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PRICE SETTING WITH MENU COST FOR MULTIPRODUCT FIRMS

BY FERNANDO ALVAREZ AND FRANCESCO LIPPI1

We model the decisions of a multiproduct firm that faces a fixed “menu” cost: once
it is paid, the firm can adjust the price of all its products. We characterize analytically
the steady state firm’s decisions in terms of the structural parameters: the variability of
the flexible prices, the curvature of the profit function, the size of the menu cost, and
the number of products sold. We provide expressions for the steady state frequency
of adjustment, the hazard rate of price adjustments, and the size distribution of price
changes, all in terms of the structural parameters. We study analytically the impulse
response of aggregate prices and output to a monetary shock. The size of the output
response and its duration both increase with the number of products; they more than
double as the number of products goes from 1 to 10, quickly converging to the response
of Taylor’s staggered price model.

KEYWORDS: Menu cost, economies of scope in price changes, optimal control in
multiple dimensions, fixed costs, monetary shocks, impulse responses.

1. INTRODUCTION AND OVERVIEW

THIS PAPER STUDIES A CLASSIC QUESTION IN MONETARY ECONOMICS, namely
the impact of an unexpected monetary shock on prices and output in an econ-
omy where prices are sticky due to the presence of a fixed cost (a “menu” cost).
We follow up on the program started by Golosov and Lucas (2007) and eval-
uate this impact by selecting, among menu cost models, those with the best
ability to account for the patterns that are seen in the microeconomic data.
To this end, we develop an analytically tractable model of the optimal price-
setting decisions of a firm that faces a fixed cost of simultaneously changing
the prices of its n≥ 1 products. The hypothesis of a common cost for a simul-
taneous price change was proposed by Lach and Tsiddon (1996, 2007) as a way
to generate small price changes, which have since been found in many data
sets; see, for instance, Klenow and Malin (2010). A straightforward implica-
tion of this hypothesis is that the price changes of the firm’s n products are
synchronized, a feature that has found empirical support in several papers.2

1We thank a co-editor and three anonymous referees. We benefited from discussions with
Andy Abel, Ricardo Caballero, Carlos Carvalho, John Leahy, Bob Lucas, Virgiliu Midrigan,
Luigi Paciello, Ricardo Reis, Raphael Schoenle, Kevin Sheedy, Rob Shimer, Paolo Surico, Nancy
Stokey, Harald Uhlig, and Ivan Werning, as well as seminar participants at EIEF, the University
of Chicago, NYU, Tinbergen Institute, ASSA 2012, Hong Kong University, the Federal Reserve
Banks of Chicago, Minneapolis, New York, and Philadelphia, the Bank of Italy, the European
Central Bank, the London Business School, the Bank of Norway, and the 2012 NBER Mone-
tary Economics Meeting in New York for their comments. Alvarez thanks the ECB for the Wim
Duisenberg fellowship. Lippi thanks the Italian Ministry of Education for sponsoring this project
as part of PRIN 2010–11. Part of the research for this paper was sponsored by the ERC Advanced
Grant 324008. Katka Borovickova and Philip Barrett provided excellent assistance.

2See the end of Section 4 for a discussion of the evidence and an interpretation of the multi-
product assumption in our model in light of the evidence.
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We solve the firm’s decision problem, derive the steady state predictions for
a cross section of firms, and study the response of the aggregate economy to
a monetary shock. The challenges involved with modeling the propagation of
monetary shocks in canonical menu cost problems have led many authors to
resort to numerical methods. Our contribution is to present an approximate
analytical solution to the general equilibrium of an economy where firms face
a multidimensional and nonconvex control problem.

There are two sets of results. The first one concerns the model’s cross-section
predictions in a steady state. The model substantially improves the ability of
state-of-the-art menu cost models to account for observed price-setting behav-
ior. As documented by several empirical studies and summarized by Klenow
and Malin (2010), the data display a large mass of small price changes: the size
distribution of price changes appears bell-shaped. Existing menu cost models
cannot account for this fact. We show that when n= 1 or n= 2, as in the mod-
els of Golosov and Lucas (2007) and Midrigan (2011), respectively, the size
distribution of price changes is bimodal and U-shaped, featuring a minimal
amount of small price changes. Our model produces a bell-shaped distribution
provided n≥ 6, thus accounting for a robust feature of the data while retaining
tractability (any n can be studied). Simple expressions are derived to map the
model’s fundamental parameters (the size of the menu cost, the variance of
the shocks, the demand elasticity, the number of products sold) into observ-
able statistics such as the frequency of price adjustment Na and the standard
deviation of price changes Std(�pi).

The second set of results concerns the analytical characterization of the re-
sponse of the aggregate price level and of output to a monetary shock. This
characterization extends the pioneering contributions of Caballero and Engel
(1993, 2007) by going beyond their analysis of the impact effect, allowing for
any number of goods (n≥ 1) and justifying their simplifying assumption of us-
ing the steady state decision rules to analyze the transition dynamics. The last
result gives a proof and an intuitive explanation for when the general equi-
librium feedback on decision rules can be “neglected” in these models.3 The
analytical results highlight two key determinants of the size and the duration
of the impulse response functions (IRF) of output and prices to a once and
for all monetary shock. The size and duration of the IRF depend, for a given
number of products n, on the steady state frequency of price changes Na as
well as on the steady state standard deviation of price changes, Std(�pi). For
given values of these steady state statistics, the shape of the IRF depends only
on n. Compared to the previous literature, which focused almost exclusively on
the frequency of price changes as a proxy of aggregate stickiness, our analysis
suggests that the dispersion of price changes is also an important determinant

3This simplifying assumption was used by Caballero and Engel (2007). Golosov and Lucas
(2007) noticed in their quantitative analysis that decision rules were very close to the steady state
rules.
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of the real effect of a monetary shock. We show that the flexibility of the ag-
gregate price level is highest in the classic menu cost model with n = 1, due
the strong “selection effect” of price changes discussed by Golosov and Lucas
(2007), namely that the first price changes after a shock are also the largest, so
that the CPI response to the shock is fast. Absent selection the timing and mag-
nitude of the price changes are uncorrelated. We show that for small monetary
shocks, the selection effect weakens as n increases and vanishes completely as
n→ ∞. In this case, the price level and the output response to shocks is lin-
ear, as in Taylor’s (1980) model, and the real effects of monetary policy are
maximal, about two times those of a model where n= 1. Our analysis thus pro-
vides an upper bound to the real effect of monetary shocks that is still smaller
(about half) than predicted by a Calvo pricing mechanism. We also analyze the
effect of different sizes of monetary shocks on output, a hallmark of menu cost
models. The effect is small whether the shock is small or large, since in the
latter case all firms change prices. We characterize the value of the monetary
shock for which the cumulated effect on output (the area under the IRF) is
maximized. Interestingly, for a given n, the monetary shock that maximizes the
cumulative output effect is about one-half of Std(�pi). Moreover, the max-
imum value of the cumulated output effect is proportional to Std(�pi)/Na.
For example in economies with large steady state price stickiness (namely with
Na = 1), the maximum cumulated output effect ranges from 0.6% of annual
output for n= 1 to 1.4% for a large n.

The technical challenges in the analytical study of price-setting problems
with menu cost have led researchers to consider simple environments. For
instance, a quadratic (approximate) profit function was used in the seminal
work of Barro (1972), Dixit (1991), Tsiddon (1993), Section 5 of Sheshinski
and Weiss (1992), Caplin and Leahy (1997), and Chapter 12 of Stokey (2008),
among others. Moreover the idiosyncratic shocks considered are stylized,
for example, random walks with constant volatility, as used in Barro (1972),
Tsiddon (1993), Gertler and Leahy (2008), and Danziger (1999), among oth-
ers. Likewise, our analytical solution rests on carefully chosen approximations.
In particular, our solution for the firm’s decision problem uses a second order
approximation of the profit function and assumes no drift in the price gaps.4
Moreover the impulse response functions are computed using the steady state
decision rules, that is, ignoring the general equilibrium feedback effect. The
paper discusses several extensions of the basic model, allowing for drift (e.g.,
in inflation or aggregate productivity) as well as correlated shocks among the
different goods and showing that the model retains a great deal of tractability.5

4In Alvarez, Lippi, and Paciello (2011), we proved that the zero inflation assumption provides a
good approximation to the true rules for inflation rates that are small relative to the variance of id-
iosyncratic shocks, an assumption that seems appropriate for developed economies (see Gagnon
(2009), Alvarez, Gonzalez-Rozada, Neumeyer, and Beraja (2011) for related evidence).

5We thank Ricardo Caballero and, especially Carlos Carvalho, for suggesting a two-
dimensional state space representation that allowed a tractable analysis of the problem with drift.
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In Section 6, we show that the correlation among the shocks tends to rein-
force the selection effect, so that the real effect of monetary policy becomes
smaller as correlation increases. Moreover, we compare the accuracy of the
analytical results vis à vis the results produced by models that feature an asym-
metric profit function, the presence of drift, and account for the general equi-
librium feedback on decision rules following the aggregate shock. These inves-
tigations, reported in Appendix C in the Supplemental Material (Alvarez and
Lippi (2014)), show that the approximate results obtained in the paper provide
accurate predictions of the exact numerical solution produced by those more
involved models for small (realistic) monetary shocks.

Overview of the Analysis and Main Findings

In Section 2, we set up the problem of a multiproduct firm that can revise
prices only after paying a fixed cost. The key assumption is that once the fixed
menu cost ψ is paid, the firm can adjust the price of all its products. We as-
sume that the static profit maximizing prices for each of the n products, that
is, the prices that would be charged absent menu cost, follow n independent
random walks without drift and with volatility σ . We refer to the difference be-
tween the frictionless and the actual prices as to the (vector of) price gaps. The
period return function is shown to be proportional to the sum of the squared
price gaps. The proportionality constant B measures the second order losses
associated with charging a price different from the optimum, that is, it is a mea-
sure of the curvature of the profit function. The firm minimizes the expected
discounted cost, which includes the stream of lost profits from charging prices
different from the frictionless case, as well as the fixed cost at the time of the
adjustments.

The solution of the firm’s problem in Section 3 involves finding the set over
which prices are adjusted and its complement, the “inaction” set. To our knowl-
edge, this is the first fixed cost adjustment problem in n dimensions whose so-
lution is analytically characterized. Somewhat surprisingly, the solution to this
complex problem turns out to have a simple form: the optimal decision is to
control the price gaps so as to remain in the interior of the n-dimensional ball
centered at the origin. The economics of this is clear: the firm will adjust either
if many of its price gaps have a medium size or if a few gaps are very large.
The size of this ball, whose squared radius is denoted by ȳ , is chosen optimally.
We solve for the value function and completely characterize the size of the in-
action set ȳ as a function of the parameters of the problem. We show that the
approximate solution ȳ ≈ [2(n+ 2)σ2B/ψ]1/2 gives an accurate approximation
of the exact solution for a small cost ψ.6

In Section 4, we explore several steady state implications of the model. First
we show that the expected number of price adjustments per unit of time, de-

6The special case of n = 1 gives the same quartic root as in Barro (1972), Karlin and Taylor
(1981), and Dixit (1991), since ȳ is the square of the price threshold.
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noted by Na, is given by nσ2/ȳ , which, together with our result for ȳ , gives a
complete characterization of the frequency of price adjustments. Second, we
solve in closed form for the hazard rate of the price changes as a function of the
time elapsed since the last change. The scale of the hazard function is deter-
mined by the expected number of adjustments Na. Fixing the scale, the shape
of this function depends exclusively on the number of products n. We show that
the hazard rate gets steeper as n increases. Third, while price changes occur
simultaneously for the n products, we characterize the marginal distribution
of price changes, that is, the statistic that is usually computed in actual data
sets. A closed form expression for the density of the marginal distribution of
price changes as a function of ȳ and n is derived and used to compute several
statistics, such as the standard deviation of price changes Std(�pi), and other
moments that are only functions of n, such as the coefficient of variation and
the excess kurtosis of the absolute value of price changes. As the number of
products increases, the size of the adjustments decreases monotonically, that
is, with more products, the typical price adjustment of each product is smaller.
These cross-section predictions could be used to identify the parameters of the
model and test its implications. We show that once the scale of price changes
is controlled for, the shape of the size distribution is exclusively a function of
the number of products n. For n = 2, the distribution is bimodal, with modes
at the absolute value of

√
ȳ; for n= 3, it is uniform; for n= 4, it peaks at zero

and is concave; and for n≥ 6, it is bell-shaped. As n→ ∞, the density of price
changes converges to a normal distribution.

