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ABSTRACT
We consider the possible existence of a manipulator in a
prediction market, whose incentive is to maximally increase
the predicted probability of an event, and for whom profit or
loss in the market is immaterial. We characterize the equi-
libria in a single-round market scoring rule (MSR), showing
that the manipulator will play a strategy that mixes be-
tween pretending to have received one of the top signals.
We propose a modification to the MSR in the form of trade
limits, a maximum amount by which the price of the se-
curity can change at a given round. We show analytically
that without a manipulator, this process converges to the
true posterior, and computationally that in a market with
a manipulator, the limits help reduce the distortion by the
manipulator when traders do not know about the manipu-
lator’s existence. Specifically, we show through simulations
that with high probability the honest traders will fully re-
veal their signals before the manipulator does, and that the
price at this point of full revelation by the honest traders can
be a significantly better approximation of the true posterior
than the ultimate price reached, suggesting a rule by which
the market should be stopped at that point.

Categories and Subject Descriptors
J.4 [Social and Behavioral Sciences]: Economics

Keywords
Economics; Game Theory; Economically-Motivated Agents

1. INTRODUCTION
In many scenarios the opinions of a group of informed ex-

perts on the outcome of a future event can be aggregated
to form an accurate prediction. One way to elicit and ag-
gregate these opinions is via prediction markets, which are
trading mechanisms that provide incentives for participants
to share their information and in the process aggregate that
information. Prediction markets have been shown to be very
successful in several real-world implementations (Iowa Elec-
tronic Market [1], Google [5], HP [10], etc.).

Most work in prediction markets to date has assumed that
the traders are motivated purely by their profit or loss in
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the market. However, there are often externalities that in-
troduce additional incentives. In particular, traders may
have an external reason for preferring the aggregated pre-
diction to turn out a certain way, and may bias their trad-
ing accordingly. In extreme cases they may care only about
the aggregate prediction, with the profit or loss in the mar-
ket being immaterial. In this paper we will assume such
profit-indifferent agents, and furthermore assume that their
specific goal is to maximize the aggregate prediction. As a
concrete motivation, imagine a prediction market for cita-
tion counts of scientific papers (which is in fact our original
motivation for this work), with a typical security paying off
$1 if paper x has more than y citations to it within z years.
The author of paper x (perhaps an assistant professor facing
a tenure decision) would like to push the price of the secu-
rity as close to $1 as possible, and surely would be willing
to pay more than $1 for this.

To model this formally, we start with a popular class
of prediction market mechanisms, the market scoring rules
(MSR) [7], which are sequential versions of scoring rules. A
scoring rule is a function of a set of event outcomes and their
probability; for example, (“the paper will get more than 100
citations in two years”, 0.8). In MSRs, the market starts
with some prior belief regarding the event, and the traders
enter trades sequentially, each time moving the probability
of the event and agreeing to pay a price that is the difference
between the scoring rules applied to the event with the two
probabilities. The prediction is the final probability arrived
at.

MSR mechanisms are well understood and (with so-called
“proper” scoring rules) are also well behaved. But when a
manipulator is present, things change. One way to think
about it is that the honest traders receive private signals
from a joint distribution of outcomes and signals, while the
manipulator pretends to have some signal, hoping to mislead
the honest traders in order to drive up price.

We consider a restricted yet subtle setting with two traders:
an honest trader and a manipulator, where the honest trader
has a prior belief on the manipulator’s existence, the value
of which may correspond to describing three different real-
world situations, i.e. the manipulator’s existence being 1)
public where the manipulator’s existence is known to the
honest trader, 2) secret where the honest trader does not
believe that there is a manipulator, or 3) private where the
honest trader is unsure of the manipulator’s existence. We
analyze equilibra under these three different belief structures
of the honest trader, and show that 1) with public informa-
tion, the manipulator’s trade is simply ignored by the honest
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trader, 2) with secret information, the manipulator will pre-
tend to be an honest trader with the highest possible signal,
and 3) with private information, the manipulator will mix
between pretending to have one of the highest signals.

We then propose a modification to the market scoring rule
in order to reduce the magnitude of price distortion in the
worst setting where the manipulator’s existence is secret in-
formation, which is when the price can be most distorted.
Specifically, we impose trade limits; that is, a maximum
amount by which the market probability can change at a
given round.

We first show that in a normal market without a manip-
ulator, and without suspicion of there being a manipulator,
the market with large enough trade limits converges to the
true posterior. But of course inventing a slower MSR is
hardly our goal, and this is just a sanity check that we have
not broken something fundamental in the logic of the mech-
anism.

The trade limits pay off when there is indeed a manip-
ulator. The intuition is that while the traditional market
scoring rule allows every trader to express his entire infor-
mation all at once (including the manipulator with his fake
information), the trade limits delay the expressing of infor-
mation over several rounds. When a trader makes a trade
that does not use up all of the limit, the trader has fully
revealed his signal. The key observation is that the manip-
ulator is more likely to be the last trader to fully reveal his
(fake, extremely high) signal than the truthful traders, in
which case the rest of the trading can be ignored (or indeed
stopped).

