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Abstract— This paper addresses the self-scheduling problem
faced by a price-maker to achieve maximum profit in a pool-based
electricity market. An exact and computationally efficient mixed-
integer linear programming (MILP) formulation of this problem
is presented. This formulation models precisely the price-maker
capability of altering market-clearing prices to its own benefits,
through price quota curves. No assumptions are made on the char-
acteristics of the pool and its agents. A realistic case study is pre-
sented and the results obtained are analyzed in detail.

Index Terms—Electricity pool market, market power, mixed-
integer linear programming (MILP), price maker.

NOTATION

A. Functions

stepwise monotonically decreasing discontinuous
function that, for every hour , expresses the
market-clearing price as a function of the price
maker quota in that hour (see Fig. 1);
production cost for hour of the th unit belonging
to the price maker;
revenue of the price maker in hour.

B. Constants

megawatt size of stepof the price quota curve for
hour (see Figs. 2 and 3);
number of units owned by the price maker;
number of steps of the price quota curve in hour;
is the summation of power blocks from step 1 to step
-1 for hour (note that ; see Figs. 2

and 3).
number of time periods considered;
price corresponding to step numberof the price
quota curve in hour;
feasible operating region of unit.

C. Variables

real variable representing the fractional value of the
power block corresponding to stepto obtain quota

;
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power produced by unit in hour ;
price maker quota in hour;
binary variable that is equal to 1 if stepis the
last step needed to obtain quotain hour and 0
otherwise.

I. INTRODUCTION

The framework considered in this paper is a pool-based elec-
tricity market for energy. An auction mechanism to clear the
market one day ahead on an hourly basis is assumed [1], [2].
No particular assumptions are made on generating companies;
therefore, several price makers as well as several competitive
fringe producers are market agents. The hourly load may be
price elastic or not.

In the above context, this paper addresses the self-scheduling
problem of a price maker, i.e., a generating company owning
a portfolio of units that is capable of altering market-clearing
prices. The objective function of this self-scheduling problem
is to maximize the price maker profits. Once the optimal self-
schedule is known, an appropriate bidding strategy to actually
achieve this optimal schedule should be developed.

For every hour, it is assumed that the market-clearing price
as well as the offer and demand curves are available once the
market has been cleared. This is the case of several electricity
markets like the market in mainland Spain [3], the former elec-
tricity market of California [4], and the electricity market of
New England [5]. The above information is crucial because
it allows small producers to forecast next-day market-clearing
prices, and it also allows price makers to forecast their corre-
sponding price quota curves. Note that several price makers can
compete in the considered pool-based electricity market.

The price quota curve of a price maker for a given hour pro-
vides the market-clearing price as a function of the price maker
quota (accepted production in that hour). This curve is described
in detail in [1], [6]. Hourly price quota curves (also known as
residual demand curves) allow formulating precisely the self-
scheduling profit maximization problem that every price maker
faces every day in a pool-based electricity market for energy.

This paper specifically addresses the day-ahead self-sched-
uling problem faced by a particular price maker. It provides an
efficient yet simple mixed-integer linear programming (MILP)
formulation that allows achieving the optimal solution for re-
alistic case studies in moderate solution times. This LP formu-
lation is exact in the sense that it is not an approximation of a
nonlinear formulation, as is the case of the model presented in
[7].
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Market power and price maker behavior have been analyzed
mostly in a single period context (therefore, not using 0/1
variables), and continuity has been assumed in functions and
variables. Particularly relevant works are [8]–[11]. This paper
provides a complementary approach that does not require
continuity and considers a multiperiod setting. On the other
hand, it extends the work reported in [6], specifically in pro-
viding an exact and efficient mixed-integer formulation, which
guarantees the achievement of the optimal solution.

The remainder of this paper is organized as follows. Section II
describes price quota curves, presents a nonlinear formulation of
the price maker self-scheduling problem, and provides its equiv-
alent mixed-integer linear formulation. In Section III, the results
from a realistic case study are analyzed in detail. Section IV pro-
vides some conclusions. Finally, an Appendix is presented to
describe the running cost and the feasible operating region for
generating units.