In Section 5, we use the firm’s optimal decisions to characterize the re-
sponses of the aggregate price level and output to a monetary shock. In doing
this, we keep the decision rules of the firms constant, an approximation used
in some of the calculations by Golosov and Lucas (2007) and Caballero and
Engel (1991, 1993, 2007), among many others. Indeed, we justify this practice
by proving that the general equilibrium feedback effects have negligible con-
sequences on the size of the inaction region—a finding related to the result in
Gertler and Leahy (2008). This result allows us to characterize analytically the
effect on aggregate prices and on output of a permanent unexpected increase
in money supply in an economy that starts at the cross-sectional stationary dis-
tribution of price gaps under zero inflation.

The analytical IRF of prices to a monetary shock is made of two pieces:
an impact effect (a jump in the price level) and the remaining part. The IRF
depends only on three parameters: the number of products, n, the frequency
of price changes, Na, and the standard deviation of price changes, Std(�pi).
More precisely, the IRF is homogenous of degree 1 in the size of the shock, δ,
and in Std(�pi). Moreover, the duration of the impulse response is inversely
proportional to the steady state frequency of price changes, Na, that is, time
can be measured relative to the steady state average duration of prices. When
monetary shocks are larger than twice Std(�pi), the economy features com-
plete price flexibility. In contrast, for small monetary shocks, the impact effect
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on prices is second order compared to the shock size and, hence, the impact
effect on output is on the order of the monetary shock. These results, together
with the homogeneity, characterize the precise sense in which the size of the
shocks matters. Fixing the two steady state parameters, Na and Std(�pi), the
whole shape of the impulse response depends only on the number of products
n and the normalized size of the shock δ/Std(�pi). As we move from n= 1 to
a large number of products (say n ≥ 10), the impact effect on prices, as well
as the half-life of a monetary shock, more than double. Indeed, as n→ ∞, the
impulse response converges to the response of Taylor’s (1980) model or the
inattentiveness model of Caballero (1989), Bonomo and Carvalho (2004), and
Reis (2006). In this case, there is absolutely no selection and the impulse re-
sponse is linear in time, and has—for small shocks—a half-life of 1/(2Na), that
is, half the average duration of steady state price changes. In the language of
Golosov and Lucas (2007), economies with higher values of n have a smaller
amount of selection.

Our analysis extends Midrigan’s (2011) contribution to any number of goods
n, and derives the implication for the shape of the distribution of price changes
and hazard rates that is not derived in his paper. We show that the n= 2 case
produces a size distribution of price changes that is “strongly” bimodal, very
similar to the distribution in Golosov and Lucas. We show that a larger num-
ber of goods, on the order of n = 10, is necessary to replicate qualitatively
the large mass of small price changes and the bell-shaped distribution of price
changes that are seen in the data. Concerning the hazard rate, Midrigan (2011,
p. 1167) commented that “[e]conomies of scope flatten the adjustment hazard
and thus weaken the strength of the selection effect even further.” We show
that without fat-tailed shocks, the hazard rate steepens with n and, indeed, the
economy converges to Taylor’s staggered adjustment model, not to Calvo’s (flat
hazard) random adjustment model. Concerning the optimal decision rule for
adjustment after an aggregate shock, Midrigan (2011, Section 4.B, pp. 1165–
1168) interpreted the price adjustment decision in his model with n= 2 using
the techniques developed by Caballero and Engel for the case of n = 1. We
show in Section 5 that for the multiproduct case (n > 1), the threshold con-
dition for price adjustments involves a vector of price gaps, not just one. Fi-
nally, we clarify how the “multiproduct hypothesis” affects the consequences
of monetary shocks in comparison to the seminal paper of Golosov and Lucas
(2007). Midrigan (2011) tackled this question numerically in a model where
n = 2 which, moreover, assumed the presence of infrequent large shocks. In
Midrigan’s paper the real effects of monetary shocks are about 4 times larger
than in Golosov and Lucas. Our model shows that only a small part of this
difference stems from the multiproduct hypothesis; the bulk of the difference
is due to the infrequent large shocks. Our analytical results show that without
the infrequent large shocks, the multiproduct hypothesis for the n= 2 case pro-
duces real effects that are only 20% larger than in Golosov and Lucas (2007),
and even smaller for the case of correlated shocks. We infer that the large
effects of monetary shocks obtained by Midrigan are due to the presence of
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the infrequent large shocks, which reintroduce an element of stochastic time
dependence (à la Calvo) in the price-setting decision.

2. THE FIRM’S PROBLEM: SETUP AND INTERPRETATION

Let n be the number of products sold by the firm. The mathematical model
we use has an n-dimensional state p that we refer to as the vector of price
gaps, whose interpretation is discussed below. Each price gap pi, when it is
not controlled, evolves according to a random walk without drift, so that dpi =
σ dWi, where dWi is a standard Brownian motion and σ the volatility. The n
Brownian motions (BM henceforth) are independent, so E[Wi(t)Wj(t

′)] = 0
for all t� t ′ ≥ 0 and i� j = 1� � � � � n. The value function V (p) is the minimum
value of the function V defined over the processes {τ��p} ≡ {τj��pi(τj)}∞

j=1,

V (p)= min
τ��p

V(τ��p;p)(1)

≡ E

[ ∞∑
j=1

e−rτjψ+
∫ ∞

0
e−rtB

(
n∑
i=1

p2
i (t)

)
dt
∣∣∣p(0)= p

]
�

where r is the intertemporal discount rate, B a parameter whose interpretation
is discussed below, and each element of the vector of price gaps p follows

pi(t)= σWi(t)+
∑
j:τj<t

�pi(τj) for all t ≥ 0 and i= 1�2� � � � � n�(2)

�pi(τj)≡ limt↓τj pi(t)− limt↑τj pi(t), and p(0)= p.
The τj are the (stopping) times at which control is exercised. At these times,

after paying the cost ψ, the state can be changed to any value in R
n. We de-

note the vector of changes in the price gaps as �p(τj) ∈ R
n. This is a standard

adjustment cost problem subject to a fixed cost, with the exception that after
paying the adjustment cost ψ, the decision maker can adjust the state in the n
dimensions.

Next we discuss three interpretations of the problem that can be summarized
by saying that the firm “tracks” the prices that maximize instantaneous profits
from the n products. In each interpretation, a monopolist sells n goods with
additively separable demands: first subject to costs shocks and, second, subject
to demand shocks. For the first interpretation, consider a system of n indepen-
dent demands, with constant elasticity η for each product, random multiplica-
tive shifts in each of the demands, and a time varying marginal (and average)
cost WZi(t). This is a stylized version of the problem introduced by Midrigan
(2011) where the elasticity of substitution between the products sold within
the firm is the same as the elasticity of the bundle of goods sold across firms.
The instantaneous profit maximizing price is proportional to the marginal cost;
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in logs, it is p∗
i (t) = logW + logZi(t) + log (η/(η− 1)). In this case, we as-

sume that the log of the marginal cost evolves as a random walk with drift so
that p∗

i (t) inherits this property. The period cost is a second order expansion
of the profit function with respect to the vector of the log of prices, around
the prices that maximize current profits (see Section 5 and Appendix B in the
Supplemental Material for a detailed presentation of this interpretation). The
units of the objective function are (lost) profits normalized by the maximum
profits of producing one good. The first order price-gap terms in the expan-
sion are zero because we are expanding around p∗(t). There are no second
order cross-terms due to the separability of the demands. Thus we can write
the problem in terms of the gap between the actual price and the profit max-
imizing price: p(t) = p̂(t) − p∗(t). Under this approximation, B is given by
B= (1/2)η(η− 1). Likewise, the fixed cost ψ is measured relative to the max-
imum profits of producing one good. Clearly all that matters to characterize
the decision rules is the ratio of B to ψ, for which purpose the units in which
we measure them is immaterial. For the second interpretation of the model,
consider a monopolist facing identical demands for each of the n products
that she sells. The demands are linear in their own price and have zero cross-
partials with respect to the other prices. The marginal costs of producing each
of the products are also identical and assumed to be linear. The intercepts of
each of the n demands follow independent standard BM’s. In this interpre-
tation, the firm’s profits are the sum of the n profit functions derived in the
seminal work by Barro (1972), so that our ψ is his γ and our B is his θ, as
defined in his equation (12). A third interpretation is in terms of an optimal
inattention or inattentiveness problem, similar to that studied by Reis (2006),
and Alvarez, Lippi, and Paciello (2011). The firm has the same demand system
for the n products and, hence, the same total period losses B‖p(t)‖2, which
are assumed to be continuously and freely observed. Furthermore, if the firm
pays an observation cost ψ, it observes the determinants of the profits of each
of the products separately and is able to set prices based on this information.
In this case, ψ represents the cost of gathering and processing the information,
in addition to (or instead of) the menu cost of changing prices.

3. CHARACTERIZATION OF THE FIRM’S DECISIONS

We first note the following properties of the firm’s problem:
P1. Given the symmetry of the return function, of the law of motion, and of

target prices, it is immediate that after an adjustment, the state is reset at the
origin, that is, p(τ+

j )= 0 or �p(τj)= −p(τ−
j ).

P2. The state space R
n can be divided into two open sets: an inaction region

I ⊂ R
n and a control region C ⊂ R

n. We use ∂I for the boundary of the inaction
region. We have that C ∩ I = ∅, that inaction is strictly preferred in I , that
control is strictly preferred in C , and that in ∂I the agent is indifferent between
control and inaction.
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P3. The instantaneous return of the problem in equation (1) is a function of
the scalar y , the squared norm of the vector of price gaps:

y =
n∑
i=1

p2
i ≥ 0�(3)

P4. The process for y is a one-dimensional diffusion given by

dy = nσ2 dt + 2σ
√
y dW for y ∈ [0� ȳ]�(4)

To better understand, use Ito’s lemma on equation (3) to get dy = nσ2 dt +
2σ
∑n

i=1pi(t)dWi, implying E(dy)2 = 4σ2(
∑n

i=1p
2
i (t))dt, which gives the dif-

fusion shown above.
P5. Points P3 and P4 imply that the n-dimensional state of the original prob-

lem and decision rules can be summarized by a single scalar, namely y . The
optimal policy for this problem is given by a threshold rule such that if y < ȳ ,
there is inaction. The first time that y reaches ȳ , all prices are adjusted to the
origin, so that y = 0. The one-dimensional problem has the value function

v(y)= min
ȳ

E

[ ∞∑
j=1

e−rτjψ+
∫ ∞

0
e−rtBy(t)dt

∣∣∣y(0)= y
]

(5)

subject to equation (4) for y ∈ [0� ȳ] and the τj ’s are the times at which y(t)
hits ȳ .

The function v solves

rv(y)= By + nσ2v′(y)+ 2σ2yv′′(y) for y ∈ (0� ȳ)�(6)

Since policy calls for adjustment at values higher than ȳ , we have v(y) =
v(0)+ψ for all y ≥ ȳ . If v is differentiable at ȳ , we can write the two boundary
conditions

v(ȳ)= v(0)+ψ and v′(ȳ)= 0�(7)

These conditions are typically referred to as value matching and smooth past-
ing. For y = 0 to be the optimal return point, it must be a global minimum, and
thus we require that v′(0)≥ 0�Note the weak inequality, since y is nonnegative.

The next proposition gives an analytical solution for v in the range of inac-
tion.

PROPOSITION 1: Let σ > 0. The ordinary differential equation (ODE) given by
equation (6) is solved by the analytical function

v(y)=
∞∑
i=0

βiy
i for y ∈ [0� ȳ]�(8)
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where for any β0, the coefficients {βi}∞
i=1 solve

β0 = nσ2

r
β1� β2 = rβ1 −B

2σ2(n+ 2)
�(9)

βi+1 = r

(i+ 1)σ2(n+ 2i)
βi for i≥ 2�

The next proposition shows that there exists a unique solution of the ODE
(6) that satisfies the relevant boundary conditions (see Appendix A for the
proofs).

PROPOSITION 2: Assume r > 0�σ > 0, and n≥ 1. There exist ȳ and a unique
function v(·) solving the ODE (6) that satisfy the boundary conditions in equations
(7). Moreover, (i) v(y) is minimized at y = 0, (ii) v(y) is strictly increasing in
(0� ȳ), and (iii) ȳ is a local maximum, that is, limy↑ȳ v′′(y) < 0.

We note that a slightly modified version of a verification theorem in
Øksendal (2000) can be used to prove that value function v and threshold
policy ȳ that we found in Proposition 2 for the one-dimensional representa-
tion indeed characterize the inaction I = {p :‖p‖2 < ȳ} and control sets C , as
well as the value function V (p) for the original n-dimensional problem (see
Appendix C in Alvarez and Lippi (2012) for more details and references to
related results in the applied math literature). We finish this section by charac-
terizing the optimal policy ȳ in terms of the structural parameters of the model
(ψ
B
�σ2� n� r).

