 

1 2 3 4 5 6 7 8 9 10 11 12 

S 

D 

Q 

Figure 2: Supply and demand conditions for market experiment 3pda01. 

The vector of sellers' costs is 

C = { Cl, C2, C3, C4} 

{{$1.90, $2.35, $2.50}, {$1.40, $2.45, $2.60}, 

{$2.1O, $2.30, $2.55}, {$1.65, $2.35, $2.40}}. 

9 

Since buyer j with redemption value v~ makes a monetary gain at any purchase price 

p < v~, and since the buyers preferences are assumed monotonically increasing in monetary 

gain, this buyer is willing to pay any price up to v~ for the [th unit purchased. Therefore, 

the demand shown in figure 2 is determined by arraying the buyers' redemption value 

vectors. Supply is obtained analogously. Between five and seven units are exchanged at 

the competitive equilibrium price. Each side of the market receives the same rents at the 

equilibrium price of $2.35. The total surplus available is $4.80 per trading period. 

In what follows, this market will be referred to as the symmetric market design. 

Trading periods 

A typical laboratory market experiment involves trading over several periods. Each 

seller has costs induced for the trading period, and each buyer has valuations induced. A 

buyer's valuation for a unit remains in effect throughout the trading period or until the 

buyer transacts that unit. After a unit is transacted, the seller's cost and the buyer's 

valuation for the unit just transacted are no longer in the supply and demand schedules, 

trading continues, and this process proceeds until there are no more surplus enhancing 
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trades remaining, or until time expires in the trading period. At the conclusion of a trading 

period, the costs and valuations are reinitialized - possibly at different amounts - in the 

subsequent period. In market experiment 3pdaOl - using the symmetric market design of 

figure 2 - there were nine trading periods, each lasting 300 seconds. 

B Institution 

B.I Messages and adjustment process rules (asks and bids) 

Since traders receive surplus based on the transaction price, there must be a means of 

determining the price. In the double auction sellers post ask prices, and buyers post bids. 

In an economic mechanism, adjustment process rules specify the time when exchange of 

messages begins, a transition rule governing the sequencing and exchange of messages, and 

a stopping rule. The DA imposes no restrictions on the sequencing of messages. Any trader 

can send a message at any time during the period that the market is open. Allocation of 

units is by mutual consent between any two traders. If a seller's ask is acceptable to a buyer 

then a transaction is completed when the buyer takes (accepts) the seller's ask. Similarly, 

a buyer's bid may be accepted by a seller. 

Definition 1 (The message space) Seller i at time t has a message space Mt,i where 

M:,i C {i} x {O} x N. 

b . 
Buyer j has a message space M t '] where 

M~,j C {O} x {j} x N, 

where N = {x : x = l~O for some n EN}. 

Definition 2 (Asks) An ask a by seller i is an amount which seller i is willing to accept 

from a buyer as payment for a unit of the commodity being traded. A take of ask a by a 

buyer j is an agreement by j to purchase a unit from seller i at the transaction price p = a. 

Definition 3 (Bids) A bid b by buyer j is an amount that buyer j is willing to pay to 

some seller for a unit. A take of bid b by a seller i is an agreement by i to sell a unit to 

buyer j at the transaction price p = b. 

The lowest ask in the market at any time is called the outstanding ask oa and the highest 

bid is called the outstanding bid ob. These define the bid-ask spread [ob,oa]. 

One commonly used market rule requires a bid-ask spread reduction in the posting of 

new bids and asks. (The DA with the spread reduction rule is the institution considered in 

this paper, although the strategies considered could be applied if asks and bids are queued.) 

At any time buyers may place a bid bEN with b > ob or they may accept the outstanding 

ask. Similarly, sellers may accept the outstanding bid, or they may make an ask a E N 
below the outstanding ask. 

Since messages are sent in an iterative process, they are subscripted in the order received, 

as in example 2. 
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Example 2 (Messages) Suppose the market depicted in figure 2 is in progress, and the 

actions have been a bid of $2.00 by buyer 3, and an ask of $2.65 by seller 4. These are 

messages ml and m2. They are written 

ml = (0,3, $2.00) 

and 

m2 = (4,0, $2.65). 

With ml and m2 as above, the message 

m3 = (0,1, $2.25) 

is permissible, but 

m4 = (3,0, $2.75) 

does not meet the condition of the improvement rule, since the outstanding ask is $2.65, 

and seller 3's proposed ask of $2.75 does not improve on the ask seller 4 submitted with 

message m2. 

B.2 Allocations (takes) 

At any time during the operation of a market, if there is an outstanding ask oa posted, then 

buyer j with valuation v; has the option of accepting the outstanding ask (and therefore 

purchasing a unit at price p = oa), resulting in surplus 

I ( I) I 
7rb,j oa, Vj = Vj - oa. 