We show computationally that indeed with high probabil-
ity the manipulator is the last one to fully reveal his signal,
in which case the early-stopping rule is obviously benefi-
cial, and sometimes lead to predictions that are substan-
tially closer to the true posterior of the honest agents than
the ultimate prediction if trading is allowed to continue to
the end. Furthermore, we show that in the relatively rare
cases in which the manipulator is not the last one to fully
reveal his signal, the resulting loss from the early-stopping
rule is low (and indeed frequently zero).

The rest of the paper is organized as follows. In section
2, we go over related work. In section 3, we review the tra-
ditional model and mechanism for prediction markets. In
section 4, we introduce and analyze the new setting where
a manipulator may be present. In section 5, we introduce
our modified mechanism with trade limits and discuss the
market behavior with and without a manipulator. More-
over, we show via simulations how trade limits can reduce
manipulability. Finally, we conclude in section 6.

2. RELATED WORK
Many prior works have studied the effect of outside incen-

tives on prediction markets. Chen et al. [4] consider a two-
player market scoring rule where a manipulator with outside
incentives in the form of a monotone function of the final
market probability may exist. They employ a fixed setting
where the manipulator trades first, followed by the truth-
ful trader, who has a prior on the manipulator’s existence,
and reasons about the observed move. They consider cases
where the manipulator’s incentive is common knowledge or
not, and characterize the conditions for which a separating
equilibrium may or may not exist, as well as the associated
information loss. Our work is different in that the manipu-

lator in our model does not care about profits in the market,
and our model includes more than two signals. In addition,
we propose a new mechanism to reduce manipulability in
the market under some conditions.

Boutilier [2] models a scenario where a decision maker
tries to elicit forecasts from self-interested experts, who are
incentivized to misreport to steer decisions in their favor.
He proposes a compensation rule that, when combined with
the expert’s utility, induces a net scoring rule that behaves
like a traditional proper scoring rule. This, however, relies
on knowledge of the expert’s utility, as well as the ability
to compensate the expert enough. We are interested in the
setting where the manipulator’s profit or loss in the mar-
ket is immaterial, thus cannot be compensated with extra
incentives from the market maker.

Hanson and Oprea [8] show an interesting result for Kyle-
style markets. Namely, the manipulator’s mean target price
has no effect on prices, but increasing the variance of the
manipulator’s target price actually increases average price
accuracy. However, they assume that the mean and variance
of the distribution from which the target price is drawn is
common knowledge. Also, the results apply to average price
accuracy, so it is not that surprising that traders can adjust
prices knowing the mean target price, canceling out its effect
on average. Finally, the results do not apply to MSR’s.

Other types of manipulation in prediction markets include
influencing the outcome of the event associated with the
market [11, 9] as well as misleading other traders in order
to profit at later trades in the same market [3, 6].

3. REVIEW: TRADITIONAL MODEL AND
MECHANISM

We will review the traditional model of market scoring
rules for two players, but note that MSRs are general mech-
anisms for any number of traders.

3.1 Information Structure
Consider a Boolean random variable X. We would like

to aggregate information from two agents to predict its re-
alization x ∈ {0, 1}. Each participant i in the market re-
ceives a private signal si, which is the realization of a dis-
crete random variable Si. We assume that the joint prior
probability distribution of X,S1, S2 is common knowledge.
To simplify notation, we will sometimes denote P (X = 1)
as f0,0, P (X = 1|S1 = s1) as fs1,0, P (X = 1|S2 = s2) as
f0,s2 , and P (X = 1|S1 = s1, S2 = s2) as fs1,s2 (notations
borrowed from Chen et al.[4]). Let Σi denote the set of pos-
sible values Si can take. Each signal in each player’s signal
space is unique, i.e. P (X = 1|Si = u, S−i ∈ Σ′−i) 6= P (X =
1|Si = v, S−i ∈ Σ′−i) for any two different signals u, v ∈ Σi,
and any subsets Σ′−i of Σ−i, where −i denotes the player
that is not i. Assume also that the signals have a strict or-
dering, that is, f

s
(1)
1 ,s2

> ... > f0,s2 > ... > f
s
(m)
1 ,s2

for all

m signals in Σ1 and any s2 ∈ Σ2; and similarly for player 2.
We say that a signal u is higher than another signal v if the
posterior given u is higher than that given v.

3.2 Traditional Mechanism: Market Scoring
Rule

A market scoring rule is the sequential version of a scoring
rule. To predict the outcome of a binary eventX, the market
starts with a probability estimate p0 of the outcome x =
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1. Traders then interact with the market one by one, each
time changing the current market probability estimate p to
some new probability q, and agreeing to pay the difference
s(x, q)−s(x, p), where s is the scoring rule. There are many
proper scoring rules, of which the logarithmic market scoring
rule is one of the more popular: s(x, p) = b log(p) if x = 1,
and s(x, p) = b log(1− p) if x = 0, where b is a parameter.