PROPOSITION 3: The optimal threshold is given by a function ȳ = σ2

r
Q( ψr

2

Bσ2 � n)
so that

(i) ȳ is strictly increasing in ψ

B
with ȳ = 0 if ψ

B
= 0 and ȳ → ∞ as ψ

B
→ ∞,

(ii) ȳ is strictly increasing in n and ȳ → ∞ as n→ ∞,

(iii) ȳ is bounded below by
√

2(n+ 2)σ2 ψ
B

and as ψ

B
r2

σ2 → 0, then
ȳ√

2(n+2)σ2ψ/B
→ 1,

(iv) the elasticity of ȳ with respect to r and σ2 satisfies

r

ȳ

∂ȳ

∂r
= 2

(ψ/B)

ȳ

∂ȳ

∂(ψ/B)
− 1 and

σ2

ȳ

∂ȳ

∂σ2
= 1 − (ψ/B)

ȳ

∂ȳ

∂(ψ/B)
�

See Appendix A for the proof. When n = 1, the formula for the threshold
is the same expression derived by Barro (1972), Karlin and Taylor (1981), and
Dixit (1991), though our characterization is a bit more general and, more im-
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portantly, holds for any number of products n≥ 1.7 That ȳ is only a function of
the ratio ψ/B is apparent from the definition of the sequence problem. That,
as stated in part (i), ȳ is strictly increasing in the ratio of the fixed cost to the
benefit of adjustment ψ/B is quite intuitive. Item (ii) says that the threshold is
increasing in the number of products n. This is because as n increases, equa-
tion (4) shows that the drift of y = ‖p‖2 increases; thus if ȳ is held constant,
there will be more adjustments per unit of time and hence higher menu costs
will be paid. Additionally, if ȳ remains unchanged, the average cost per unit of
time also increases. One can show that the second effect is smaller and, hence,
an increase in n makes it optimal to increase ȳ . Part (iii) gives an expression
for a lower bound for ȳ , which becomes arbitrarily accurate for either a small
value of the cost ψ/B, so that the range of inaction is small, or a small value of
the interest rate r, so that the problem is equivalent to minimizing the steady
state average net cost. We note that in the approximation

ȳ =
√
ψσ22(n+ 2)

B
�(10)

the effect of ψσ2/B is exactly the same as in the case of one product. Note that
the approximation in part (iii) implies that the elasticity of ȳ with respect to
ψ/B is 1/2 for small values of the ψ/B ratio. Then, using part (iv), we obtain
that ȳ has elasticity 1/2 with respect to σ2 and also that it is independent of r.
Moreover, for small normalized adjustment cost, that is, as ψ/(Bσ2) ↓ 0, (iii)
and (iv) imply that ∂ȳ/∂r → 0, so that interest rates have only second order
effects on the range of inaction. Finally, we found that the quadratic approx-
imation to v(·), which amounts to a quartic approximation to V (·), gives very
accurate values for ȳ across a very large range of parameters. What happens is
that for a realistic application, the values of r and ψ are small relative to Bσ2,
hence the approximation of part (iii)) applies.8

4. IMPLICATIONS FOR FREQUENCY AND SIZE OF PRICE CHANGES

In this section, we explore the implications for the frequency and distribu-
tion of price changes. The expected time for y(t) to hit the barrier ȳ starting at
y is given by the function T (y) that satisfies 0 = 1 +nσ2 T ′(y)+ 2yσ2 T ′′(y) for
y ∈ (0� ȳ) with a boundary condition T (ȳ)= 0, which gives T (y)= ȳ−y

nσ2 for y ∈
[0� ȳ]. Thus T (0) gives the expected time between successive price adjust-
ments, so that the average number of adjustments, denoted by Na, is 1

T (0) . We
summarize this result in the following proposition.

7See expression (19) in Barro (1972) and Chapter 15, Section 3.F of Karlin and Taylor (1981)
for the case of undiscounted returns; see expression (11) in Dixit (1991) for an approximation to
the threshold for the discounted case.

8See Appendix D of Alvarez and Lippi (2012) for a numerical illustration.
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PROPOSITION 4: Let Na be the expected number of price changes for a multi-
product firm with n goods. It is given by

Na = nσ2

ȳ
= nr

Q

(
ψr2

Bσ2
� n

) ∼=
√
Bσ2

2ψ
n2

(n+ 2)
�(11)

The second equality in equation (11) uses the function Q(·) derived in
Proposition 3, while in the last equality, we use the approximation of ȳ for
small ψr2/(Bσ2). It is interesting that this expression extends the well known
expression for the case of n = 1 simply by adjusting the value of the variance
from σ2 to nσ2. The number of products n affects Na through two opposing
forces. On one hand, with more products, the variance of the deviations of the
price gaps increases and, thus, a given value of ȳ is hit sooner in expected value.
This is the “direct effect.” On the other hand, with more products, the optimal
value of ȳ is higher. Equation (11) shows that the direct effect dominates and
the frequency of adjustment increases with n.

Next we characterize the hazard rate of price adjustments (see Appendix A
for the proof).

PROPOSITION 5: Let t denote the time elapsed since the last price change. Let
Jν(·) be the Bessel function of the first kind. The hazard rate for price changes is
given by

h(t)=
∞∑
k=1

ξn�k
∞∑
s=1

ξn�s exp
(

−q
2
n�sσ

2

2ȳ
t

) q2
n�kσ

2

2ȳ
exp
(

−q
2
n�kσ

2

2ȳ
t

)
�

where ν = n

2
− 1�

ξn�k = 1
2ν−1�(ν+ 1)

qν−1
n�k

Jν+1(qn�k)
� and

qn�k are the positive zeros of Jν(·)�
As t → ∞, the hazard function satisfies:

T (0) · lim
t→∞

h(t)= q2
n�1

2n
>max

{
1�
(n− 1)2

2n

}
�

Proposition 5 compares the asymptote of the hazard rate with the expected
time until adjustment, which equals T (0)= ȳ/(nσ2), as derived above. Notice
that for a model with a constant hazard, these two quantities are the reciprocal
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FIGURE 1.—Hazard rate of price adjustments for various choices of n. For each n, the value
of σ2/ȳ is chosen so that the expected time elapsed between adjustments is 1.

of each other, that is, the expected duration is the reciprocal of the hazard rate.
We use the product T (0) · limt→∞ h(t), which is greater than 1, as a measure
of how close the model is to having a constant hazard rate. Also notice that
the expression in Proposition 5 immediately shows that, keeping the expected
time until adjustment T (0) fixed, the hazard rate is only a function of n. Thus,
the shape of the hazard function depends only on the number of products n.
Changes in σ2�B, and ψ only stretch the horizontal axis linearly.

Figure 1 plots the hazard rate function h for different choices of n keep-
ing the expected time between price adjustment fixed at 1. As Proposition 5
shows, the function h has an asymptote, which is increasing in the number
of products n. Moreover, since the asymptote diverges to ∞ as n increases
with no bound, the hazard rate converges to an inverted L shape, as the haz-
ard for a model where adjustment occurs exactly every T (0)= 1 periods as in
Taylor’s (1980) model. To see this, note that defining ỹ ≡ y/ȳ and fixing the ra-
tio T (0)= ȳ/(nσ2) so that for any n, the expected time elapsed between price
changes is T (0), we have

dỹ = 1
T (0) dt + 2

√
ỹ

1
nT (0) dW for ỹ ∈ [0�1]�(12)
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As n→ ∞, the process for the normalized size of the price gap ỹ described in
equation (12) converges to a deterministic process, in which case the hazard
rate is zero between times 0 and below T (0), and is ∞ precisely at T (0).

The shape of estimated hazard rates varies across studies, but many investi-
gators have found flat or decreasing hazards; some have found hump-shaped
ones. As can be seen from Figure 1, the hazard rate for the case of n = 1 is
increasing but rapidly reaches its asymptote. As n increases, the shape of the
hazard rate becomes closer to the inverted L shape of its limit as n→ ∞. For
instance, when n = 10, the level of the hazard rate evaluated at the expected
duration is about twice the hazard for n = 2. This is a prediction that can be
tested in the cross section using the data set in Bhattarai and Schoenle (2011)
or Wulfsberg (2010).

Next we characterize the marginal distribution of price changes. The reason
to focus on the marginal distribution is that it corresponds to what is measured
in the data, where no record is kept of the joint distribution of price changes.
This distribution is characterized by two parameters: the number of goods n
and the optimal boundary of the inaction set ȳ . The value of ȳ , as discussed
above, depends on all the parameters. Let τ be a time when y hits the bound-
ary of the range of inaction: since after an adjustment, all price gaps are reset to
zero, the price changes coincide with �p(τ)= −p(τ), where p(τ) ∈ ∂I ⊂ R

n,
that is, the price vector belongs to the surface of an n-dimensional sphere of
radius

√
ȳ . Given that each of the (uncontrolled) pi(t) is independently and

identically normally distributed, the price changes �p(τ) = −p(τ) are uni-
formly distributed on the n-dimensional surface of the sphere.9 We can now
state the following result.

PROPOSITION 6: Let p ∈ ∂I ⊂ R
n denote a vector of price gaps on the bound-

ary of the inaction region, triggering price changes �p = −p. The distribution
of the price change of an individual good i, that is, the marginal distribution of
�pi ∈ [−√ȳ�√ȳ], has density

w(�pi)= 1

Beta
(
n− 1

2
�

1
2

)√
ȳ

(
1 −
(
�pi√
ȳ

)2)(n−3)/2

�(13)

where Beta(·� ·) denotes the Beta function. The standard deviation and kurtosis
of the price changes, the expected value of the absolute value of price changes, and
its coefficient of variation are given by

Std(�pi)=√ȳ/n� Kurt(�pi)≡ E(�pi)
4

(E(�pi)2)2
= 3n
n+ 2

�

9To see this, notice that the probability density function (p.d.f.) of a jointly normally distributed
vector of n identical and independent normals is given by a constant times the exponential of the
square radius of the sphere, divided by half of the common variance.
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E
[|�pi|]=

√
ȳ

n− 1
2

Beta
(
n− 1

2
�

1
2

) �

Std(|�pi|)
E(|�pi|) =

√[
n− 1

2
Beta

(
n− 1

2
�

1
2

)]2 1
n

− 1�

As n→ ∞, the distribution of �pi/Std(�pi) converges pointwise to a standard
normal.

The proof uses results from the characterization of spherical distributions
by Song and Gupta (1997); see Appendix A. Using Proposition 6 and the ap-
proximation for ȳ , we obtain the expression Std(�pi) = (σ

2ψ

B

2(n+2)
n2 )1/4, which

shows that the standard deviation of price changes is decreasing in n, while the
kurtosis of the price changes is increasing in n.10

Proposition 6 establishes how the shape of the distribution of price changes
w(�pi) varies substantially with n, as shown in Figure 2. For n= 2, the distri-
bution is U-shaped (with density diverging toward infinity at the boundaries);
for n = 3, it is uniform; for n = 4, it has the shape of a half circle; and for
n ≥ 6, it has a bell shape. Proposition 6 also establishes that as n→ ∞, the
distribution converges to a normal. This can be seen in Figure 2 by comparing
the distribution for n = 50 with a normal distribution with the same standard
deviation and a zero mean. Interestingly, the expressions in Proposition 6 show
that w(�pi) and |�pi| depend only on n and on the scale of the distribution,

FIGURE 2.—Density of the price changes for various choices of n: w(�pi). All distributions
have the same standard deviation of price changes: Std(�pi)= 0�10.

10 The approximations E[|�pi|] ≈ Std(�pi)
√

2
π
(1 + 1

2n ) and Std(|�pi |)
E(|�pi |) ≈

√
π
2 (

2n
1+2n )− 1 are useful

to see how these statistics vary with n.
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TABLE I

STATISTICS FOR PRICE CHANGES AS A FUNCTION OF NUMBER OF PRODUCTS:
MODEL ECONOMYa

Number of Products n

Statistics 1 2 3 4 5 6 10 20 50

Std(|�pi|)/E(|�pi|) 0 0�48 0�58 0�62 0�65 0�67 0�70 0�74 0�75
Kurtosis(�pi) 1�0 1�5 1�8 2�0 2�1 2�3 2�5 2�8 2�9
Fraction: |�pi|< 1

2 E(|�pi|) 0 0�21 0�25 0�27 0�28 0�28 0�30 0�31 0�31
Fraction: |�pi|< 1

4 E(|�pi|) 0 0�10 0�12 0�13 0�14 0�14 0�15 0�16 0�16

a�pi denotes the log of the price change and |�pi| denotes the absolute value of the log of price changes. All
statistics in the table depend exclusively on n.

√
ȳ . Thus, any normalized statistic, such as ratio of moments (kurtosis, skew-

ness, etc.) or a ratio of points in the cumulative distribution function (c.d.f.),
depends exclusively on n. This property can be used to parametrize or estimate
the model.