Similarly, if there is an outstanding bid ob then seller i with cost cf has the option of 

accepting ob and receiving surplus 

Example 3 (Acceptances) With the history of messages 

ml = (0,3, $2.00) 

m2 (4,0, $2.65) 

m3 (0,1, $2.25), 

the outstanding ask oa = $2.65 could be accepted by buyer 1 at this pointl by sending the 

message 

m4 = (0,1, $2.65). 

At that point a trade would be executed between seller 4 and buyer 1 at the price $2.65. 

This is the outcome of message 4. It is denoted 

h4 = (4,1, $2.65). 

IThis example is the actual sequence of bids and asks leading up to the first transaction in period 2 of 

market experiment 3pdaOl. The sequence of transaction prices for this market is shown in figure 3. 
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B.3 Histories 

After n messages have been sent there will be a history of length n which summarizes the 

activity in the market to that point. In example 3, the messages ml, ... ,m4 result in the 

history 

H4 = {hI, h2, h3, h4} 

{ml,m2,m3,h4} 

{(0,3, $2.00), (4,0, $2.65), 

(0,1, $2.25), (4, 1, $2.65)}. 

Note that in H4 the triple h4 unambiguously denotes an accept by buyer 1 of the offer of 

$2.65 made with message 2 by seller 4. (See 'Accept of oa' in Definition 4.) 

Definition 4 (Histories) After n messages have been sent, there will be a history Hn 

consisting of n ordered triples. For any message mn+1 that is sent, one of six cases will 

hold. 

Invalid ask or bid A message mn+1 = {i, 0, a} is not valid if a 2: oa. An invalid ask 

will not be included in the history. In effect, the institution ignores messages that 

violate the spread reduction rule. Similarly, a message mn+1 = {O, j, b} is not valid 

if b :s: ob. 

No ask outstanding If no ask has been made since the last transaction, then there 

is no outstanding ask, and any ask a E if is valid. If, in addition, m n+1,3 > ob, then 

hn+1 = mn+l· 

No bid outstanding Similarly, if no bid has been made since the last transaction, 

then there is no outstanding bid, and any bid b E if is valid. If m n+1, 3 < oa, then 

hn+1 = mn+l· 

Accept of ob If mn+I,1 :f:. 0 and m n+I,3 :s: ob then seller m n+1,1 is making an offer 

at or below ob, so mn+1 is an accept of ob. The buyer's identity is found by looking 

back in Hn and finding the last hk with hk,2 :f:. 0, that is k* = max{k : hk,2 :f:. O}. 

Then (hn+I,I, hn+I,2, hn+1,3) = (mn+1,I, hk*,2, ob). 

Accept of oa If m n+I,2 :f:. 0 and m n+I,3 2: oa then mn+1 is an accept of oa (by 

buyer m n+2,2). The seller's identity is found by looking back in Hn and finding 

k* = max{k: hk,1 :f:. O}. Then (hn+1,I, hn+1,2, hn+I,3) = (hk*,I, m n+1,2, oa). 

Improving ask or bid If m n+I,3 E (ob,oa) then mn+1 is either an improving ask, 

or an improving bid, and hn+1 = mn+l. 

C Behavior 

C.l Frequencies of takes 

As noted in Section A, sellers attempt to maximize 7rS~i(Pk' cf) and buyers attempt to 

maximize 7rb~j(PI' V)). Since asks or bids must be accepted in order to result in a transaction, 

we take the point of view that sellers will maximize expected surplus myopically, where the 
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expectation is taken relative to beliefs p(a) that an ask a will be accepted by some buyer. 

These beliefs are formed on the basis of observed market data (as described in Section 

C.2). Similarly, buyers are assumed to maximize expected surplus myopically, where the 

expectation is taken relative to beliefs q(b) that a bid b will be accepted by some seller. In 

both cases the domain of these beliefs is the set D of all asks and bids that have occurred 

in the market within the memory length specified for the trader. 

The history that traders consider in forming beliefs is restricted to those messages leading 

up to the last L transactions, where L E {a, 1, 2, ... }. The parameter L is therefore the 

memory length of the trader. The next definition provides a procedure for truncating the 

history, so that beliefs can be constructed using the data within the trader's memory. The 

procedure for constructing beliefs using this (truncated) history is described in Section C.2. 

Note 2 We will work with the vector H n , although traders do not have access to all the 

information in Hn. Specifically, traders know their own asks or bids, but do not necessarily 

know the identities of the traders making the other bids and asks. Information about 

identities is not used in the formation of beliefs or strategies, so use of Hn is made only to 

avoid complicating notation. 

Definition 5 (Remembered history) Let Hn be the history vector for a market after n 

messages have been sent, as in definition 4. Given H n , make the following definitions. 

Trade function For a vector Hn, define a function T : Hn M {a, l}n by setting 

Tk(hk) = I{hk,1.hk,2>O} (hk)' Then each component Tk of T indicates whether a trade 

occured in the k-th element of the history. 

Number of trades Let xn = (Xl, X2, ... , xn). For each n, define Sn : {a, l}n M N 

by 

Sn(Xn) = Lk~l Xk· 

Then Sn(T(Hn)) is the number of trades resulting from the first n messages. 