3.3 Participants and Strategies
We assume participants to be rational and risk-neutral

utility maximizers whose utility function is derived from the
profit or loss in the market, as determined by the scoring
rule. Market scoring rules are attractive because it is my-
opically incentive compatible when a proper scoring rule is
used. This means that a trader will always move the mar-
ket probability to the posterior given his received private
signal and other traders’ previous moves in the market. In
a single-round MSR, this truthful reporting is in fact the
optimal strategy. However, as shown by Chen et al. [3]
and Gao et al. [6], when traders can participate for multi-
ple rounds in a MSR, equilibrium strategies depend on the
specific information structure.

In the analysis that follows, we will consider a MSR with
a single round of trading. Because the joint prior probability
distribution of the outcome variable and signals is common
knowledge, when a trader moves the market probability, he
essentially reveals his private signal fully to the other trader.
Thus, let p0 denote the initial market probability, the market
probability will move as follows: p0 → fs1,0 → fs1,s2 , at
which point information is said to be fully aggregated.

4. A MANIPULATOR IN THE
TRADITIONAL MARKET

In this section, we will first introduce a modified setting
with a manipulator, and then analyze how a manipulator
could affect the market price in the traditional market scor-
ing rule.

4.1 Participants and Payoffs
In the new setting, the market may consist of two types of

traders: market-oriented traders and a manipulator. Market-
oriented traders receive a private signal and derive payoffs
from the profit or loss in the market and are essentially
the risk-neutral utility maximizers as described in the tra-
ditional model above. On the other hand, the manipulator
does not receive any signal and his payoff is derived purely
from an external source and is increasing in the final market
probability. We assume that the honest trader possesses a
prior belief pM on the event that there exists a manipulator,
while the manipulator knows that he is the only manipula-
tor and that the other trader is of the market-oriented type,
as well as pM .

4.2 Strategies
The strategies are trivial in the case when the market-

oriented trader moves first. He will simply move the price
to the posterior given his signal, then the manipulator will
move the price as high as possible. We will analyze the
case where the first trader is a manipulator, followed by the
market-oriented trader.

The manipulator needs to decide which report to make
that can maximize his expected payoff, so the manipulator’s

strategy is a probability distribution over the interval [0, 1].
Let σ denote the manipulator’s strategy, and σ(r) denote
the manipulator’s probability of reporting r ∈ [0, 1].

In contrast to the market without manipulators, trader 2
can no longer simply trust the signal as expressed by trader
1’s report. Rather, trader 2 needs to form beliefs over trader
1’s type (if he is a manipulator, or his private signal if he
is not). Let µ : Σ2 × [0, 1] × (Σ1 ∪ M) → [0, 1] denote
trader 2’s belief, and let µs2,r1(s1) be trader 2’s belief on the
probability of the event that trader 1 is not a manipulator
and has received signal s1, having observed trader 1’s report
r1, and received signal s2. Similarly, let µs2,r1(M) be trader
2’s belief on the probability of the event that trader 1 is
a manipulator, having observed trader 1’s report r1, and
received signal s2. These beliefs, together with the observed
report made by trader 1 and trader 2’s own private signal,
determine trader 2’s optimal move: he will move the market
probability to r2 =

∑
s1∈S1

µs2,r1(s1)fs1,s2 +µs2,r1(M)f0,s2 .
At equilibrium, trader 2’s belief must be derived from

trader 1’s strategy, which can be done by mechanically ap-
plying Bayes’ rule. We can divide trader 1’s possible reports
into two sets: 1) the reports that correspond to some poste-
rior of the outcome given some signal, i.e. one of the possible
reports a market-oriented trader could make, and 2) arbi-
trary reports not in the first set. Let sr1 ∈ Σ1 be the signal
such that r1 = fsr1 ,0. Then the above two sets correspond
to 1) sr1 exists, and 2) sr1 does not exist. Trader 2’s beliefs
are as follows: if sr1 exists,

µs2,r1(s) =

{
(1−pM )P (sr1 |s2)

pMσ(r1)+(1−pM )P (sr1 |s2)
if s = sr1

0 if s 6= sr1

µs2,r1(M) =
pMσ(r1)

pMσ(r1) + (1− pM )P (sr1 |s2)

And if sr1 does not exist, i.e. r1 is an arbitrary report,

µs2,r1(s) = 0 ∀s ∈ Σ1

µs2,r1(M) = 1

Having described trader 2’s beliefs given trader 1’s strat-
egy, we now turn to look at properties of the manipulator’s
equilibrium strategies. To gain some intuition on what the
manipulator would do, let us first consider an obvious strat-
egy of always reporting the posterior given the highest sig-
nal, which one might expect to be an equilibrium strategy;
however, this is not always true.