We conclude this section by summarizing the most interesting results of the
model concerning the cross-section predictions in comparison with the data
and with the previous literature. To this end, Table I uses the model to com-
pute several moments of interest that depend only on n. Table II reports the
empirical counterparts to those moments as estimated by Midrigan (2011) (us-
ing two scanner data sets) and by Bhattarai and Schoenle (2011) (using Bureau
of Labor Statistics (BLS) producer data).

First, in comparison with the menu cost models of Golosov and Lucas (2007)
or Midrigan (2011), the model’s ability to account for the shape of the dis-
tribution of price changes improves dramatically. These models predict a bi-
modal distribution of price changes with a nil, or very small, mass of small

TABLE II

STATISTICS FOR PRICE CHANGES AS A FUNCTION OF THE NUMBER OF PRODUCTS: U.S. DATAa

Bhattarai and Schoenle Midrigan

Number of Products n AC Nielsen Dominick’s

Statistics 2 4 6 10 All No Sales All No Sales

Std(|�pi|)/E(|�pi|) 1�02 1�15 1�30 1�55 0�68 0�72 0�84 0�81
Kurtosis(�pi) 5�5 7�0 11 17 3�0 3�6 4�1 4�5
Fraction: |�pi|< 1

2 E(|�pi|) 0�39 0�45 0�47 0�50 0�24 0�25 0�34 0�31
Fraction: |�pi|< 1

4 E(|�pi|) 0�27 0�32 0�35 0�38 0�10 0�10 0�17 0�14

aFor the Bhattarai and Schoenle (2011) data, the number of products n is the mean of the categories considered
based on the information in Table 1, the ratio Std(|�pi|)/E(|�pi|) is from Table 2 (firm-based), the fraction of |�pi|
that are small is from Table 14, and the kurtosis is from Figure 7. The data from Midrigan (2009) are taken from the
distribution of standardized prices in Table 2b.
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price changes, as can be seen by the n = 1 and the n = 2 cases in Figure 2.
In contrast, as documented by Klenow and Malin (2010) as well as Midrigan
(2011), the size distribution of price changes has a bell shape and displays a
large mass of small price changes, as shown in Table II. We showed that the
number of goods that is necessary to produce the bell-shaped distribution is
at least 6. Therefore, compared to the U.S. data in Table II, the models with
n = 1�2 generate too few small price changes. Much larger values of n are
necessary to reproduce the patterns that are seen in the data.

Another novelty of the model is that, in addition to producing a larger mass
of small price changes compared to existing models, it also produces a greater
mass of “large” price changes, so that its kurtosis is higher than is obtained
in models with small n. This is seen immediately by noting that the kurtosis is
3n/(2 + n), an increasing function of n. The multiproduct hypothesis is thus
able to account for more kurtosis than the canonical menu cost model. We
notice, however, that despite this improvement, the model is not yet able to
match the very high level of kurtosis that is measured by some data sets. We
see this as a challenge, both theoretical and empirical, for future work.11

The model provides a simple explanation for the empirical regularity docu-
mented by Goldberg and Hellerstein (2009) and Bhattarai and Schoenle (2011)
using BLS producer prices that firms selling more goods (or larger firms) tend
to adjust prices more frequently and by smaller amounts. This is precisely what
our model predicts based on equation (11) and Proposition 6. Notice that the
prediction holds even if, in doing the comparative statics with respect to n, one
assumes that the fixed cost ψ increases linearly with n.12

Finally, there is quite a bit of evidence that, as in our model, price changes
tend to be synchronized across products sold by the same firm, as in the seminal
paper by Lach and Tsiddon (1996), who showed that price changes are synchro-
nized within stores but staggered across stores. In our model, synchronization
is perfect, that is, all the products sold by the firm change prices simultane-
ously, while in the data, the synchronization is less than perfect. Additionally,
it is found empirically that similar products tend to be more synchronized; see
Levy, Bergen, Dutta, and Venable (1997) and Dutta, Bergen, Levy, and Ven-
able (1999), and Cavallo (2010), who calls them “synchronization in the aisle.”
This suggests that we can interpret the n goods in our model as a subset of sim-
ilar products sold by a firm (an “aisle”). A discussion of this evidence, as well as
additional results by Fisher and Konieczny (2000), Chakrabarti and Scholnick
(2007), Midrigan (2009, 2011), Bhattarai and Schoenle (2011), and Anderson,

11The level of kurtosis appears to be imprecisely measured in the data: the estimates vary
widely from around 3 to 20, depending on the data source, industry, sample selection criteria,
and measurement error as discussed by Eichenbaum, Jaimovich, Rebelo, and Smith (2012) and
Alvarez, Le Bihan, and Lippi (2013).

12See the National Bureau of Economic Research (NBER) version of this paper (Alvarez and
Lippi (2012)) for a discussion of this point and some empirical evidence.
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Jaimovich, and Simester (2012), is given in the Appendix D in the Supplemen-
tal Material.

5. THE RESPONSE TO A MONETARY SHOCK

In this section, we study the response of the aggregate price level to an un-
expected permanent monetary shock. Understanding this impulse response is
useful to quantify the real effects of monetary shocks in the presence of menu
costs, to identify its determinants, and to characterize how the effects vary with
the number of products n sold by the firm. We will show how the determi-
nants of the real effects of monetary shocks map into simple observable statis-
tics about the size and frequency of price changes that are available for many
economies.

A main novelty of this paper is to solve the whole impulse response analyt-
ically using an approximation to characterize the firm’s decision problem. In
particular, in addition to the second order approximation of the profit func-
tion and the assumption of no drift in the price gaps used above, we assume
that after an aggregate monetary shock, the firm uses the same decision rule
ȳ used in the steady state, that is, we ignore the feedback effect on the firm’s
decision that arises in a general equilibrium problem. Interestingly, we show
that the approximation provides a very accurate benchmark to the exact solu-
tion of the original problem. The explanation for this result, formally stated in
Proposition 7 and numerically evaluated in the Appendix C in the Supplemen-
tal Material, is that in the class of models we considered, the general equilib-
rium feedback only has second order effects on the decision rules.

The general equilibrium setup where we embed our price-setting problem is
an adaptation of the Golosov and Lucas (2007) model to multiproduct firms
(see Appendix B in the Supplemental Material for details). The representative
household has preferences given by∫ ∞

0
e−rt
(
u
(
c(t)
)− α�(t)+ log

M(t)

P(t)

)
dt� and

c(t)=
(∫ 1

0

n∑
i=1

(
Zk�i(t)ck�i(t)

)(η−1)/η
dk

)η/(η−1)

�

where u(c) = (c1−ε − 1)/(1 − ε), ck�i(t) is the consumption of product i pro-
duced by firm k, �(t) is labor services, M(t) is the nominal quantity of money,
P(t) is the nominal ideal price index of one unit of aggregate consumption,
and r > 0� ε ≥ 1�α > 0, and η > 1 are parameters. The elasticity of substi-
tution between any two products η is the same, regardless of the firms that
produced them.13 The production function for good i in firm k at time t is lin-
ear in labor (the only input in the economy) with productivity 1/Zki(t), so the

13See Section 6 for the case where the elasticities are different.
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marginal cost of that product is W (t)Zki(t), where W (t) is the nominal wage.
We assume that the idiosyncratic productivity and demand shocks are perfectly
correlated, and that Zki(t)= exp (σWki(t))� where Wki is standard BM inde-
pendent across all k� i. This assumption ensures that consumer expenditure
is the same across goods so that the ideal price index is well defined and has
equal weights. Firm k can adjust one or more of its n nominal prices by paying
a fixed menu cost equal to a number of labor service units, which we express
as ψ times the steady state profits from producing one good evaluated at the
profit maximizing price. Markets are complete and all firms are owned by the
representative household. We useR(t)�W (t), and Pki(t) for the time t nominal
interest rate, nominal wage, and nominal price of firm k on product i, respec-
tively. As before, we use pki(t) for the price gap, that is, the log of the ratio of
the nominal price of firm k on product i to the frictionless optimal price:

pki(t)= logPki(t)− log
(
W (t)Zki(t)

)− log
(
η/(η− 1)

)
�(14)

We consider an economy that starts at the invariant distribution of firm’s
prices that correspond to a steady state with constant money supply equal to
M̄ . We assume that at time t = 0, there is an unanticipated permanent increase
in the level of the money supply by δ log points, so logM(0)= logM̄+δ, where
bars denote the steady state values. As in the general equilibrium sticky price
model of Danziger (1999) or Golosov and Lucas (2007), we have that for all
t ≥ 0, the interest rate is constant and wages and consumption follow14

R(t)= r� log
W (t)

W̄
= δ� log

c(t)

c̄
= 1
ε

(
δ− log

P(t)

P̄

)
�(15)

Equation (15) shows that the shock induces an immediate permanent increase
in (the log of) nominal wages, and hence marginal cost, by δ. The effect on
output, on the other hand, is gradual and at each t, it depends on how much
the aggregate price level P(t) is.

The next proposition illustrates why the approximate decision rule ȳ ,
which was derived in a partial equilibrium from the quadratic loss function
V(τ��p;p) in equation (1), provides an accurate approximation of the ef-
fect of a monetary shock δ in a general equilibrium. To this end, recall that
{τ��p} ≡ {τj��pi(τj)}∞

j=1 denotes the stochastic processes for the stopping
times and the n price gaps, and let c ≡ {c(t)/c̄ − 1}t≥0 denote the path of
aggregate output deviations from the steady state. Let the value function
−V(τ��p� c;p) measure the expected profits in the general equilibrium of
a generic firm with a vector of price gaps p.

14The first two equations follow from the assumptions of log utility for real balances and linear
utility of leisure, as in Golosov and Lucas (2007). The nominal and real rates are equal since
money growth is zero.
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PROPOSITION 7: Let δ ≥ 0. For all t ≥ 0, a general equilibrium satisfies the
following statements:

(i)

log
P(t)

P̄
= δ+

∫ 1

0

(
n∑
i=1

(
pki(t)− p̄ki

))
dk

+
∫ 1

0

(
n∑
i=1

o
(∥∥pki(t)− p̄ki

∥∥))dk�
(ii) A Taylor expansion of V(τ��p� c;p) around pi�t = 0 for all i = 1� � � � � n

and around ct = c̄ is proportional to the quadratic loss function V(τ��p;p).
Moreover, the terms including the cross-products of the price gap pit and the ag-
gregate consumption ct are of third order or higher.

Part (i) states that the effect of the shock on P(t) can be approximated by an-
alyzing the dynamic response of the price gaps, each of which falls by a constant
δ before any adjustment takes place, that is, pki(0) = p̄ki − δ. Part (ii) states
that the objective function V in the partial equilibrium setup of equation (1) is
proportional to the objective function in the general equilibrium setup V . The
difference between these functions in terms of the price gaps (the relevant ob-
ject for the firm’s decision) only involves third and higher order terms, so that
the general equilibrium effect on the boundary of the inaction set, ȳ , is second
order. The result provides a foundation to Caballero and Engel (1991, 1993,
2007), who pioneered the analytical study of the impulse response in Ssmodels
while ignoring the general equilibrium feedback effects on the decision rules.
To see why the result holds, note that, as Golosov and Lucas (2007) remark,
the general equilibrium feedback on the firms’ decision rules is completely
captured at each time t by the effect of the aggregate output c(t) on profits.
Inspection of the firm’s profit function shows that the discounted period t prof-
its from good i are the product of a term that includes the general equilibrium
effect—a function of c(t)—and a term whose maximum is achieved by the fric-
tionless price.15 Hence the discounted time t profits have a first derivative with
respect to the price gap pi(t) equal to zero, and have a second cross-derivative
with respect to the price gap pi(t) and c(t), which is also zero. The zero cross-
derivative of the profit function implies that the firm’s price-setting decisions
do not depend on the aggregate variables (up to first order), beyond the ef-
fect of the monetary shock on wages. Moreover, the equilibrium behavior of
the nominal wages implies that the law of motion of the price gaps following a

15This profit function follows by two assumptions of the Golosov–Lucas setup discussed above:
first, preferences for real balances and leisure imply that nominal wages are a function of money
stock; second, the constant elasticity of substitution (CES) demand for the firm’s products and
the constant returns to scale technology imply the multiplicative structure of profits.
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shock is the same as the behavior of the steady state. The consequence of these
assumptions is that for small shocks δ and small adjustment costψ—so that the
order of approximation using the above argument is valid—the firm’s pricing
decisions following a monetary shock differ from the steady state decision only
up to second order terms, that is, the general equilibrium effect on the firms’
pricing decisions is negligible (see Appendix B in the Supplemental Material
for a proof and Appendix C in the Supplemental Material for a quantitative
exploration of this result).