Remembered history Let L be the memory length of a given trader. For fixed 

nand Hn, to simplify notation, let S = Sn(T(Hn)). Let n' be the position of trade 

S - L if S > L, and let n' = ° if S ~ L. Define iI~L) by 

Deletion of oa and ob from history Let nil = max{k : Tk(hk) = I}, i.e., nil is 

the index of the most recent trade. Let n* be the index of the lowest (most recent) 

ask in the vector {hn" + I, ... , hn }. Let n* be the index of the highest bid in the vector 

{hn"+1, ... , hn}. Note that if Tn(hn) = 0, then hn,3 is either the outstanding ask or 

the outstanding bid, as a consequence of the spread reduction rule, and if Tn (hn) = 1 

then there is no outstanding bid and no outstanding ask. IfTn(hn) = ° and hn,l = 0, 

then hn,3 is the outstanding bid. If hk,l =1= ° for some k E {nil + 1, ... ,n - I}, then 

n* =1= 0 and we can define H~L) by 
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That is, HAL) is HAL) with hn * and hn* removed. This is done because it is not known 

at time n if the outstanding ask or bid will be accepted. The other case - where hn ,3 

is the outstanding ask - is treated similarly. Then HAL) is the part of the history 

from which traders with memory length L form beliefs. 

Set of asks and bids Let D~L) be the set of all asks and bids that have been made 
. H(L). D(L) - U {h } 
In n ,I.e., n = kE{n'+l, ... ,n}\{n*,n*} k,3· 

14 

Definition 6 (Ask frequencies) For each d E D~L), let A(d) be the total number of asks 

that have been made at d, and let TA(d) be the total number of these that have been 

accepted. Let RA(d) == A(d) - T A(d) be the rejected asks at d. 

For A(d), the counting procedure is as follows. For each 

k E {n' + 1, ... , n} \ {n*, n*}, 

if hk,3 = d, hk,l =1= 0 and hk,2 = 0, then A(d) is incremented by one. If hk,3 = d and 

Tdhk) = 1, then hk is either a taken ask or a taken bid. To determine which is the 

case, find m* = minim ~ 1 : hk- m,3 = hk,3}. If hk-m*,l =1= 0, then A(d) and TA(d) are 

incremented by one. The rejected asks at d are given by RA(d) == A(d) - TA(d). 

At each time during a market, the proportion of asks at a E D that have been accepted 

IS 

whenever A(a) > O. 

_( ) _ TA(a) 
p a - A(a) 

Definition 7 (Bid frequencies) For each d E D~L), let B(d) be the total number of bids 

that have been made at d, and let TB(d) be the total number of these that have been 

accepted. Let RB(d) == B(d) - TB(d). The interpretations and counting procedures for 

B(d), TB(d), and RB(d) are analogous to those described in definition 6 for asks. 

At each time during a market, the proportion of bids at bED that have been accepted 

is 
-(b) = TB(b) 
q B(b) 

whenever B(b) > O. 

Note 3 In what follows, the sets of asks and bids is frequently denoted D, with the sub

scripts and superscripts omitted. When traders have finite memory, that will be noted. 

After n messages have been sent, the relevant set of asks and bids is D~L) and the relevant 

history is HAL). 

In stationary market environments these empirical frequencies show substantial regular

ity: p(a) tends to be a decreasing function of a and ij(b) tends to be an increasing function 

of b. 
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C.2 Beliefs 

While the frequencies p(a) and ij(b) from definitions 6 and 7 tend to be monotonic when 

the number of asks and bids is large, there is more variability in small samples. For this 

reason, it is useful to work with a modification of these summary statistics. 

Modification of p(a) is made by taking the point of view that if an ask a' < a is rejected 

then had that ask been made at a it would also have been rejected. This assumption is 

made because a > a' and is therefore less appealing to buyers than a', which was rejected. 

Similarly, if ask a' > a was made and taken, then that ask would also have been taken if 

it were made at a. Also, if a bid b' > a is accepted, then an ask a' = b' would have been 

taken if it had been made (the assumption being that this ask of a' would be acceptable 

to the buyer who bid b'). This heuristic - and an analogous one for buyers' beliefs - are 

formalized in the next two definitions. 

Definition 8 (Sellers' beliefs) For each potential ask a E D, define 

p(a) = Ld>aTA(d) + Ld>aTB(d) 

Ld~aTA(d) + Ld~aTB(d) + Ld~aRA(d) 

Then p(a) is the seller's belief that an ask amount a will be acceptable to some buyer. 

The notation is simplified by the following definitions. Let T AG(a) = Ld>a T A(d), 

TBG(a) = Ld>a TB(d), and RAL(a) = Ld<a RA(d). These are the taken asks greater 

than or equal to a, the taken bids greater than-or equal to a, and the rejected asks less than 

or equal to a, respectively. 