II. PROBLEM FORMULATION

A. Price Quota Curve Description

For a given hour, the quota of a price maker is the amount
of power it contributes to serve the demand in that hour. If the
price maker exercises its market power by retaining production,
the market-clearing price increases. The curve that expresses
how the market-clearing price (for the whole market) changes as
the quota of the price maker changes is called residual demand
curve [1] or, more directly, price quota curve. Note that different
price makers competing in the same electricity market present
different price quota curves.

The price quota curve for a given hour, corresponding to a
price maker, is a stepwise monotonically decreasing curve that
expresses the actual market-clearing price in that hour as a func-
tion of the market quota (total accepted production) of the price
maker. Price quota curves are stepwise because (producer/con-
sumer) bids are assumed to be blocks of power at given prices.

The 24 hourly day-ahead price quota curves of a given
price maker provide all the market information it needs to
self-schedule optimally, i.e., to maximize its benefits. That
is, these curves embody the effects of all interactions with
competitors and the market functioning rules. Once these
curves are available, the price maker self-scheduling problem
can be precisely formulated without further regard to the effect
of competitors, i.e., the self-scheduling problem of any price
maker can be formulated independently of the problems of
other producers.

The functioning of a day-ahead electricity market is as
follows. First, each producer, either price maker or price taker,
uses a self-scheduling algorithm to determine its optimal
self-schedule. Then, each producer uses a bidding strategy
designed to achieve in the market that optimal schedule.
Finally, the market operator uses a market-clearing procedure
to determine the actual production of each producer.

The day-ahead price quota curves of a price maker can be
obtained 1) by market simulation or 2) using forecasting proce-
dures [1]. Both techniques are outside the scope of this paper,
and therefore, the hourly price quota curves of the price maker
considered are assumed to be known data.

Fig. 1. Price quota curve.

For the sake of illustration, Fig. 1 shows a typical price quota
curve.

B. Nonlinear Formulation

The natural formulation of the optimization problem that a
price maker has to face is nonlinear, due to the products between
the variables that appear in the objective function [6].

This formulation is

maximize (1)

subject to (2)

(3)

The objective function (1) expresses the profit of the price
maker over the planning horizon. The first term is the total rev-
enue, and the second one is the total production cost, as formu-
lated in the Appendix and in [12].

The set of constraints (2) enforces that every unit works
within its feasible operating region over the whole planning
horizon. A precise mixed-integer linear description of this fea-
sibility region can be found in [12], [13], and in the Appendix.

The set of constraints (3) expresses for every hour the price
maker quota as the sum of the power production of its units.

C. Linear Formulation

An alternative equivalent formulation of problem (1)–(3) that
is linear is provided as follows:

maximize (4)

subject to (5)

(6)

(7)
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Fig. 2. Price quota curve: illustration of the linear formulation.

Fig. 3. Revenue versus quota.

(8)

(9)

The objective function (4) expresses the profit of the price
maker: total revenue minus total costs. Figs. 2 and 3 illustrate
the variables and constants needed to express linearly the price
maker revenue as a function of its quota. Taking advantage of the
stepwise nature of the price quota curve in every hour, the total
revenue is expressed linearly using real variablesand binary
variables , as illustrated in Fig. 2. Note that the revenue is
the shadowed area in that figure. Fig. 3 also illustrates the above
linear formulation. This figure expresses the price maker total
revenue as a function of its quota. Observe the nonconvex and
discontinuous nature of this function. Quota values that origi-
nate discontinuities on revenues do not lead to an ambiguous
formulation, because the maximization of the objective func-
tion always leads to the highest revenue values.

The sets of constraints (5) and (6) are identical to sets (2) and
(3), respectively. The set of constraints (7) expresses linearly
the price maker quota in every hour as a function of variables

and , as illustrated in Fig. 2. The block of equations (8)

expresses that the megawatt blocks of the price quota curve of
every hour are nonnegative values, bounded above. The block of
equations (9) states that only one variable is different from
0 in every hour. Thus, sets of equations (8) and (9) together en-
force that only one variable is different from 0 in every hour.
It should be noted that both formulations (1)–(3) and (4)–(9) are
fully equivalent, and this allows saying that the linear formula-
tion (4)–(9) is exact