Proposition 4.1. The obvious strategy of always pretend-
ing to have the highest signal,

σ(r) =

{
1 if r = fsmax,0

0 otherwise

where smax denotes the highest signal in Σ1, is not always
an equilibrium strategy.

Proof. We will prove by a counterexample. Suppose
Σ1 = {sa, sb, sc} where sa < sb < sc and Σ2 = {s2}. The
manipulator’s payoff for reporting the highest signal, fsc,0,
is ∑
s1∈Σ1

µs2,fsc,0(s1)fs1,s2 + µs2,fsc,0(M)f0,s2

=
(1− pM )P (sc|s2)

pM + (1− pM )P (sc|s2)
fsc,s2 +

pM
pM + (1− pM )P (sc|s2)

f0,s2
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Suppose pM = 1 − ε, P (sc|s2) = ε2, f0,s2 = 0.5, fsb,s2 =
1− ε, fsc,s2 = 1. We see that when ε is small, the manipu-
lator’s payoff for reporting fsc,0 is close to f0,s2 = 0.5; how-
ever, reporting fsb,0 would give him a payoff of fsb,s2 = 1−ε
because trader 2 would believe that he is not a manipulator,
so he would deviate to report fsb,0.

Given this insight, we now turn to characterize the ma-
nipulator’s equilibrium strategy. The following lemma es-
tablishes which reports cannot be made by the manipulator
at equilibrium.

Lemma 4.2. Any posterior r ∈ {fs1,0|fs1,0 < f0,0, s1 ∈
Σ1} cannot be in the support of an equilibrium strategy. And
any arbitrary report r /∈ {fs,0|s ∈ Σ1} cannot be in the sup-
port of an equilibrium strategy.

Proof. Suppose for contradiction that r ∈ {fs1,0|fs1,0 <
f0,0, s1 ∈ Σ1} is in the support of some equilibrium strategy
σ. The expected payoff of reporting r is

Es2 [
pMσ(r)

pMσ(r) + (1− pM )P (s1|s2)
f0,s2

+
(1− pM )P (s1|s2)

pMσ(r) + (1− pM )P (s1|s2)
fs1,s2 ] < f0,0

But there exists at least one higher posterior fs′,0 > f0,0,
which cannot be in the support of σ because its expected
payoff is always greater than f0,0, and higher than the ma-
nipulator’s expected payoff if σ includes reporting r, making
him better off to deviate.

Similarly for the second claim, reporting any arbitrary
report gives away the fact that trader 1 is a manipulator, so
the manipulator’s expected payoff of reporting the arbitrary
report is f0,0, and there must be a higher posterior that the
manipulator can deviate to.

Let Σhigh = {s1|fs1,0 > f0,0, s1 ∈ Σ1}. We have now
shown that only the posteriors corresponding to signals in
Σhigh could be in the support of an equilibrium strategy.
Now, we prove several lemmas that will be useful in our main
theorem. The following lemma establishes how the expected
payoff of a particular report is affected by the manipulator’s
probability of making that report.

Lemma 4.3. Let Vσ(r) be the manipulator’s expected pay-
off for reporting some r in the support of a strategy σ and
r = fsr,0 for some sr ∈ Σ1. Vσ(r) is increasing in σ(r) if
fsr,0 < f0,0, and is decreasing in σ(r) if fsr,0 > f0,0.

Proof.

Vσ(r) =Es2 [
pMσ(r)

pMσ(r) + (1− pM )P (sr|s2)
f0,s2

+
(1− pM )P (sr|s2)

pMσ(r) + (1− pM )P (sr|s2)
fsr,s2 ]

If fsr,0 < f0,0, then fsr,s2 < f0,s2 for any s2 by the strict
ordering assumption, so the expression in the expectation is
increasing in σ(r) for every s2, and so is Vσ(r). The proof
of the second claim is analogous.

Let R = [0, 1]n be the support of some strategy where n
is the size of the support, let σR denote a strategy under
which the manipulator’s expected payoff of reporting every
r ∈ R is the same, and let π(σR) denote the manipulator’s
expected payoff when he plays the strategy σR.

Lemma 4.4. If σR exists for some R = {fs,0|s ∈ Σhigh},
π(σR) < fs,0 for all fs,0 ∈ R.

Proof. Consider any fs,0 ∈ R. The payoff of reporting
fs,0 under σR must be less than fs,0, since Vσ(fs,0) = fs,0
when σ(fs,0) = 0 and is decreasing in σ(fs,0) according to
Lemma 4.3.

Lemma 4.5. Let R = {fs,0|s ∈ Σhigh}. If there exists
s′ ∈ Σhigh such that fs′,0 > π(σR) and fs′,0 /∈ R. Then,

π(σR) < π(σR∪fs′,0) < fs′,0. On the other hand, if there
exists s′ ∈ Σhigh such that fs′,0 < π(σR) and fs′,0 /∈ R,

π(σR∪fs′,0) does not exist.