Then 
A TAG(a) + TBG(a) 

p(a) = TAG(a) + TBG(a) + RAL(a)· 

Definition 9 (Buyers' beliefs) For each possible bid bED, define 

A( ) Ld<bTB(d) + Ld<bTA(d) q b = =-_--==='-=--=-'--'-_.:.c.:=:...==--_..:......:.... __ ...,.. 
Ld9 TB (d) + Ld~bTA(d) + Ld~bRB(d) 

As in definition 8, to simplify notation we introduce functions TBL(b) = Ld<bTB(d), 

T AL(b) = Ld<b T A(d), and RBG(b) = Ld>b RB(d). These are the taken bids less than 

or equal to b, the taken asks less than or equal to b, and the rejected bids greater than or 

equal to b. 

Then 
A T BL(b) + T AL(b) 

q(b) = TBL(b) + TAL(b) + RBG(b) 

With the specification of beliefs in definitions 8 and 9, the belief functions are monotonic. 

(See propositions 1 and 2 in Section CA.) This captures the intuition that a trader who 

has seen an ask of a rejected should decrease the belief that a will be accepted later, and 

decrease the belief that an ask at any value greater than a will be accepted. 
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C.3 Spread reduction rule and beliefs 

The spread reduction rule has the effect of making the probability of a take for an ask 

a ~ oa equal to O. Similarly, ij(b) = 0 for all b with b ~ ob. These facts are incorporated 

into traders' beliefs in the first parts of definitions 10 and 11 below. 

In order that the bidding and asking are capable of beginning, there must be some 

action that traders believe will result in a positive expected surplus to themselves. This is 

accomplished by placing a lower bound of 'Tf on the belief of a take for each action being 

considered by the traders, and by always having 0 and M for some M > maXj,l{ vD as 

potential actions, i.e., {O, M} ~ D for all n, and for all L. In the simulations of section IV, 

the value of'Tf has been fixed at 'Tf = 0.001, and the value of M has been fixed at M = 10. 

(These two parameters simply insure that traders' prior beliefs are diffuse.) 

Definition 10 Let 

jj(a) = p(a) . I[O,oa) (a) 

for all a E D. That is jj(a) = p(a) if a < oa and p(a) = 0 if a ~ oa. For fixed 'Tf > 0, let 

p(a) = max{jj(a), 'Tf} for each a E D. 

Definition 11 Let 

ij(b) = ij(b) . I(ob,M] (b) 

for all bED. Let q(b) = max{ij(b) , 'Tf}. 

C.4 Monotonicity of beliefs 

The function p(a) defined in Section C.2 is monotonically non-increasing. That is, as the 

ask a is increased, p(a) - the belief that an ask a will be accepted - is non-increasing in a. 

Similarly, ij(b) is non-decreasing in b: higher bids are believed to be more likely to be taken. 

These results are proven in propositions 1 and 2. 

Proof Let TG(a) = TAG(a) + TBG(a). Note that 

TG(a2) ~ TG(al) 

and 

RAL(ad ~ RAL(a2) 

because al < a2. Multiplying these two inequalities results in 

Now add 

TG(a2) TG(al) 

(1) 

to both sides of inequality (1) and from this sum factor out TG(a2) from the left side of 

the equation and factor TG(al) out of the right side, then divide both sides of the resulting 

inequality by 
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Proof The proof is similar to the proof of proposition 1. _ 

Proposition 3 The functions p(a) and jj(a) are non-increasing. 

Proof Since jj(a) = p(a) I[O,oa) (a), and p(a) is non-increasing, jj(a) is also non-increasing. 

Since p(a) = max{jj(a), 17}, p(a) is also non-increasing. -

Proposition 4 The functions q(b) and ij(b) are non-decreasing. 

Proof The proof is similar to the proof of proposition 3. _ 

C.5 Expected surplus maximization 

Seller i with cost cf < oa may make an offer a E (cf, oa) and obtain the expected surplus 

E[7fs\(a, c~)] = (a - c~) . p(a). , 

The maximum expected surplus of seller i for the sale of unit k is then 

SS~i = max{maXaEDE[7fs~i(a, c~)],0}.2 

Similarly, buyer j with valuation v; may make a bid b E (ob, oa) and obtain the expected 

surplus 

E[7fb~j(b, v;)] = (v; - b) . q(b). 

The maximum expected surplus for buyer j purchasing unit 1 is therefore 

C.6 Timing of messages 

Let t be the parameter for time within a trading period. Let T be the length of the trading 

period and let tK E [0, T) be the time of of the K,th offer, bid, or acceptance of an offer or 

bid. At time tK let T~i be the random variable that specifies the time which seller i would 

allow to elapse before sending a message; let T~j be the random variable that specifies the 

time which buyer j would allow to elapse before sending a message. If T~i and T~j are 

exponentially distributed with parameters O!s,i = fs,i(SS~i; tK , T) and f3b,j = fb,j(Sb~j; tK , T), 

then the probability that seller i' will be the next trader to send a message in the market is 

fs,i,(Ss~i'; t K , T) 
Ps,i' = . k. . I. . 