III. CASE STUDY

The considered electricity market includes one price maker
producer owning 40 thermal units and different competitive
fringe producers comprising 120 thermal units. It should be
noted that mixed hydrothermal price makers can be analyzed in
a similar way as thermal price makers. The differences among
these analyses are simply related to the description of the fea-
sible operating regions of the hydroelectric units. The market
time horizon is 24 hours. Data for all units are based on the
1996 IEEE RTS [14] and are detailed in Table I. In this table,
Type indicates the unit type (A, B, C, D, E, F, or G); PM/CF
indicates the number of units corresponding to the price maker
and the competitive fringe producers, respectively;and
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TABLE I
GENERATING UNITS DATA

indicate, respectively, the maximum and minimum power
output; every value provides the production cost of the
block of the unit (four-block piecewise convex cost curves are
considered); RR gives both ramp-up and ramp-down maximum
values; SC is the constant start-up cost; and MUT and MDT
represent the minimum up and down times, respectively.

Price quota curves for the price maker are obtained simu-
lating the market behavior as stated in [6]. They can also be
obtained through forecasting procedures. However, it should be
noted that they are exogenous data for the problem addressed
in this paper. For the sake of illustration, the price quota curve
faced by the price maker in hour 21 is shown in Fig. 1.

For this case study, problem (4)–(9) is solved using CPLEX
7.0 under the General Algebraic Modeling System (GAMS)
[15] on an SGI R12000 (400 MHz) processor with 500 MB of
RAM. The required CPU time is about 15 min.

Optimal profit for the price maker producer is US $869,122.
The production self-schedule for the price maker is illustrated in
Figs. 4–6. Fig. 4 provides for the 24-hour time horizon: 1) the
price maker hourly production (gigawatts), 2) the hourly total
served demand (gigawatts), and 3) the hourly market-clearing
price ($ per megawatt hour). The total hourly served demand is
obtained after evaluating the optimal self-scheduling of every
market participant. It can be observed that the market-clearing
price is highly correlated with the served demand. However, that
price is not correlated with the price maker production, and this
is an indication that market power is being exercised. This lack
of correlation can be used as a monitoring variable to assess
market power.

Fig. 5 shows the quota of the price maker in percentage with
respect to the total served power in every hour, and from Fig. 5
it is apparent that the price maker quota in percentage is higher
in off-peak hours than in high-demand hours. This is again an
indication that power is withheld in high-demand hours to keep
the price high in these hours. This quota variation can also be
used as a monitoring variable to appraise market power.

Fig. 6 provides specific information on the manner in which
the price maker exercises its market power. The upper and lower
solid plots represent the power range for which the price does
not change. The plot provides the price maker production in
the marginal block of the price quota curve, i.e., the last block of
this curve used by the price maker. Fig. 6 shows that, for some
hours, (mostly high-demand ones) the marginal production (the

Fig. 4. Price maker production, served demand, and market-clearing price.

Fig. 5. Percentage of served power assigned to the price maker.

Fig. 6. Range of constant optimal price and price maker production.

production in the marginal block) of the price maker is in the
upper limit of the range for the final price. This may mean that
the price maker is withholding its production in those hours not
to force the price down, and this is again a clear indication that
the price maker is exercising its market power. Fig. 6 can be used
as a monitoring tool to assess the exercise of market power.

On the other hand, during other hours, (i.e., hours 1–8, 21, 22,
and 24) the optimal production is located somewhere between
the lower limit and the upper limit that preserve the market-
clearing price. There are three different reasons for that. In hour
8, this is so to meet the ramp-down constraint that becomes ac-
tive between hours 8 and 9; it should be noted that the total pro-
duction of the price maker begins to decrease in hour 8, when
the demand rises. Secondly, in hour 24, the reason is to meet
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the ramp-up limit between hours 23 and 24. Finally, in hours
1–7, 21, and 22, the reason is that a relevant change in the price
maker marginal cost occurs within the range of constant optimal
price; note that hours 1–7 present a very wide range of constant
optimal price. For example, in hour 4, the optimal price is US
$12.3/MWh, but the price maker only owns 4.858 GW of power
cheaper than that price (see Table I); therefore, the price maker
is only willing to offer that amount, because, if it offers more
than 4.858 GW, its profit decreases.