Proof. Suppose for now that the size ofR is one. σR∪fs′,0 ,
where fs′,0 > π(σR), always exists: we start with σR and
add fs′,0 to the support by shifting the probability mass
from σ(R) to σ(fs′,0), which increases the payoff of report-
ing R and decreases the payoff of reporting fs′,0 according
to Lemma 4.3. We do this until the payoff of reporting R
equals the payoff of reporting fs′,0. So we have π(σR) <

π(σR∪fs′,0) < fs′,0.
If the size of R is greater than one, we can still add fs′,0

to the support and equate all payoffs by shifting probability
mass from reporting something in R to reporting fs′,0 while
preserving equal payoffs of reporting something in R.

For the second part of the lemma, since all posteriors in
R correspond to signals in Σhigh, decreasing σ(r) for any
r ∈ R, increases the payoff of reporting r, while increasing
σ(fs′,0) decreases the payoff of reporting fs′,0. Therefore,
there is no way to equate the payoff of reporting something
in R and reporting fs′,0.

We can now characterize the manipulator’s equilibrium
strategy in the following theorem.

Theorem 4.6. At any equilibrium, the manipulator mixes
among R∗ = {fs′,0|s′ ≥ st} for some st ∈ Σhigh, i.e. the
posteriors given any of the signals at least as high as st.

Proof. First note that the equilibrium strategy with the
support R∗ always exists and we can compute it by starting
with the support R = {fsmax,0}. If this is not an equilib-
rium strategy, fsmax−1,0 is higher than π(σR), where smax−1

is the second highest signal. From Lemma 4.5, we know
that π(σ

R∪fsmax−1,0 ) > π(σR). We can repeatedly add the
posterior corresponding to the next highest signal to R un-
til π(σR) is greater than fsR−1,0, where sR−1 is the high-
est signal whose posterior is not in R. By construction,
π(σR

∗
) > fs′,0 for all s′ /∈ R∗, so adding the posterior given

any one of the signals not in R∗ cannot be an equilibrium
strategy according to Lemma 4.5.

Now consider the set R = {fs′,0|s′ ∈ Σ′1} where Σ′1 ⊂
{s|s ≥ st and s ∈ Σ1} and st is the lowest signal in Σ′1.
Let st+1 be the signal corresponding to the lowest report
in R such that ∃snt where fsnt,0 /∈ R and fst,0 < fsnt,0 <
fst+1,0. By Lemma 4.4, we know that π(σR) < fs′,0 for any

fs′,0 ∈ R. However, since fst,0 < fsnt,0, π(σR) < fsnt,0, so
σR cannot be an equilibrium strategy. We have now shown
that at equilibrium, the manipulator has to mix between the
posteriors of all s ≥ st.
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4.3 Prior Probability on Manipulator’s Exis-
tence

Here we note the richness of our model and the three real-
world scenarios to which different values of pM may corre-
spond. First, when pM = 1, every trader knows that there
exists a manipulator as well as his identity. We call this
the public information case, which could model a situation
where a particular trader’s interest in the prediction is com-
monly known, e.g. a pharmaceutical company participating
in a prediction market for virality of a new flu. The hon-
est trader will simply ignore the manipulator’s trade at an
equilibrium and will move the price to the posterior given
his private signal. The manipulator cannot affect the final
probability in this case, unless he is the last trader to act,
in which case he can move the market probability as high as
possible.

Second, when pM ∈ (0, 1), only the manipulator knows
that he himself is the manipulator, while others are not en-
tirely sure that a manipulator exists. We call this the private
information case. An example of this might be a situation
where a junior faculty under review for tenureship partici-
pates in a prediction market for citations on his own paper,
but others only know that some trader may be under tenure
review with probability pM .

Finally, the secret information case corresponds to when
pM = 0: only the manipulator himself knows that he is
the manipulator, while others do not believe that there is
a manipulator. Since the market-oriented trader has no
knowledge of the existence of a manipulator, he will trade
as if there is no manipulator. As described before, at his
turn, a market-oriented trader will move the market proba-
bility to the posterior given his private signal. We assume
that trades that are inconsistent with the commonly-known
prior distribution would be ignored by the market-oriented
trader. To maximize the final market probability, the ma-
nipulator will trade as if he has the highest signal in his
signal space, reporting r1 = fsmax,0. The market-oriented
trader believes the signal as expressed by the trade, and will
report r2 = fsmax,s2 , which is the maximal r2.