EiEds,t(Ss,i' tK , T) + EjEJ fb,J(Sb,j' tK , T) 

This is shown in the following proposition. 

2Seller i with cost vector Ci = {c;, c~, ... , C7'i} faces the problem of choosing a sequence of asks or 

accepts to maximize E:";'l (p7 - cn, where p7 is the purchase price received for unit k. We assume that 

the seller will attempt to maximize the surplus of each unit in sequence, independently of other units. In 

addition to simplifying the strategy choice, this is consistent with the myopic formulation of strategy choice. 

A similar remark applies to buyers. 
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Proposition 5 If Ts~i and Tb~j are independent exponentially distributed random variables 

on [0,00) with parameters as,i = fs,i(SS~i;tK"T) and f3b,j = fb,j(Sb~j;tK"T) (where S:'i and 

Sb~j are as defined in Section CA), i.e., 

Pr{Ts,i < t} = 1 - e-as,i,t, 

then the probability that seller if will be the next trader to send a message is 

Proof Consider, for example, seller 1. Let 

This random variable is exponentially distributed with parameter 

a s,-l = L as,i + L f3b,j' 
i>l j2:1 

Then the probability that seller 1 is the next seller to move will be the probability that 

Ts ,l < T s,-l, i.e., 

Ps,l = Pr{Ts,l < Ts,-l} 

Iooo Iou as, 1 . e-as,l' t . as, -1 . e-as,-l' U dt du 

a s 1 , .. 
a s ,l + a s,-l 

There are two reasons for defining the timing of each trader's actions as exponential 

random variables. The first is an important conceptual issue: with this formulation, the 

mechanism is informationally decentralized, in that the information about each trader's 

surplus is not held by any agent. The decision by an individual trader to send a message 

is independent of any (unobserved) characteristics - such as costs or valuations - of other 

traders. The second issue is empirical. With this formulation, the timing of bids and asks 

is testable within the model, and it is possible to compare the timing data for various 

specifications of the functions fs,i(SS~i; tK" T) and fb,j(Sb~j; tk, T) with the timing data from 

experiments. 

The specifications of fs,i(SS~i; tK" T) and fb,j(Sb~j; tK" T) that have been used in the sim

ulations of Section IV are the functions 

and 



PRICE FORMATION IN DOUBLE AUCTIONS 19 

C.7 Randomization of asks and bids 

In formulating the model, two specifications of the belief functions p(a) and q(b) have been 

considered, and simulations of the model for each formulation have been run and examined. 

The beliefs in Section C.2 are defined on the set D of bids and asks that have previously 

occurred during the course of (recent) trading. 

One version of the belief functions that was considered involved forming piecewise linear 

functions. For ask values a E [0, M] between successive values dk E D and dk+1 ED, the 

beliefs were given by . 

p(a) = (a - dk) . P(dk+l) + (dk+1 - a) . P(dk). 

dk+l - dk 

With this piecewise linear specification of beliefs, the expected surplus function is piece

wise quadratic and continuous. If for seller i there is an interior maximum d* of the expected 

surplus function on some segment (dk, dk+1), and if this is also a global maximum of the 

expected surplus function, then d* will be the optimal bid for seller i. If seller i is the next 

trader to send a message, that message will be (i, 0, d*). When d* is subsequently accepted 

or rejected, it will be included in D. While this possibility suggests that the piecewise linear 

formulation of beliefs could result in a sufficient amount of exploration of new prices, in sim

ulations interior maxima occurred infrequently. As a consequence, the set of possible bids 

and asks remained too small, and did not concentrate near the equilibrium. This resulted 

in instability of the price sequence. 

To avoid this problem, the following specification of beliefs and strategy choices is 

adopted. Beliefs are defined only on the set D, and traders choose asks and bids randomly 

in an interval around their expected surplus maximizing ask or bid. This randomization of 

bids and asks allows for exploration of possible prices and focusing on the equilibrium price. 

The procedure for this randomization is as follows. Assume that the domain of the belief 

functions D~L) is ordered in increasing values. Suppose dk * E D~L) is the expected surplus 

maximizing ask for seller i. Let 

Then the randomization will be made on 

according to a uniform distribution. For buyer j, if dk* E D~L) is the expected surplus 

maximizing bid, the bid will be made on 

according to a uniform distribution. 
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IV Simulations 

Much of the evidence presented on performance of the model is from simulations. This is 

because the dynamics of the model are complex, making analytic characterization of its 

properties difficult to obtain. To determine the distribution of the next ask, bid or accep

tance value at a given time, it would first be necessary to determine the distribution that 

determines which seller or buyer is next to submit an ask or bid. This distribution depends 

on the cost and valuation schedules and on the traders' beliefs at that time. Whenever a 

trade occurs, the cost schedule for one of the sellers changes, and the valuation schedule 

for one of the buyers changes. Hence the distribution of the next seller or buyer to submit 

an ask or bid changes. Moreover, whenever an ask or bid is submitted or accepted, that 

may change the belief functions for the traders, which will change both the distribution of 

the next trader to submit a message, and the optimal ask for the trader who does send a 

message. 