Next we use the results of Proposition 7 to study the effect of an aggregate
monetary shock of size δ on the aggregate price level P(t) at t ≥ 0 periods after
the shock, which we denote by Pn(δ� t). As commonly done in the sticky price
literature, we characterize the first order approximation to the price index, so,
in particular, we study Pn(δ� t) ≡ δ + ∫ 1

0 (
∑n

i=1pki(t))dk ≈ logP(t)/P̄ . Once
we characterize the effect on the price level, we describe the effect on employ-
ment and output. The impulse response is made of two parts: an instantaneous
impact adjustment (a jump) of the aggregate price level that occurs at the time
of the shock, denoted by Θn(δ), and a continuous flow of adjustments from
t > 0 on, denoted by θn(δ� t). The cumulative effect of the price level t ≥ 0
periods after the shock is

Pn(δ� t)=Θn(δ)+
∫ t

0
θn(δ� s)ds�(16)

We also study the impact effect on the fraction of firms that change prices,
denoted by Φn(δ).

We focus on the cumulative price response because its difference with the
monetary shock, δ− Pn(δ� t), is proportional to the aggregate output at time
t, as discussed in Section 5.5. Next we present our main results on Pn(δ� t) and
Φn(δ) following an aggregate shock.

PROPOSITION 8: Fix n, the number of goods sold by each firm.
(i) Parameters. The impulse response Pn(δ� t) depends only on two parame-

ters,
√
ȳ and σ , which we reparameterize as functions of two steady state statistics:

the standard deviation of price changes Std[�pi] and the frequency of price
changes Na.

(ii) Scaling and Stretching. The IRF of an economy with steady state
Std[�pi]�Na and a shock δ at horizon t ≥ 0 is a scaled version of the response
of an economy with unit steady state parameters, normalized monetary shock
δ/Std[�pi], and a stretched horizon Nat:

Pn

(
δ� t;Na�Std[�pi]

)= Std[�pi]Pn

(
δ

Std[�pi] �Nat;1�1
)
�

(iii) Impact Effects. The impact effects P(δ�0)=Θn(δ) andΦn(δ) are strictly
increasing in δ, they are, respectively, strictly below δ and 1, in the interval
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(0�2 Std[�pi]) and achieve these values outside this interval. Moreover, the im-
pact effects are second order in the monetary shock: Θ′

n(0)=Φ′
n(0)= 0.

Part (i) of Proposition 8 provides a reparameterization of the impulse re-
sponse that is interesting for three reasons: (a) the steady state statistics
Std[�pi] and Na are readily available for actual economies, (b) the results of
Section 4 imply that, even fixing n, one can always choose two parameters val-
ues of ψ/B and σ2 to match these two statistics, and (c) by keeping fixed these
two observable statistics and just changing n, we can isolate completely the role
of the number of products n.

Part (ii) of Proposition 8 states a useful “scaling” property of the impulse
response function. First, notice that at t = 0, the impact effect of a monetary
shockΘn is the same for any two economies with the same steady state average
size of price changes Std[�pi] and is independent of the value of the steady
state frequency of price adjustment Na. Moreover, for all times following the
impact (t > 0), the effect of a monetary shock δ in an economy characterized by
steady state statistics Std[�pi] andNa depends only on n. This means that for a
fixed n, the whole profiles of the impulse response functions in economies with
different values of Std[�pi] and Na are simply scaled version of each other.
For instance, fixing n, δ, and Std[�pi], the impulse response functions in two
economies that differ in the frequency of price adjustments, say Na vs. 2Na,
will have exactly the same values of Pn, but will reach these values at differ-
ent times, respectively, 2t vs. t, that is, an economy with twice as many flexible
prices in steady state has an impulse response that reaches each value in half
the time. Furthermore, keeping Na fixed, the height of the whole impulse re-
sponse function Pn is proportional to the scaled value of the monetary shock.
This property of the impulse response function is also convenient to aggregate
across the sectors of an economy with different frequencies of adjustment and
sizes of price changes. We find this characterization interesting in itself, that
is, even interesting for the n = 1 case, but more importantly it will allow us
to compare the impulse responses for economies that feature different values
of n.

Part (iii) of Proposition 8 shows that the size of the monetary shock matters.
For large shocks, there is instantaneous full price flexibility (Θn = δ), but for
small shocks, the size of the initial jump in price is second order compared to
the shock. This, together with part (ii), implies that whether a monetary shock
is large or not is completely characterized by comparing it with the typical price
change in steady state, that is, it is a function of δ/Std[�pi].

For the reader who is not interested in the derivation of the impulse re-
sponses and an explanation of the different effects behind it, we include two
figures that summarize the quantitative conclusions of our analysis. Before
getting to these figures, we note that its computation for large values of n
would have been extremely costly without the characterization given in the
sections below. Figure 3 has two panels that illustrate the impact effect on
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FIGURE 3.—The impact effect of an aggregate shock on the price level: Θn.

prices of monetary shocks of different sizes for economies with different val-
ues of n. The left panel shows the normalized impact on the aggregate price
level, Θn/Std[�pi] (on the vertical axis), of a normalized monetary shock, that
is, a shock δ/Std[�pi] (on the horizontal axis). Each line plotted in this panel
corresponds to a different number of products n. Recall that if Θn(δ)= δ, the
shock is neutral, and that, instead, when Θn(δ) < δ, the shock implies an in-
crease in real output. As stated in Proposition 8, if δ ≥ 2

√
ȳ/n = 2 Std[�pi],

then all firms adjust prices and hence the shock is neutral. This explains the
range of the normalized shock between 0 and 2. For the quantification of this
figure, it is helpful to notice that on the one hand, a typical estimate of the
standard deviation of price changes for U.S. or European countries is 10% or
higher, that is, Std[�pi] ≈ 0�1. On the other hand, to quantify δ, note that in a
short interval—say a month—changes of the money supply or prices on the or-
der of 1% are very rare.16 This figure also shows that for small δ, the aggregate
price effects are of order δ2, as stated in Proposition 8. Interestingly, the impact
response of a monetary shock changes order with respect to n as the value of δ
increases, as can be seen for shocks smaller than a threshold δ/Std[�pi] ≈ 0�7.
Note that using Std[�pi] = 0�1 implies that the order is reversed for monetary
shocks δ higher than 7%, a very large value. The right panel of Figure 3 dis-
plays four lines, each corresponding to a different value of δ. Each line shows
the aggregate effect on prices as n changes, relative to the n = 1 case. From
these two panels, it can be seen that for monetary shocks on the order of those
experienced by economies with inflation close to zero, that is, for increases in
money δ/Std[�pi] smaller than 0.5 (or for the benchmark value, for δ smaller
than 5%), economies with more products are stickier than those with fewer.

16For instance, the monthly innovations on a time series representation of M1 are on the order
of 50 basis points, and that is without any conditioning. Presumably exogenous monetary shocks
are much smaller.



112 F. ALVAREZ AND F. LIPPI

FIGURE 4.—Impulse response of the aggregate price level.

Figure 4 plots the impulse response function Pn(δ� t) for economies with
different n, keeping fixed the steady state deviation of price changes to 10%,
that is, Std[�pi] = 0�1, and an average of one price change per year, that is,
Na = 1. The size of the monetary shock is 1%, so that δ/Std[�pi] = 0�1. In
Figure 4, we time aggregated the effect on the aggregate price level up to daily
periods. As required, all impulse responses display an impact effect on the first
period and a monotone convergence to the full adjustment of the shock. The
impact effect of the monetary shock during the first period is to increase prices
about 5% of the long run value (i.e., five basis points) for n= 1. This effect is
smaller in economies where firms produce more products, that is, the impact at
t = 0 is decreasing in n. This difference is small between one and two products,
but the effect is almost halved for firms with 10 products, as shown in Figure 3
for a monetary shock of the same size.

Likewise, the shape and duration of the shocks depend on n. The half-life of
the shock more than doubles as the number of products goes from 1 to 10. The
shape of the impulse responses for n= 1 is quite concave, but for large n it be-
comes almost linear, up to a value of t of about 1/Na. This pattern of the shape
is consistent with the result of Proposition 5, which shows that for large n the
model becomes a version of either the Taylor (1980) staggering price model or
the Caballero (1989), Bonomo and Carvalho (2004), and Reis (2006) inatten-
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tiveness model, where the staggering lasts for T (0)= 1/Na periods. Indeed, in
Proposition 12 below, we show that as n→ ∞, the impulse response becomes
linear up to time 1/Na because there is no “selection effect.” Summarizing,
we find that extending the analysis from n = 1 to a larger number of product
(say n ≈ 10) almost halves the impact effect on the aggregate price level and
doubles the half-life of the shock for empirically reasonable monetary shocks.17

The rest of this section is organized as follows. First, we obtain a closed
form solution for the IRF in the case of n= 1. This result, which is novel and
interesting in its own right, is also helpful to better understand the derivation
for the n ≥ 2 case as well as to compare the results. After that, we develop
the analytical expressions for the n≥ 2 case, concentrating first on the impact
effects and then on the remaining part of the impulse response. The proof
of Proposition 8, as well as explicit expressions for the impulse responses, are
presented as separate propositions in the next subsections. We conclude the
section by discussing the real effect of the monetary shocks.

5.1. Impulse Response for the n= 1 Case

In the n = 1 case, which we refer to (slightly abusing the analogy) as the
Golosov and Lucas (GL) case, the firm controls the price gap between two
symmetric thresholds, ±p̄, and when the price gap hits either threshold, resets
the price gap p to zero. Hence the invariant distribution of price gaps is tri-
angular: the density function has a maximum at p = 0 and decreases linearly
on both sides to reach a value of zero at the thresholds p̄ and −p̄, since firms
that reach the thresholds will adjust upon a further shock. An example of such a
distribution is depicted by the solid line in the left panel of Figure 5. A straight-

FIGURE 5.—The selection effect on impact for the n= 1 and n= 2 cases.

17The results are very similar for shocks of 1/2 and 2%; see Appendix F3 in Alvarez and Lippi
(2012).
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forward computation gives that the slope of this density is ±(1/p̄)2. Consider
an aggregate shock that displaces the distribution by reducing all price gaps
by δ. If the value of δ > 2p̄, then all the firms will adjust their price, so that
Φ= 1, and after a simple calculation, one can see that the aggregate price level
is increased by δ. Instead, if the value of δ is smaller than 2p̄, only the firms
with a sufficiently small price gap will adjust. Denoting the price gap right after
the shock by p0, these are the firms that end up with p0 <−p̄. The density of
the distribution of the price gaps immediately after the shock, denoted by λ, is
depicted by the dotted line of Figure 5 and is given by

λ(p0� δ; p̄)=

⎧⎪⎪⎨
⎪⎪⎩

1
p̄

(
1 + δ

p̄
+ p0

p̄

)
if
p0

p̄
∈
[
−1 − δ

p̄
�− δ
p̄

]
,

1
p̄

(
1 − δ

p̄
− p0

p̄

)
if
p0

p̄
∈
(

− δ
p̄
�1 − δ

p̄

]
.

(17)

For a shock of size δ, the mass of such firms is Φ = (1/2)(δ/p̄)2, which uses
the slope of the density given above (to simplify notation, we suppress the n=
1 subindex). Note that the magnitude of this fraction is proportional to the
square of the shock, a feature that is due to the fact that there are a few firms
close to the boundary of the inaction set. This case is depicted by the dotted
line in the left panel of Figure 5. Firms that change prices “close the price gap”
completely, so that the price increase will be δ+ p̄ for the firm that prior to
the shock had price gap −p̄ and it will be equal to p̄ for the firm with preshock
price gap equal to −p̄+ δ. Using the triangular distribution of price gaps, we
have that the average price increase among those firms that adjust prices equals
p̄+δ/3. Let us denote byΘ the impact effect on aggregate prices of a monetary
shock of size δ, the product of the number of firms that adjust times the average
adjustment among them. Note that in steady state, the average size of price
changes, as measured by the standard deviation of price changes Std[�pi], is
given by p̄. Thus for δ≤ Std[�pi] = p̄, we can write

Θ= Std[�pi]1
2

(
δ

Std[�pi]
)2(

1 + 1
3

δ

Std[�pi]
)
�

so that for an economy with one good, the impact effect on prices, normalized
by the steady state average price change, depends on the normalized monetary
shock and is locally quadratic, at least for a small shock. Note that the de-
gree of aggregate stickiness is independent of the steady state fraction of price
changes.