5. MARKET SCORING RULE WITH
TRADE LIMITS

We have described how a manipulator can distort the mar-
ket probability under three different cases corresponding to
different values of the prior probability on the manipulator’s
existence. We will now consider the secret information case
which is the worst scenario where price can be most dis-
torted by the manipulator. In order to mitigate this kind of
manipulation when the honest trader does not know about
the manipulator’s existence, we propose to modify the mar-
ket scoring rule by imposing a limit L > 0 by which a trader
can maximally move the market probability at a time. For-
mally, given the current market probability p, the trader can
only change it to a new probability q ∈ [p−L, p+L]. In the
rest of the paper, we modify the market to have multiple
repeated rounds of trading with a fixed trading sequence.
We assume that the market-oriented trader is myopic and
will maximize the payoff of his trade in the current round,
and that the manipulator knows that the market-oriented
trader is myopic.

5.1 Strategies and Market Probability with-
out a Manipulator

Let the current market probability be p, and trader i’s
belief of the posterior be bi, and q be the probability to
which he chooses to change p. Since trader i is myopic, he
would want to choose q so that his expected payoff from this
round is maximized with respect to his belief. The following
lemma follows:

Lemma 5.1. At his turn, a myopic trader will maximize
his expected payoff by moving the market probability maxi-
mally towards his belief.

Definition A trader fully reveals his signal when he moves
the market price from p to q ∈ (p − L, p + L) (i.e. does
not use up the full limit), as the other traders have become
knowledgeable of his exact private signal.

We present the following theorem on the convergence of
the market probability when no manipulator is present.

Theorem 5.2. In a MSR with a large enough trade limit,
myopic traders will fully reveal their signal one by one as
they make trades. Eventually, the market probability will
converge to the posterior given all traders’ private signals,
at which point no more trades would occur.

Proof. The market’s state can be described by two vari-
ables. The first is the current market probability, and the
second is the set of possible signals of each trader. We let
this set be described by a random variable S. Initially, the
market price is p0 and S = Σ1 × Σ2 × ... × ΣN . Let S−i
denote the set of possible signals of all traders except for
trader i’s.

Let p denote the current market price and D the current
set of possible signals. If trader i changes the price from p
to q ∈ (p − L, p + L), the other traders observe this move
and learn that P (X = 1|Si = si, S−i ∈ D−i) = q. Since
every signal is the signal space is unique by assumption, all
traders can infer trader i’s private signal from this move.

If trader i changes p to p+L, it implies that P (X = 1|Si =
si, S−i ∈ D−i) ≥ p + L, and signals to other traders that
Si is at least some signal s′i where s′i is the lowest signal
such that P (X = 1|Si = s′i, S−i ∈ D−i) ≥ p + L, updating
the set of possible signals to D′ = D ∩ (Si ≥ s′i). Note
that it is possible that D′ = D, and that no information
is learned from the trade, which is the reason of potential
non-convergence to the true posterior.

Let us first consider the condition of non-convergence. If
the market probability does not converge to the true pos-
terior, the market must enter a cycle where trader i faces
the same set of possible signals D with the same market
probability p over and over. D has to remain the same be-
cause it cannot increase, and if the market probability does
not converge to the true posterior, it means that D does
not decrease, so it must remain the same in this cycle. p
also has to remain the same because if D is not updated,
every trader would make the same trade (either increase or
decrease by L), and p will always move in the same direc-
tion, eventually reaching a value where some trader’s trade
can update D. Therefore, every trader has to face the same
market probability every time, if p does not converge to the
true posterior.

Now, if we set the trade limit to Lc = maxi,u,v,D−i |P (X =
1|Si = u, S−i = D−i) − P (X = 1|Si = v, S−i = D−i)|,
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every trader will always be able to update the set of pos-
sible signals with a trade. Thus, the set of possible signals
will eventually collapse to a point where everyone’s signal is
common knowledge. All traders will agree on the posterior
P (X = 1|S1 = s1, ..., SN = sN ) and they will change the
market probability to exactly that value. Note that Lc as
defined above assumes that the worst case is reached in the
process of trading. The market probability could converge
for smaller trade limits as well. 1

We have shown that in a normal market without a ma-
nipulator, the market probability in a market scoring rule
with trade limits will still converge to the posterior given all
private signals, so there is no loss in information, but only
in the speed of the process.

5.2 Strategies and Market Probability when a
Manipulator is Present

We now turn to the scenario that inspired the trade lim-
its in the first place, the setting with a manipulator. We
show that the cost of delayed information aggregation can
be justified when a manipulator is present, as we can obtain
a more accurate estimate. First, note that with a manipu-
lator, the best estimate we can get is the posterior given all
of the truthful participants’ signals. We call this the true
posterior.

Recall again that in the setting with secret information,
the market-oriented trader has no knowledge of the ma-
nipulator, and will trade as if the other trader is market-
oriented, so Lemma 5.1 still holds for the market-oriented
trader. Knowing that other trader is market-oriented and
his strategy, the manipulator’s optimal strategy is to act like
a market-oriented trader with the highest signal.