Considerations of this type make analysis of the distributions difficult to obtain. It may 

be possible to obtain results on asymptotic convergence to an approximate equilibrium, 

but asymptotic convergence alone does not provide information about the path. For the 

important question of the path of convergence to equilibrium, these difficulties suggest that 

simulations are a useful tool for investigating properties of this model. Comparison is made 

between outcomes of laboratory trading and 100 simulations of the model of Section III. 

In figure 3, laboratory market 3pda01 is shown. A simulation of the model of Section III 

is shown in figure 4. A simulation of the ZI model3 is shown in figure 6. Figure 7 shows a 

simulation of the model of Section III in a symmetric market with a shift in the supply and 

demand schedules after five periods of trading. In addition to these graphs of simulations, a 

summary of convergence and efficiency statistics for the lab markets, for the 100 simulations 

of the model of Section 111,4 and for the 100 simulations of the ZI model is provided in 

table 1. 

A Symmetric market design 

Several experiments with the symmetric market design were run in laboratory experiments 

by Arlington Williams and Vernon Smith. Examples of outcomes from six markets with this 

design are published in Ketcham, Smith and Williams [1984]. In addition, market 3pda01 in 

figure 3 was also run with this design. These experiments consisted of nine identical trading 

periods, each lasting 300 seconds. The transaction price sequences in laboratory markets 

under these or similar conditions typically exhibit early volatility, and then settle down to 

transaction prices close to competitive equilibrium prices. On the left of figure 3 is a graph 

of the supply and demand conditions for the symmetric market 3pdaOl. On the right side of 

that figure is a graph of the sequence of transaction prices through the 9 periods of trading. 

The equilibrium price is shown as a solid line across the diagram. Each trading period is 

separated by a vertical line, and the number of transactions per period is indicated at the 

3When the memory length in the model of Section III is set to L = 0, that model reduces to the ZI 

model. Simulations of the ZI model were run using programs for the model of Section III with L = o. 
4The simulations of this model reported here were run with L = 5. Simulations with other values of L 

have been run and examined. Model performance is not substantially different for values of L between 3 

and 8. 
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Figure 3: Supply and demand conditions (left) and transaction prices (right) 

for market experiment 3pdaOl. 
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Figure 4: Supply and demand conditions and transaction prices for a simu

lation of market 3pdaOl. 
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bottom of the diagram below the vertical line that indicates the end of the trading period. 

At the equilibrium price p* = $2.35 in this market, the equilibrium quantity of trade is 

q* E {5, 6, 7}. A simulation of our model under the same supply and demand conditions is 

shown in figure 4. Price sequences from lab experiments with this design (as in figure 3) and 

from simulations with this market design (as in figure 4) both converge quickly to prices 

near the competitive equilibrium price and an equilibrium quantity of trade typically occurs 

in each period. . 

Table 1 summarizes important statistical features of the seven lab markets, of 100 simu

lations of the model of Section III, and of 100 simulations of the ZI model. In this table, the 

mean absolute deviation of transaction price from equilibrium price is shown for the first 

two periods of trading, for the entire 9 periods of trading, and for the last two periods of 

trading. This statistic is evaluated for each of the three data sets described above. Market 
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efficiency is likewise examined at the beginning of trading, throughout trading, and at the 

end of trading for each of these data sets. While the ZI traders attain . high efficiency (in 

markets with a single commodity), that model does not result in the formation of equilib

rium prices. The data on mean absolute deviation in table 1 show not only that the model 

of Section III converges to within a few cents of the equilibrium price, but that the rate of 

convergence is similar to that found in laboratory experiments. 

Symmetric Model ZI Model 

Markets Simulations Simulations 

Mean Absolute 

Deviation 0.101 0.138 0.276 

(First two periods) 

Mean Absolute 

Deviation 0.050 0.052 0.237 

(Entire experiment) 

Mean Absolute 

Deviation 0.022 0.031 0.209 

(Last two periods) 

Market 

efficiency 0.907 0.979 0.968 

(First two periods) 

Market 

efficiency 0.959 0.988 0.968 

(Entire experiment) 

Market 

efficiency 0.970 0.999 0.967 

(Last two periods) 

Table 1: Summary of statistics from simulations of models and from lab data. 