We now develop an expression for the impulse response at horizons t > 0.
The density of the price gaps p0 right after the monetary shock δ is the dis-
placed triangular distribution λ plotted in Figure 5 and described in equa-
tion (17), and hence it has p̄ as a parameter. It peaks at −δ and has sup-
port [−p̄− δ� p̄− δ]. Note that the impact adjustment is concentrated on the
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firms whose price gap is smaller than −p̄. Now consider the contribution to
the change in aggregate prices of the firms whose price gap is p0 ∈ [−p̄� p̄−δ],
so they have not adjusted on impact, and of which there are λ(p0;δ)dp0. Let
G−(t;p0) be the probability that a firm with price gap p0 at time zero will in-
crease price before time t, that is, the probability that its price gap will hit −p̄
before time t without first hitting p̄. Likewise define G+(t;p0) as the corre-
sponding probability of a price decrease, let G(t;p0)=G−(t;p0)−G+(t;p0)
be the difference between these probabilities, and let g be its density. We note
that these functions have (p̄�σ2) as parameters. We can now define the con-
tribution to the change in the price level of the adjustments that take place
between t and t + dt as18

θ(δ� t)= p̄
∫ p̄−δ

−p̄
g(t;p0)λ(p0;δ)dp0�(18)

The integral excludes the initial price gaps p0 that are below −p̄. These cor-
respond to firms that adjusted on impact. Note that θ(δ� t) have (p̄�σ2) as
parameters. Expressions for the densities g+ and g− can be found in equations
(15) and (16) of Kolkiewicz (2002). This gives

g(t;p0)= σ2

2p̄2

∞∑
k=1

e−(k2π2/(2p̄2))σ2tkπ

×
[

sin
(
kπ

(
1 + p0

p̄

))
− sin

(
kπ

(
1 − p0

p̄

))]
�

Four remarks are in order. First, by substituting our expressions for g and λ,
we have a closed form solution for each expression in equation (18). Second,
note that we did not need to compute the evolution of the whole cross-sectional
distribution. Instead, we follow each firm until the first time that it adjusted its
price. This is because the subsequent adjustments have a zero net contribution
to aggregate prices, since after the adjustment, every firm’s price gap returns to
zero and the subsequent adjustments are as likely to be increases as decreases.
Third, note that the role of the monetary shock is just to displace the initial
distribution, that is, δ is not an argument of g. Fourth, note that this function
has two interesting forms of homogeneity. The first type of homogeneity is that
it is homogeneous of degree 1 in σ� p̄, and δ. This follows because scaling p̄
and δ will just scale proportionally the distribution λ of the initial price gaps.

18Alternatively one could compute the impulse response for the n= 1 case by adapting ideas
from Bertola and Caballero (1994). They studied the evolution of the whole cross-section distri-
bution following a shock for an irreversible investment problem with a reflecting barrier. Their
formulas should be adapted to our fixed cost problem whose optimal return point implies a jump
(not a reflection) of the state.



116 F. ALVAREZ AND F. LIPPI

Furthermore, scaling p̄ and σ keeps the probabilities of hitting any two scaled-
up values in the same elapsed time the same. The second type of homogeneity
uses that a standard Brownian motion at time t started at time zero has a nor-
mal distribution with variance t. So scaling the variance of the shock, the price
gaps will hit any given value in a scaled time. These two homogeneity prop-
erties can be seen by integrating the previous expression to give an IRF that
satisfies the properties stated in Proposition 8:

P(δ� t)=Θ(δ)+ Std[�pi]
∞∑
k=1

1 − e−(k2π2/2)Nat

kπ

×
∫ 1−δ/Std(�p)

−1

[
sin
(
kπ(1 + x))− sin

(
kπ(1 − x))]

× λ
(
x�

δ

Std[�pi] ;1
)
dx�

5.2. Invariant Distribution of y = ‖p‖2

Here we study the invariant distribution of the sum of the squares of the
price gaps y ≡ ‖p‖2 =∑n

i=1p
2
i (t) under the optimal policy. This will be used

to describe the starting point of the economy before the monetary shock. We
denote the density of the invariant distribution by f (y) for y ∈ [0� ȳ]. This is
of interest for studying the response of firms that are in the steady state to an
unexpected shock to their target that displaces the price gaps uniformly. The
density of the invariant distribution for y is found by solving the correspond-
ing forward Kolmogorov equation and the relevant boundary conditions (see
Appendix A for the proof).

PROPOSITION 9: The density f (·) of the invariant distribution of the sum of the
squares of the price gaps y , for given thresholds ȳ in the case of n≥ 1 products, is,
for all y ∈ [0� ȳ],

f (y)=

⎧⎪⎪⎨
⎪⎪⎩

1
ȳ

[
log(ȳ)− log(y)

]
if n= 2 and

(ȳ)−n/2
(

n

n− 2

)[
(ȳ)n/2−1 − (y)n/2−1

]
otherwise�

(19)

The density has a peak at y = 0, decreases in y , and reaches zero at ȳ . The
shape depends on n. The density is convex in y for n= 1�2�3, linear for n= 4,
and concave for n ≥ 5. This is intuitive, since the drift of the process for y in-
creases linearly with n, hence the mass accumulates closer to the upper bound
ȳ as n increases. Indeed, as n→ ∞, the distribution converges to a uniform in
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[0� ȳ]. Proposition 9 makes clear also that the shape of the invariant density de-
pends exclusively on n; the value of the other parameters, ψ/B�σ2 only enters
in determining ȳ , which only stretches the horizontal axis proportionally.

5.3. Impact Response in the n≥ 2 Case

Now we turn to studying the economy-wide impact effect of the aggregate
shock. To find out the fraction of firms that will adjust prices under the in-
variant, we need to characterize some features of the invariant distribution of
p ∈ R

n. We assume that the aggregate shock happens once and for all, so that
the price gap process remains the same and the firms solve the problem stated
above. First, we find out which firms choose to change prices and, averaging
among their n products, by how much. A firm with price gap p ∈ R

n and state
‖p‖2 = y ≤ ȳ before the shock will have its price gaps displaced downward by δ
in each of its n goods, that is, its state immediately after the shock is ‖p−1nδ‖,
where 1n is a vector of 1’s. This firm will change its prices if and only if the state
will fall outside the range of inaction, that is, ‖p− 1nδ‖ ≥ ȳ , or, equivalently, if
and only if

‖p‖2 − 2δ

(
n∑
i=1

pi

)
+ nδ2 ≥ ȳ or(20)

n∑
i=1

pi

√
y

≤ ν(y�δ)≡ y − ȳ
2δ

√
y

+ n δ

2
√
y
�

Thus ν(y�δ) gives the highest value for the sum of the n price gaps for which
a firm with state y will adjust the price. The normalized sum of price gaps∑n

i=1pi/
√
y takes values on [−√

n�
√
n]. The right panel of Figure 5 shows the

n = 2 case by plotting a circle centered at zero that contains all the preshock
price gaps, and shows the “displaced” price gaps right after the δ shock, which
are given by a circle centered at (−δ�δ). The shaded area contains all the price
gaps of the firms that, after the shock, will find it optimal to adjust their prices,
that is, firms for which equation (20) holds.

A firm whose price gap p satisfies equation (20), that is, a firm with
(1/

√
y)
∑n

i=1pi ≤ ν(y�δ), will change all of its prices. The mean price change,
averaging across its n products, is δ− (1/n)∑n

i=1pi.
19 Thus we can determine

the fraction of firms that change their prices and the amount by which they
change them by analyzing the invariant distribution of the squared price gaps,

19Recall that pi are the price gaps. Thus, to set them to zero, the price changes must take the
opposite sign. Moreover, since δ has the interpretation of a cost increase, it decreases the price
gap and, hence, its correction requires a price increase.
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f (y). Let S(z) denote the cumulative distribution function of the sum of the co-
ordinates of the vectors distributed uniformly in the n-dimensional unit sphere.
Formally, we define S : R → [0�1] as

S(z)= 1
L(Sn)

∫
x∈Rn�‖x‖=1

I{x1 + x2 + · · · + xn ≤ z}L(dx)�

where S
n is the n-dimensional sphere and where L denotes its n− 1 Lebesgue

measure. Note that S(·) is weakly increasing, that 0 = S(−√
n), S(0) = 1/2,

S(
√
n) = 1, and that it is strictly increasing for z ∈ (−√

n�
√
n). Remarkably,

as shown in Proposition 10, the distribution of the sum of the coordinates of a
uniform random variable in the unit n-dimensional sphere is the same, up to a
scale, as the marginal distribution of any of the coordinates of a uniform ran-
dom variable in the unit n-dimensional sphere (which we discussed in Propo-
sition 6), that is, the c.d.f. satisfies

S′(z)≡ s(z)= 1

Beta
(
n− 1

2
�

1
2

)√
n

(
1 −
(
z√
n

)2)(n−3)/2

(21)

for z ∈ (−√
n�

√
n)

for n ≥ 2; for n = 1, the c.d.f. S has two points with mass 1/2 at −1 and
at +1. Now we are ready to give expressions for the effect of an aggregate
shock δ. First, consider Φn, the fraction of firms that adjust prices. There are
f (y)dy firms with state y in the invariant distribution; among them, the frac-
tion S(ν(y�δ)) adjusts. Integrating across all the values of y , we obtain the de-
sired expression. Second, consider Θn, the change in the price level across all
firms. There are f (y)dy firms with state y in the invariant distribution; among
them, we consider all the firms with normalized sum of price gaps less than
ν(y�δ), for which the fraction s(z)dz adjust prices by δ−√

yz/n. Considering
all the values of y , we obtain the relevant expression. This gives the following
proposition.

PROPOSITION 10: Consider an aggregate shock of size δ. The fraction of price
changes on impact, Φn, and the average price change across the n goods among
all the firms in the economy, Θn, are given by

Φn(δ)=
∫ ȳ

0
f (y)S

(
ν(y�δ)

)
dy�(22)

Θn(δ)= δΦn(δ)−
∫ ȳ

0
f (y)

√
y

n

[∫ ν(y�δ)

−√
n

zs(z)dz

]
dy�(23)
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where s(·) is given by equation (21), which depends on n, and where f (·) and ν(·),
which are also functions of ȳ and n, are given in equation (19) and equation (20),
respectively.

See Appendix A for the proof and see Appendixes F1 and F2 in Alvarez
and Lippi (2012) for a closed form solution and a lemma with the analytical
characterization of Θn and Φn stated in part (iii) of Proposition 8.

5.4. Impulse Response at Horizons t > 0 in the n≥ 2 Case

We develop an expression for the impulse responses at horizon t > 0 for
the general case of n ≥ 1, in particular, we derive an expression for the flow
impact on the price level at horizon t, which we denote as θn(δ� t). As in the
case of one good, we start by describing the distribution of firms indexed by
their price gaps, immediately after the monetary shock δ but before any ad-
justment takes place. The c.d.f. Λn(p0) gives the fraction of price gaps smaller
than or equal to p0 at time zero right after the impact adjustment caused by
the monetary shock δ. Note that Λn(p0)≤Θn(δ) for all p0. To understand this
expression, let p̃0 ∈ R

n be the price gap before the monetary shock, which has
y = ‖p̃0‖2 distributed according to the density f (y) described in equation (19).
The price gaps with a given value ‖p̃0‖2 ≡ y ≤ ȳ have a uniform distribution on
the sphere, so their density depends only on ‖p̃0‖2. Right after the monetary
shock, these price gaps become p0 = p̃0 − 1nδ, where 1n is an n-dimensional
vector of 1’s. So we have that the density of the distribution of the price gaps
immediately after the monetary shock but before any adjustment is

λ(p0� δ)= f (‖p0 + 1nδ‖2
) �(n/2)
πn/2‖p0 + 1nδ‖n−2

(24)

and we recall that f (y) = 0 for any y > ȳ . We note that λ is a function of ȳ
and δ, but it is independent of σ2. The scaling factor reflects two features: the
change in variables from y to

√
y and the surface area of this sphere is given

by 2πn/2y(n−1)/2/�(n/2), which gives a measure of the vectors p0 with squared
norm equal to y .

The next step is to find the contribution of those firms with price gap p0

to the change in aggregate prices at horizon t. As in the case of one good,
it suffices to consider the contribution of those firms that have the first price
change exactly at t. This is because all subsequent adjustments have a zero net
contribution to prices, since after the adjustment, the firm starts with a zero
price gap. Since firms adjust prices when y reaches ȳ at some time t, we use
the distribution of the corresponding hitting times and place in the sphere. In
particular, letG(p; t�p0) denote the probability that a firm with price gap p0 at
time zero will hit the surface of a sphere of radius

√
ȳ at time t or before with a

price gap smaller than or equal to p. Note thatG is a function of σ2 and ȳ , but
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it is independent of δ. Explicit expressions for the joint density g of the hitting
time t and place p can be found in Wendel (1980) and Yin and Wang (2009).
When the price gap of the firm hits the sphere of radius

√
ȳ with a price gap

p, the average change of its n prices is given by “closing” each of the n price
gaps, that is, the average price change is given by −(p1 + · · · +pn)/n. Thus θ,
the contribution to the change in aggregate prices at time t after a shock δ at
time zero as defined in equation (16), is given by

θn(δ� t)=
∫

‖p0‖2≤ȳ

[∫
‖p‖2=ȳ

−(p1 +p2 + · · · +pn)
n

g(p� t�p0)dp

]
(25)

× λ(p0� δ)dp0�

Note that the outer integral is computed only for the firms that have not ad-
justed on impact, that is, for the price gaps ‖p0‖2 ≤ ȳ . Given the knowledge of
the closed form expressions for both λ and g, we can compute the multidimen-
sional integrals in θn(δ� t) by Monte Carlo procedures.