5.3 Benefits of Trade Limits
We know now that as traders trade in the market, they

fully reveal their signals one by one, i.e., their private signals
would become public, and eventually the market probability
will converge to P (X = 1|S1 = s1, ..., Si = smaxi , ..., SN =
sN ) if trader i is a manipulator. We hypothesize that the
manipulator is likely to be the last trader to fully reveal
his signal because his signal is extreme, and it should take
more rounds to collapse the set of the possible signals he
has. When this is the case, it is obvious that the price right
after the second-to-last trader revealed his signal is closer
to the true posterior given the N − 1 traders than all later
prices. We call this price right after all but one trader fully
revealed their signals the early-stopping price.

However, the manipulator is not always the last trader to
fully reveal his signal, which depends on the specific proba-
bility distribution. This raises several interesting questions:
When the manipulator is the last one to fully reveal his sig-
nal, how much better is the early-stopping price than the
fully converged price? How often is the manipulator not the
last one to fully reveal his signal? And when this occurs, by
how much is the early-stopping price worse than the fully
converged price? How does the number of rounds it takes
to reach the early-stopping price compared to the number
of rounds to reach convergence? How do these quantities
relate to the size of trade limit we impose? How do they

1In the case with continuous signal spaces, the market prob-
ability always converges regardless of the size of the trade
limit.

change with different distributions? We will explore these
questions computationally.

5.3.1 Experimental Setup
One way to generate the joint probability distributions

over outcome and signals is to first generate the joint prob-
ability distribution of signals, then generate the posterior
of outcomes given signals. For the joint probability dis-
tribution of signals, we assume a symmetric multivariate
normal distribution. We let there be 100 signals in the sig-
nal space, and map the signals uniformly onto [−1, 1], we
then generate the probabilities of the signals according to
a truncated normal distribution. We generate distributions
with several different values of the mean ({-0.8, 0, 0.8}) and
variance ({1, 0.1, 0.01}). Finally, we generate the poste-
rior given signals, P (X = 1|S1 = s1, ..., SN = sN ) with a
function f(S1, ..., SN ), which is increasing in S1, ..., SN . For
simplicity, we use a simple linear function, f(S1, ..., SN ) =
S1+...+SN . Then, map the values onto [0, 1]. To explore the
effect of different sizes of trade limits, for each distribution
generated, we run simulations for L ∈ {0.01, 0.02, ..., 0.5}.
We run simulations for different number of traders (from
two to four).

5.3.2 Results
In this section, we discuss the interesting characteristics

of the mechanism observed in the simulations. We found
that the results are qualitatively similar across the different
number of traders, and we hypothesize them to hold true for
more traders. Below are the main takeaways:

• The accuracy of early-stopping price are non-monotonic
in trade limit size; as we decrease trade limit size, the
accuracy typically increases.

• Trade limits work best if the signal distributions are
centered far away from the highest signal.

• The number of rounds to convergence increases expo-
nentially as we decrease trade limit size; however, we
do not need a very small trade limit to benefit from
the early-stopping rule.

• The probability that the manipulator is not the last
trader to fully reveal signal is low. When this does oc-
cur, the differences between the early-stopping prices
and the fully converged prices are negligible.

We will discuss each of them in detail below, and we
present data for simulations of markets with two traders.
In the figures presented in this section, the values are expec-
tations over different signal realizations.

Trade limit vs. accuracy of early-stopping price.
For small trade limits, the difference between the true

posterior and early-stopping price can be as small as 10%
of that the difference between the true posterior and the
converged price, as shown in Figure 1. For all trade limits,
the early-stopping price is closer to the true posterior than
the converged price on average.

Note that with large enough trade limits, it is effectively
the same as without trade limits, and the early-stopping
price is the price after the first trader moves. As we de-
crease the trade limit, we typically see that the accuracy
of the early-stopping price increases. This agrees with our
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Figure 1: Trade limit size vs. accuracy of the early-
stopping prices and the fully converged prices across
different means and variances of the signal distribu-
tion. The dashed line is the fully converged price,
and the dots are the early-stopping prices.

intuition that smaller trade limits limit how much the ma-
nipulator can distort the price before the truthful traders
fully revealed their signals. However, as the figure also
shows, decreasing trade limits does not always increase ac-
curacy, but sometimes decreases accuracy. We can see how
this occurs with the following example. Consider a mar-
ket where the manipulator trades first. He first moves the
price from p0 to p0 + L ≤ P (X = 1|S1 ≥ s′1, S2 ∈ Σ2)
for some s′1 ∈ Σ1. If L is too small, it could be the case
that P (X = 1|S1 ≥ s′1, S2 = smin2 ) ≥ p0 + 2L, so when
trader 2 makes his move, he has not revealed any informa-
tion. Thus, the manipulator can reveal more information
before the other traders fully revealed their signals, effec-
tively decreasing the accuracy of the early-stopping price.