The stability of prices in simulations can be explained in terms of the sellers' and buyers' 

belief functions in figure 5. The belief functions p (a) and q (b) shown in that figure are 

from the the end of the fifth period of the simulation of figure 4 using definitions 8 and 9 of 

Section III.C.2. In this graph, a seller's belief that ask a will be accepted by a buyer is shown 

for each ask from $2.32 to $2.38; buyers' beliefs are shown for bids from $2.32 to $2.38.5 

These belief functions are monotonic (see propositions 1 and 2), so the value of the sellers' 

belief is p(a) = 1 for all a < $2.32 and it is 0 for all a > $2.38. With this belief function, 

and with myopic surplus maximization, the optimal ask is $2.34 for any seller with unit 

cost of $2.30 or less. The buyers' belief functions in this case have a similar property: the 

optimal bid for a buyer with valuation of $2.40 or greater is $2.37. At the beginning of the 

sixth period, the first action will be either an ask of $2.34 or a bid at $2.37. Suppose that 

the first action is an ask at $2.34. As a result of the spread reduction rule, sellers' asks must 

5Note that the range from the lowest cost to the highest valuation in this market is $1.40 to $3.30, with 

an equilibrium price of $2.35; beliefs are focused in a narrow range around the equilibrium price. 
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be less than $2.34. An ask of $2.33 would result in expected surplus ($2.33 - c) . 1 for any 

seller with cost less than or equal to $2.30. Since the distribution of costs and valuations at 

the beginning of each period in this market is symmetric, and since the probability of each 

trader being the next to send a message is equal to that traders' proportion of total surplus 

(see proposition 1), the probability that a seller will send the next message is 0.50, so that 

the probability of two consecutive asks is approximately 0.25. In general, the distribution 

of absolute deviations from equilibrium is approximately the distribution of run lengths of 

a sequence of Bernoulli trials, since a low price results from a sequence of asks and a high 

price results from a sequence of bids. 
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Figure 5: Sellers' beliefs (left) and buyers' beliefs (right) after five periods 

of trading in simulation of market 3pdaOl. 
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b 

Figure 6 shows a simulation of the ZI model in the symmetric market environment. In 

the ZI model, there is no belief formation process. As a result there is no movement of 

transaction price to the equilibrium. In table 1, the mean absolute deviation of transaction 

price from equilibrium price is shown for 100 simulations of the ZI model in the symmetric 

market design.6 This statistic is also shown for 100 simulations of the model of Section III 

and for the seven lab markets. These data (and the graph in figure 6) show that the ZI 

model does not result in convergence to competitive equilibrium, but that the behavior in 

the model of Section III does facilitate convergence to approximate equilibrium prices after 

several periods of trading. 

B Market with shifting conditions 

The diagram on the left of figure 7 shows two sets of supply and demand conditions. The 

lower set - shown with thinner lines labeled Sand D - is identical to the supply and demand 

conditions in figures 2, 3, 4, and 6. If after one period or several periods of trading, buyers 

have each valuation increased by $0.50 and sellers have the cost of each unit increased 

6 Although the mean absolute deviation in the last two periods of the ZI model simulations is less than 

in the first two periods, this is not the result of convergence. The price sequence in each period constitutes 

a draw from the same distribution. 
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Figure 6: Supply and demand conditions and transaction prices for a simu

lation of market 3pdaOl using the ZI model. 
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Figure 7: Supply and demand conditions and transaction prices for a simu

lation of a market with a supply and demand shift. 
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by $0.50, then the new supply and demand are those shown with heavier lines labeled 8' 
and D'. The equilibrium quantity of trade and the total surplus are unaffected by this 

shift, but the equilibrium price increases from $2.35 to $2.85. Since expectations focus 

near the original equilibrium after several periods of trading (see figure 5), the dynamics 

of movement to the new equilibrium can be examined by considering this type of market. 

The sequence of transaction prices from a simulation of the model of Section III in this 

type of market - with the shift occuring after 5 periods of trading - is shown in figure 7. 

From periods 6 through 10 in this market, supply is 8' and demand is D': the equilibrium 

price is then $2.85. In the process of adjusting to the new equilibrium, several trades 

typically occur in the range $2.35 and $2.85 before prices become established near the new 

equilibrium. In the simulation shown, convergence to the original equilibrium occurs by the 

end of period 2. Beginning in period 6, the equilibrium price shifts up $0.50. By the end of 
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period 7 transaction prices establish near the new equilibrium price. This simulation shows 

that in the model developed here, traders respond to shifting market parameters, and prices 

quickly adjust to a new equilibrium. 

V Conclusions 

The simulations in Section IV demonstrate that the model in Section III results in compet

itive equilibrium prices after several periods of trading, and that behavior is responsive to 

altered market conditions. The data from simulations summarized in table 1 demonstrate 

that the model of Section III results in market efficiency of 99.9% in the symmetric market 

environment after several periods of trading and in convergence to approximate equilibrium 

prices. The ZI model, which demonstrates that random behavior results in market effi

ciency, does not result in the formation of equilibrium prices. Markets have the capacity 

to resolve complex coordination problems. In markets with multiple goods and production, 

optimal choices of input levels depend on expectations of relative prices of inputs, and on 

expectations of output prices. In a general equilibrium environment, consumers' optimal 

consumption choices depend on relative prices. A model of firm and individual behavior 

in exchange and production environments must therefore capture the formation of price 

expectations and of equilibrium prices. 