We adapt the expression for the density g of hitting times and places from
Theorem 3.1 of Yin and Wang (2009) to the case of a BM with variance σ2 to
obtain the next proposition.

PROPOSITION 11: Fix n≥ 2. Then the impulse response can be written as

Pn(δ� t)−Θn(δ)=
∞∑
m=0

∞∑
k=1

em�k(δ�
√
ȳ� n)

[
1 − exp

(
−q

2
m�k

2n
nσ2

ȳ
t

)]
�(26)

where the coefficients qm�k are the ordered (positive) zeroes of the Bessel function
Jm+n/2−1(·). The coefficients em�k(·� ·� n) are homogeneous functions of degree 1
in (δ�

√
ȳ) and do not depend on σ2. Furthermore,

∑∞
m=0

∑∞
k=1 em�k(δ� ·� ·)= δ−

Θn(δ)≤ δ.

See Appendix A for the proof. Using the properties of Θn from Proposi-
tion 10 and the homogeneity property of em�k in equation (26), one verifies
part (i) and part (ii) of Proposition 8.

We end this section with a full characterization of the impulse response func-
tion in the limiting case in which n→ ∞. The next proposition shows that when
n is large, the impulse response is linear, as was mentioned above.

PROPOSITION 12: Assume that δ < Std(�pi). We let n → ∞, adjusting ȳ
and σ2 to keep Std(�pi) = √ȳ/n and Na fixed. Then the fraction of immedi-
ate adjusters Φn(δ) → (δ/Std(�pi))2, the immediate impact in the price level
Θn(δ)→ δΦn(δ), and the impulse response becomes linear, that is, Pn(δ� t)→
Θn(δ)+ δNat for 0< t < T ≡ (1 −Φn(δ))/Na and Pn(δ� t)→ δ for t ≥ T . Fur-
thermore, the average price change across firms at every 0 ≤ t ≤ T is equal to δ.
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See Appendix A for the proof. The impact effect on the price level is of the
order δ3 and, hence, for small values of δ, it is negligible compared to the im-
pact for the n= 1 case, that is,Θn/Θ1 ↓ 0 for δ ↓ 0, as shown in Figure 3. More-
over, Figure 4 shows that the half-life of the shock is (1/2−(δ/Std(�pi))2)/Na,
which converges to 1/(2Na) for small shocks. In Figure 4, which describes a
1% shock in the money supply, the half-life is three times greater than that
produced by the n= 1 case. A main consequence of the large n is that there is
no selection effect. This is to be compared with the case of n= 1, where the se-
lection effect is strongest and where, in the periods right after the shock (small
t), all price adjustments are price increases. The reason for the lack of selec-
tion when n is large is that for a firm selling many products, there are, upon
adjustment, many cancellations since some prices will be increased and others
decreased, so that the average price change across the firms’ goods is simply δ.

5.5. On the Output Effect of Monetary Shocks

This section discusses how the impulse response for prices is informative
about the interpretation, time profile, and size of the output effect of a mon-
etary shock. In the general equilibrium setups discussed at the beginning of
this section, the deviation of output from the steady state output level is pro-
portional to the change of the real balances, δ − Pn(δ� t), as shown in equa-
tion (15) and common to the models of Golosov and Lucas (2007), Caplin and
Leahy (1997), and Danziger (1999). From now on we refer to δ− Pn(δ� t) as
the impulse response of output, which is the expression predicted by our model
in the case of log preferences (ε= 1).20

The half-life of the output response is identical to the half-life of the price
level only in the case in whichΘn = 0, that is, when there is no jump of the price
level on impact, a condition that holds for infinitesimal shocks. When the price
level jumps on impact (Θn > 0), the half-life of the output response is longer
than the half-life of the price level. The reason is that the jump shortens the
time required for the price level to reach its half-life value (i.e., δ/2), whereas
the half-life target of the real output effect, given by (δ−Θn(δ))/2� shifts and
so its half-life is longer. To picture this effect in Figure 4, notice that different
impact levels (corresponding to, e.g., different values of n) do not shift the
half-life line (whose position is at 0.5%), but will shift the half-life line of the
real output effect (this line is not drawn in the figure; it is above 0.5 and shifts
upward as Θn increases). The impact effect on output also depends on the size
of the shock: on one hand, for very large shocks, there is full price flexibility
and, hence, no effect on output regardless of n; on the other hand, for small
monetary shocks, the impact effect on prices is of order smaller than δ and,
hence, the impact effect on output is approximately δ for all values of n.

20If ε �= 1, then the effect on output should be divided by ε, as shown in equation (15).
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As a summary statistic of the real effect of monetary shock, we use the area
under the impulse response for output, that is,

Mn(δ)=
∫ ∞

0

(
δ− Pn(δ� t)

)
dt�

which can be interpreted as the cumulative effect on output following the
shock. This measure combines the size of the output deviations from the steady
state with the duration of these deviations. Since Pn(δ� t) depends only on the
parameters Std(�pi) and Na, so does Mn(δ). Because of the homogeneity of
Pn(δ� t) discussed in part (ii) of Proposition 8 and the way time (Nat) enters
Pn(δ� t) shown in Proposition 11, we can thus write

Mn

(
δ;Na�Std(�pi)

)= Std(�pi)
Na

Mn

(
δ

Std(�pi)
;1�1

)
�(27)

so that the effect of a shock of size δ in an economy characterized by param-
eters Std(�pi) and Na can be readily computed using the “normalized” effect
for an economy with unit parameters and a standardized shock.

The determinants of the real effects of monetary shocks identified by equa-
tion (27) offer a new insight to measure the degree of aggregate price sticki-
ness in menu cost models. The previous literature focused almost exclusively
on the frequency of price changes, Na, as a measure of stickiness, but equation
(27) shows that the dispersion of price changes, Std(�pi), is also an important
determinant. Indeed the area under the impulse response of output is propor-
tional to the ratio of these two quantities, where the constant of proportionality
depends on the (normalized) size of the monetary shock, δ/Std(�pi) and, in
our setup, on the number of products n.

Figure 6 illustrates how the real output effect of a monetary shock varies with
the size of the shock (δ) and the number of goods sold by the firm (n). The
figure plots the summary impact measure as a function of δ for an economy
with Std(�pi)= 0�10 and Na = 1, for four values of n. It is shown that for each
value of n, the cumulative real effect of a monetary shock is hump-shaped in
the size of the shock (δ). The effect is nil at extremes, that is, at δ= 0 and at
2 Std(�pi) (not shown), as a reflection of the fact that large shocks induce full
price flexibility (see part (iii) of Proposition 8). We characterize the value of δ
for which M is maximized using equation (27) and the Figure 6. For a given
n, the monetary shock that maximizes the cumulative output effect is about
one-half of Std(�pi). Moreover, the maximum value of the cumulated output
effect is proportional to Std(�pi)/Na. More interestingly, for the purpose of
this paper, the size of the real effects varies with the number of goods n. Larger
values of n, that is, firms selling more goods, produce larger cumulative effects
for small values of the shock and also larger maximum values of the effect.
In this sense, the stickiness of the economy is increasing in n. The maximum
cumulative effect on output, on the order of 1.4% output points, is obtained as
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FIGURE 6.—Cumulative output effect M(δ). Parameters are Na = 1 and Std(�pi)= 0�10.

n→ ∞; a similar value obtains already for n= 10. On the other hand, smaller
effects are produced in models with n= 1 or n= 2.

6. CORRELATION, INFLATION, AND DIFFERENT ELASTICITIES

This section extends the baseline model to the case of price gaps pi�pj that
feature (i) cross-correlated innovations, (ii) a common drift (to model infla-
tion), and (iii) cross-products pipj in the period return function of the firm (to
model a demand system where the elasticity of substitution of products within
the firm differs from the substitution elasticity of a product across firms). Sur-
prisingly, despite the apparent complexity of these extensions, the modified
problem remains tractable: instead of the scalar state variable y , the state of the
problem with either drift, correlation, and/or cross-products includes only one
additional variable to measure the sum of the coordinates of the vector, namely
z =∑n

i=1pi for any n. For ease of exposition and because it turns out to be the
one with more substantial effects, we focus here on the problem with corre-
lated price gaps without drift and cross-products. We formulate the problem,
derive its cross-section implications, and characterize the impulse response to
a monetary shock. A fuller derivation of the results for correlation and its com-
putations, as well as a derivation and analysis of the differential elasticity case,
is given in Appendix E in the Supplemental Material.

The problem solved by the firm is, as before, the minimization of the value
function in equation (1), subject to a law of motion for the pi that allows for
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correlation but no drift. The diffusions for the price gaps satisfy E[dp2
i (t)] =

σ̂2 dt and E[dpi(t)dpj(t)] = ρσ̂2 dt for all i = 1� � � � � n and j �= i, and for two
positive constants σ̂2 and ρ. Then we can write that each price gap follows
dpi(t) = σ̄ dW̄(t) + σ dWi(t) for all i = 1� � � � � n� where W̄�Wi(t) are inde-
pendent standard BM’s so that σ̂2 = σ̄2 + σ2 and the correlation parameter
is ρ = σ̄2

σ̄2+σ2 . Define y(t) =∑n

i=1p
2
i (t) and z(t) =∑n

i=1pi(t), which by Ito’s
lemma obey the diffusions

dy(t)= n[σ2 + σ̄2
]

dt + 2σ
√
y(t)dWa(t)+ 2σ̄z(t)dW c(t)�

dz(t)= nσ̄ dW c(t)

+ √
nσ

[
z(t)√
ny(t)

dWa(t)+
√√√√1 −

(
z(t)√
ny(t)

)2

dWb(t)

]
�

where (Wa�Wb�W c) are three standard (univariate) independent BM’s. No-
tice that the introduction of correlation makes the variance of y depend on the
level of z.

In the case where σ and σ̄ are both positive, the state of this problem
will be the pair (y� z), and the value function, denoted by v(y� z), is sym-
metric in z around zero, so v(y� z) = v(y�−z). The optimal policy is to have
an inaction region I = {(y� z) : 0 ≤ ȳ(z)} for some function ȳ(z) that satisfies
ȳ(z) = ȳ(−z) > 0 for all z > 0. We solve v(y� z) numerically for a problem
with r = 0�05 per year, B = 20, and a volatility of each price gap of 13% with
a pairwise correlation of 1/2, so σ = σ̄ = 0�13/

√
2. The menu cost is 4% of

frictionless profits per good, so ψ/n= 0�04. We display the results for the case
of n= 10 products per firm.

The left panel of Figure 7 plots the value function over its (y� z) domain.
The value function region where control (i.e., price adjustment) is optimal is
marked by bold dots. The feasible state space for the firm is the y� z region
inside the parabola in the right panel of the figure. For each z, the shape of
the value function is similar to the case with no correlation. Fixing y , the value
function is decreasing in |z|. This is because a higher |z| implies a higher con-
ditional variance of y and thus a higher option value. Because of the higher
option value, the threshold ȳ(z) is increasing in |z|. While the inaction set is
two dimensional, we emphasize that the state of the problem is n dimensional:
for instance, in the figure n= 10.

We use the decision rule described above to produce the invariant distri-
bution of a cross section of firms using simulations. The model parameteriza-
tion is close to that used in the main body of the paper, that is, it produces a
frequency of adjustments per year that is Na = 1�3 and a standard deviation
Std(�pi) = 0�11. The left panel of Figure 8 plots the standardized distribu-
tion of price changes w(�pi) for n= 2�3�50 when the correlation between the
shocks is ρ= 0�5. The key effect of correlation is to increase the mass of price
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FIGURE 7.—Value function and decision rules with correlated shocks: ρ= 0�5.

changes with similar sign, that is, to move mass from the center of the distribu-
tion toward both sides. Not surprisingly, adding correlation makes the model
closer to the n= 1 case, a feature that is important both for its empirical plau-
sibility (i.e., the comparison with empirical distribution of price changes) and
for the predicted effect of monetary shocks. The case of n = 3 is particularly
revealing, since for zero correlation, the distribution is uniform, but as the cor-
relation is positive, the density becomes U-shaped, with a minimum at zero and
two maxima at high values of the absolute value, as in the case of n = 1. The
case of n= 50 is also informative because with zero correlation, this distribu-
tion is essentially normal. However, with positive correlation, the distribution

FIGURE 8.—The aggregate economy with correlated shocks: ρ= 0�5.
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of price changes becomes bimodal, with a local minimum of its density at zero.
Interestingly, the simultaneous near normality and bimodality (i.e., a small dip
of the density around the center of the support) that is displayed by the n= 50
case with correlation is apparent in several data sets, such as Midrigan (2009)
(see his Figure 1, bottom two panels), Wulfsberg (2010) (see his Figure 4), and
was explicitly tested and estimated by Cavallo and Rigobon (2010).