IV. CONCLUSION

This paper provides a mixed-integer LP formulation for the
self-scheduling problem faced by a price maker in a pool-based
electricity market. This formulation is exact in the sense that it is
equivalent to a “natural” nonlinear formulation of the problem.
This linear formulation allows an efficient solution using a stan-
dard branch-and-cut solver. Extensive computational analyses
based on realistic price makers in realistic markets have shown
the appropriate functioning of the proposed formulation.

APPENDIX

The running cost of a thermal unit and its technical constraints
are described in this Appendix. The running cost is ex-
pressed as

(A1)

where represents the fixed cost of unit; is the piecewise
linear variable cost of unit in hour ; denotes the startup
cost of unit ; is the shutdown cost of unit; is a 0/1
variable that is equal to 1 if unit is online in period ;
denotes the 0/1 variable that is equal to 1 if unitis started up at
the beginning of period; and is the 0/1 variable that is equal
to 1 if unit is shutdown at the beginning of period. Equations
(A1) express the running cost of unitin period as the sum of
a fixed term, different from zero if the unit is online, plus the
variable cost, the startup cost, and the shutdown cost.

The piecewise linear variable cost is formulated as

(A2)

(A3)

(A4)

where is the number of blocks of the piecewise linear variable
cost function; represents the power produced by unit
in period using the th power block; is the size of the th
power block of unit ; is the minimum power output of unit
; and denotes the slope of blockof the variable cost of

unit .
Constraints (A2) express the variable cost of unitin period

as the sum of the corresponding terms of the piecewise lin-
earization. Constraints (A3) state that the power output of unit

in period is the sum of the power generated using each block
plus the minimum power output. Constraints (A4) set the limits
of the power generated in each block. This power should be
greater than zero and less than the size (in megawatts) of each
block. This formulation assumes that the cost is monotonically
increasing. Nonconvex costs can be easily modeled by using ad-
ditional binary variables [12].

The feasible operating region is formulated through the
following linear constraints, which are further described in [12]:

(A5)

(A6)

(A7)

(A8)

(A9)

(A10)

(A11)

(A12)

(A13)

(A14)

(A15)

(A16)

where

(A17)

(A18)

In the expressions above, is the capacity of unit; is
the shutdown ramp limit of unit; represents the ramp-up
limit of unit ; is the startup ramp limit of unit; is the
ramp-down limit of unit ; is the minimum up time of unit
; is the minimum down time of unit; expresses the

time periods unit has been online at the beginning of the market
horizon (end of period 0); provides the initial commitment
status of unit (1 if it is online, 0 otherwise); and represents
the time periods unit has been offline at the beginning of the
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market horizon (end of period 0). For unit consistency, it should
be noted that time periods of one hour are considered.

Constraints (A5) and (A6) set the lower and upper limits of
the power output, respectively. The upper limit is restricted by
the maximum capacity of the unit in normal operation and by the
shutdown ramp rate if the unit is shutdown in the next period. It
should be noted that the power output becomes zero if the unit
is offline, i.e., if binary variable is equal to zero.

The set of constraints (A7) imposes the ramp-up rate limit as
well as the startup ramp rate limit. Analogously, ramp-down and
shutdown ramp rate limits are enforced by constraints (A8).

Equations (A9)–(A11) represent the linear expressions of
minimum up-time constraints. The set of equations (A9) is
related to the initial status of the units. is the number of
initial periods during which unit must be online to meet the
minimum up-time requirement. If unit does not declare any
initial status, is assumed to be equal to zero. The set of
equations (A10) is used for the periods following, and it
ensures the satisfaction of the minimum up-time constraint
during all the possible sets of consecutive periods of size

. Finally, the set of equations (A11) is needed for the last
periods, i.e., if a unit is started up in one of these

periods, it remains online during the remaining periods. Sim-
ilarly, (A12)–(A14) provide the formulation of the minimum
down-time constraints. Equations (A12)–(A14) are identical
to (A9)–(A11) just by changing , , , and by

, , , and , respectively.
Finally, constraints (A15) and (A16) are necessary to model

the startup and shutdown status of the units and to avoid the
simultaneous commitment and decommitment of a unit [13].
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