Several market experiments have tested the competitive model in more complex envi

ronments. Gjerstad, Williams, Smith, and Ledyard [1995] have examined the formation of 

equilibrium prices in a market with two commodities, A and B. In their design there is 

a set of m buyers and a set of n sellers. Sellers have independent marginal cost arrays in 

both market A and market B, with costs induced as in Section lILA. Buyers have induced 

quasi-concave preferences over commodities A and B. For example, if the experimenter 

wants a buyer to have the utility function ui(Ai, Bi) = (a· Ai + b· BD1/r, this is accom

plished by giving the buyer the same monetary reward for any final commodity holding 

lying on an indifference curve ui(Ai, Bd = c. Gjerstad, Williams, Smith, and Ledyard find 

that in these environments the bargaining process quickly leads to the formation of equi

librium prices. Since demand in each market depends on the prevailing price in the other 

market, and since the price in each market must form through the bargaining process, the 

problem that consumers solve in this environment is complex. It is clear that any model of 

the formation of price expectations and of bargaining in this environment must be based 

on a model that results in the formation of equilibrium prices in a market with a single 

commodity. Lian and Plott [1993] is an example of a complex market experiment involving 

production and consumption. In their market, consumers have a labor endowment which 

is sold in a labor market to producers. Producers have concave production functions which 

transform labor into a consumption good. This consumption good is then sold to consumers 

who have quasi-concave preferences over leisure and the consumption good. In both these 

market designs, consumers and producers will be able to make optimal decisions if they 

are able to accurately forecast prices in the market for each commodity. Extensions of the 

model of Section III to these environments would significantly enhance understanding of 

the process of market equilibration. 



PRICE FORMATION IN DOUBLE AUCTIONS 26 

References 

[1] Chatterjee, K. and L. Samuelson. "Infinite Horizon Bargaining with Alternating Of

fers and Two-Sided Incomplete Information," Technical Report, Pennsylvania State 

University, 1984. 

[2] Easley, David, and John Ledyard. "Theories of Price Formation and Exchange in Dou

ble Oral Auctions," in The Double Auction Market: Institutions, Theories, and Evi

dence, Daniel Friedman and John Rust, eds., Addison-Wesley, 1993. 

[3] Friedman, Daniel. "A Simple Testable Model of Price Formation in the Double Auction 

Market," Journal of Economic Behavior and Organization, 1991. 

[4] Gjerstad, Steven. "Price Formation in Double Auctions," Ph.D. thesis, University of 

Minnesota, January 1995. 

[5] Gjerstad, Steven, Arlington Williams, Vernon Smith, and John Ledyard. "Simultane

ous Trading in Two Competitive Markets: An Experimental Examination," mimeo, 

University of Arizona, October 1995. 

[6] Gode, Dhananjay, and S. Sunder. "Allocative Efficiency of Markets with Zero Intelli

gence Traders: Market as a Partial Substitute for Individual Rationality," Journal of 

Political Economy, vol. 101, 1993. 

[7] Hahn, Frank. "Auctioneer," in The New Palgrave: A Dictionary of Economics, John 

Eatwell, Murray Milgate, and Peter Newman, eds., MacMillan Press, 1987. 

[8] Hayek, F.A. "The Use of Knowledge in Society," American Economic Review, vol. 35, 

1945. 

[9] Hurwicz, Leonid. "On Informationally Decentralized Systems," in Decision and Orga

nization, C.B. McGuire and Roy Radner, eds., University of Minnesota Press, 1972. 

[10] Ketcham, Jon, Vernon L. Smith, and Arlington W. Williams. "A Comparison of Posted

Offer and Double Auction Pricing Institutions," Review of Economic Studies, vol LI, 

1984. 

[11] Ledyard, John. "The Scope of the Hypothesis of Bayesian Equilibrium," Journal of 

Economic Theory, vol. 39, 1986. 

[12] Lian, Peng, and Charles R. Plott. "General Equilibrium, Macroeconomics, and Money 

in a Laboratory Experimental Environment," Social Science Working Paper 842, Cal

ifornia Institute of Technology, March 1993. 

[13] Plott, Charles. "Industrial Organization Theory and Experimental Economics," Jour

nal of Economic Literature, vol. XX, December 1982. 

[14] Rustichini, A., M. Satterthwaite, and S. Williams. "Convergence to Efficiency in a 

Simple Market with Incomplete Information," Econometrica, vol. 62, 1994. 



PRICE FORMATION IN DOUBLE AUCTIONS 27 

[15] Smith, Vernon 1. "An Experimental Study of Competitive Market Behavior," Journal 

of Political Economy, vol. LXX, 1962. 

[16] Smith, Vernon L. "Micro economic Systems as an Experimental Science," American 

Economic Review, vol. 72, 1982. 

[17] Wilson, Robert B. "On Equilibria of Bid-Ask Markets," in Arrow and the Ascent of 

Modern Economic Theory, G.W. Feiwel, ed., New York University Press, 1987. 