Figure 1 also shows that the accuracy of prices vary across
signal distributions with different means and variances. When
the signals are distributed around moderate or low signals
(zero or negative mean), and with the optimal trade limit
size, we see a trend that the smaller the variance of the sig-
nal distribution is, the closer the early-stopping prices get
to the true posterior, relative to the fully converged price.
This makes sense because small variances imply that signals
are less likely to be extremely high, so truthful traders will
be able to fully express their signals in fewer rounds.

Across signal distributions with different means, we see
that the benefit of trade limits diminishes as we increase the
mean. This is because with increasing means, even truthful
traders begin to look more like the manipulator as their sig-
nals are likely to be high as well. Thus, it makes sense that
trade limits would not help distinguishing the manipulator
as much, because the difference between the manipulator

Trade Limit Size

R
o
u
n
d
s

0 0.2 0.4
0

2

4

6

8

10
mean:−0.8 sigma:1

0 0.2 0.4
0

2

4

6

8

10
mean:−0.8 sigma:0.1

0 0.2 0.4
0

2

4

6

8

10
mean:−0.8 sigma:0.01

0 0.2 0.4
0

2

4

6

8

10
mean:0 sigma:1

0 0.2 0.4
0

2

4

6

8

10
mean:0 sigma:0.1

0 0.2 0.4
0

2

4

6

8

10
mean:0 sigma:0.01

0 0.2 0.4
0

2

4

6

8

10
mean:0.8 sigma:1

0 0.2 0.4
0

2

4

6

8

10
mean:0.8 sigma:0.1

0 0.2 0.4
0

2

4

6

8

10
mean:0.8 sigma:0.01

Figure 2: Trade limit size vs. the number of rounds
it takes to reach early-stopping prices and fully con-
verged prices across different means and variances
of the signal distribution. The circles are the num-
ber of rounds to fully convergence, and the dots are
the number of rounds to the early-stopping prices.
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Figure 3: Trade limit size vs. the probability that
the manipulator is not the last trade to fully reveal
his signal across different means and variances of the
signal distribution.
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and truthful traders is inherently smaller. These observa-
tions suggest that trade limits work best when the signal
distribution are centered far away the manipulator’s extreme
signal, so that the manipulator’s signal is close to an outlier
in the signal distribution.

Finally, we also looked at the case when there is no ma-
nipulator and found that the expected loss in accuracy is
negligible, which is mostly due to the normal distributions
that are used in our experiments: when signals are closer to
the mean, there is not much loss in accuracy.

Trade limits vs. number of rounds.
The results in figure 2 agree with the intuition that the

number of rounds to early-stopping price and convergence
both increase as trade limit decreases, which happens at an
exponential rate. However, note that the optimal trade limit
sizes that give the most accurate early-stopping price often
correspond to fewer than 10 rounds to convergence. Also, it
can be seen that the number of rounds to convergence and
early-stopping price depends mostly on the trade limit size,
and is fairly robust to changes in the signal distribution.

Probability that the manipulator is not the last trader
to fully reveal signal.

As figure 3 shows, with small enough trade limit size, the
probability that the manipulator is the last trader to fully
reveal his signal is very high (> 80% mostly), with the ex-
ception of signal distributions with high means. Note that
without trade limits, 50% is the chance that the manipulator
is the last trader as there are two traders in our simulations.
We see that with high means, the trade limit size required
to distinguish between truthful traders and the manipulator
decreases, because the signals of truthful traders are closer
to that of the manipulator as mentioned previously.

However, even though the manipulator is not always the
last trader to fully reveal his signal, we found that in the
cases where the manipulator is not the last trader to reveal
signal, the early-stopping prices are nearly identical to the
fully converged price. This could happen if posterior given
the truthful trader’s signal lies precisely at the trade limit
boundary, in which case he has not fully revealed his signal
until convergence, so the early-stopping price in this case is
the converged price.

6. CONCLUSION
We analyzed strategic behaviors in a MSR where a profit-

indifferent manipulator exists and the honest trader has a
prior belief on his existence. We introduced a modification
to the market scoring rule in the form of trade limits, in
order to reduce manipulability of prediction markets in the
worst situation where the honest trader does not know about
the manipulator’s existence. In the case where there is no
manipulator, we showed that the market price converges to
the true posterior and information gets fully aggregated al-
though delayed. We showed via simulations that trade limits
indeed help reduce manipulability by delaying the manipu-
lator’s revelation of his signal.

There are many potential areas for future work. An obvi-
ous direction is to extend the equilibrium analysis to more
than two agents, and multi-round MSR. Another direction is
a rigorous theoretical analysis of the mechanism with trade
limits. It would be interesting to characterize the condi-

tion under which the manipulator is the last trader to fully
reveal his signal. It is also useful to provide a bound on
the difference between the early-stopping price and the true
posterior, as well as the number of rounds to convergence.
Finally, one can work to reduce manipulability in mecha-
nisms beyond market scoring rules.
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