We conclude with the analysis of the price level response to a once and for all
shock to the money supply in the presence of correlated shocks. We stress that
to solve the IRF for any n, we only need to keep track of a two-dimensional
object. This makes the procedure computationally feasible. We assume a corre-
lation between shocks equal to ρ= 1/2 for four economies with n= 1�2�3�10.
These economies are observationally equivalent in the steady state in terms
of the price adjustment frequency Na and standard deviation Std(�pi).21 The
impulse responses for n = 2�3�10, displayed in Figure 8, show that introduc-
ing correlation significantly increases the price flexibility at all horizons: all
impulse responses are now very close to the response produced by the model
with n= 1. This finding contrasts with the outcome that was obtained with no
correlation in Figure 4. The intuition for this result is simple: introducing cor-
relation increases the mass of “large” price changes, as was explained above.
This effect brings back the “selection effect” that was being muted as n got
large in models with uncorrelated shocks.

7. CONCLUDING REMARKS

This paper presented a stylized model of price setting that substantially im-
proves the cross-sectional predictions of menu cost models in comparison to
the patterns that characterize the microdata. For instance, the model is able
to produce a substantial mass of small price changes and a bell-shaped size
distribution of price changes. The analytical tractability of the model allowed
us to derive a full characterization of the steady state predictions as well as of
the economy’s aggregate response to a once and for all unexpected monetary
shock, which we summarized in the Introduction.

We think that several extensions are interesting for future research. One fea-
ture of the data that our model misses concerns the kurtosis of price changes.
In the model, the maximum level of kurtosis for the distribution of price
changes predicted by the model is 3, as in the Normal distribution. This value
is larger than the prediction of the classical Barro (1972) or Dixit (1991) menu
cost models (where kurtosis is 1), but it is still small compared to the large ex-
cess kurtosis detected in microdata sets. Larger values of the kurtosis can be

21Motivated by the scaling and stretching results of Proposition 8, we normalize the parameters
so that the expected number of price changes per year is 1 (Na = 1) and consider a shock of
10% of the size of the steady state standard deviation of price changes (namely δ = 0�01 and
Std(�p)= 0�1, that is, a 1% change in money supply and a 10% steady state standard deviation
of price changes).
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obtained by introducing the possibility of random adjustment opportunities, as
in models where the size of the menu cost is stochastic. We explored this prob-
lem in Alvarez, Le Bihan, and Lippi (2013) and showed that this assumption
improves the empirical fit of the model cross section to the microdata and that
it increases the real effect of a monetary shock by reducing the selection ef-
fect. Another interesting extension concerns the role of the linear production
function (and no capital). The precision of our approximate solution benefited
from this assumption since the firm’s “optimal prices” did not depend on the
level of the aggregate consumption. Instead, if production features decreasing
returns to scale, the strength of the “pricing complementarities” increases, that
is, the optimal price depends on the aggregate consumption. We leave it for the
future to explore the quantitative importance of this alternative assumption.

APPENDIX A: PROOFS

PROOF OF PROPOSITION 2: The proof follows by substituting the function in
equation (9) into the ODE (6) and matching the coefficients for the powers of
yi. By the Cauchy–Hadamard theorem, the power series converges absolutely
for all y > 0 since limi→∞βi+1/βi = 0. Notice that v′(0) = β1 and that v(0) =
β0, so that we require β1 > 0, which implies β0 > 0. Moreover, if β1 > B/r,
then v is strictly increasing and strictly convex. If β1 = B/r, then v is linear in y .
If 0<β1 <B/r, then v is strictly increasing at the origin, strictly concave, and
reaches its unique maximum at a finite value of y . Thus, a solution that satisfies
smooth pasting requires that 0<β1 <B/r and the maximizer is ȳ . In this case,
y = 0 achieves the minimum in [0� ȳ]. Thus we have verified (i), (ii), and (iii).

Next we prove uniqueness. Let βi(β1) be the solution of equation (9), as a
function of β1. Note that for 0 < β1 < B/r, all the βi(β1) < 0 for i ≥ 2 and
are increasing in β1, converging to zero as β1 goes to B/r. Smooth pasting
can be written as 0 = v′(ȳ;β1) ≡∑∞

i=1 iβi(β1)ȳ
i−1, where the notation em-

phasizes that all the βi can be written as a function of β1. From the prop-
erties of the βi(·) discussed above, it follows that we can write the unique
solution of 0 = v′(ρ̄(β1);β1) as a strictly increasing function of β1, that is,
ρ̄′(β1) > 0. The value matching condition at ȳ gives ψ= v(ȳ�β1)− v(0�β1)=
v(ȳ�β1)−β0(β1)=∑∞

i=1βi(β1)ȳ
i. We note that, given the properties of βi(·)

discussed above, for any given y > 0, we have that v(y�β1)− β0(β1) is strictly
increasing in β1 as long as 0<β1 <B/r. Thus, define

Ψ(β1)= v
(
ρ̄(β1)�β1

)− v(0�β1)=
∞∑
i=1

βi(β1)ρ̄(β1)
i�

From the properties discussed above, we have that Ψ(β1) is strictly increas-
ing in β1 and that it ranges from 0 to ∞ as β1 ranges from 0 to B/r. Thus
Ψ is invertible. The solution of the problem is given by setting β1(ψ) =
Ψ−1(ψ) and ȳ(ψ)= ρ̄(β1(ψ)). Q.E.D.
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PROOF OF PROPOSITION 3: Using the expression for {βi} obtained in Propo-
sition 1, the value matching and smooth pasting conditions can be written as
two equations in β2 and ȳ ,

ψ

ȳ2
= B

rȳ
+β2

[
2σ2(n+ 2)

rȳ
+ 1 +

∞∑
i=1

κir
iȳ i

]
�

0 = B

rȳ
+β2

[
2σ2(n+ 2)

rȳ
+ 2 +

∞∑
i=1

κi(i+ 2)riȳ i
]
�

where κi = r−i β2+i
β2

=∏i

s=1
1

σ2(s+2)(n+2s+2) . This gives an implicit equation for ȳ:

ψ= B

r
ȳ

⎡
⎢⎢⎢⎢⎣1 −

2σ2(n+ 2)
rȳ

+ 1 +
∞∑
i=1

κir
iȳ i

2σ2(n+ 2)
rȳ

+ 2 +
∞∑
i=1

κi(i+ 2)riȳ i

⎤
⎥⎥⎥⎥⎦ �

Since the right hand side is strictly increasing in ȳ and goes from zero to infinity,
then we obtain part (i). Since the right hand side is strictly decreasing in n and
goes to zero as n→ ∞, then we obtain part (ii). Rearranging this equation and
defining z = ȳr/σ2 gives

ψ2(n+ 2)
Bσ2

r2(28)

= z2 + z3

⎡
⎢⎢⎢⎢⎣

2(n+ 2)
∞∑
i=1

ωi(i+ 1)zi−1 − 2 −
∞∑
i=1

ωi(i+ 2)zi

2(n+ 2)+ 2z+ z
∞∑
i=1

ωi(i+ 2)zi

⎤
⎥⎥⎥⎥⎦ �

where ωi =∏i

s=1
1

(s+2)(n+2s+2) . Using the expression for ωi and collecting terms
on zi, one can show that the square bracket of equation (28) that multiplies z3

is negative and, hence, ȳ >
√
ψ2(n+ 2)σ2/B. Letting b=ψr22(n+ 2)/(Bσ2),

we can write equation (28) as

1 = z2

b

⎛
⎜⎜⎜⎜⎝1 + z

⎡
⎢⎢⎢⎢⎣

2(n+ 2)
∞∑
i=1

ωi(i+ 1)zi−1 − 2 −
∞∑
i=1

ωi(i+ 2)zi

2(n+ 2)+ 2z+ z
∞∑
i=1

ωi(i+ 2)zi

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ �
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Since z ↓ 0 as b ↓ 0, then z2/b ↓ 1 as b ↓ 0, establishing part (iii). From equa-
tion (28), it is clear that the optimal threshold satisfies ȳ = σ2

r
Q( ψ

Bσ2 r
2� n). By

differentiating this expression, we obtain part (iv). Q.E.D.

PROOF OF PROPOSITION 5: The proof uses probability theory results on the
first passage time of an n-dimensional Brownian motion (BM). Let τ be the
stopping time defined by the first time when ‖p(τ)‖2 reaches the critical value
ȳ , starting at ‖p(0)‖ = 0 at time zero. Let Sn(t� ȳ) be the probability distribu-
tion for times t ≥ τ. Alternatively, let Sn(·� ȳ) be the survival function. Theo-
rem 2 in Ciesielski and Taylor (1962) shows that for n≥ 1,

Sn(t� ȳ)=
∞∑
k=1

ξn�k exp
(

−q
2
n�k

2ȳ
σ2t

)
�

where ξn�k = 1
2ν−1�(ν+ 1)

qν−1
n�k

Jν+1(qn�k)
�

where Jν(z) is the Bessel function of the first kind, where ν = (n − 2)/2 and
qn�k are the positive zeros of Jν(z), indexed in ascending order according to k,
and where � is the gamma function. The hazard rate is then given by

h(t� ȳ)= − 1
Sn(t� ȳ)

∂Sn(t� ȳ)

∂t
with asymptote lim

t→∞
h(t� ȳ)= q2

n�1σ
2

2ȳ
�

For n > 2, Hethcote (1970) provided the lower bound q2
n�k > (k − 1

4)
2π2 +

(n2 − 1)2. Q.E.D.

PROOF OF PROPOSITION 6: We first establish the following lemma.

LEMMA 1: Let z be distributed uniformly on the surface of the n-dimensional
sphere of radius 1. We use x for the projection of z in any of the dimensions, so
zi = x ∈ [−1�1]. The marginal distribution of x= zi has density

fn(x)=
∫ ∞

0

s(n−3)/2e−s/2

2(n−1)/2�[(n− 1)/2]
e−sx2/[2(1−x2)]

√
2π

s1/2

(1 − x2)3/2
ds

= �(n/2)
�(1/2)�[(n− 1)/2]

(
1 − x2

)(n−3)/2
�

where the � function makes the density integrate to 1.

The lemma applies Theorem 2.1, part 1 in Song and Gupta (1997), using
p = 2 so that the norm is Euclidian and k = 1 so that we have the marginal
of one dimension. Now consider the case where the sphere has radius differ-
ent from 1. Let p ∈ ∂I . Then p = p∑n

i=1 p
2
i

ȳ = p√∑n
i=1 p

2
i

√
ȳ = z

√
ȳ� where z is

uniformly distributed in the n-dimensional sphere of radius 1. Thus each pi
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has the same distribution as x
√
ȳ . Using the change of variable formula, we

obtain the required result. Some algebra using equation (13) for the density
w(·) gives the expressions for the standard deviation, kurtosis and the other
moments in the proposition.

For the convergence of �pi/Std(�pi) to a Normal, we show that y = x2n
converges to a chi-squared distribution with 1 degree of freedom (d.o.f.),
where x is the marginal of a uniform distribution in the surface of the n-
dimensional sphere. The p.d.f. of y ∈ [0� n], the square of the standardized x,
is �(n/2)

n�((n−1)/2)�(1/2) (1 − ( y
n
))(n−3)/2( y

n
)−1/2� and the p.d.f. of a chi-squared distribu-

tion with 1 d.o.f. is exp(−y/2)y−1/2√
2�(1/2)

. Then fixing y , taking logs in the ratio of the two

p.d.f.’s, taking the limit as n→ ∞, and using that �(n/2)
√

2
�((n−1)/2)

√
n

→ 1 as n→ ∞, we
obtain the desired convergence result. Q.E.D.

PROOF OF PROPOSITION 9: The forward Kolmogorov equation is

0 = 1
2
∂2

∂y2

([2σ√
y]2f (y)

)− ∂

∂y

(
nσ2f (y)

)
for y ∈ (0� ȳ)�(29)

with boundary conditions 1 = ∫ ȳ0 f (y)dy and f (ȳ)= 0. The first boundary en-
sures that f is a density. The second is due to the fact that when the pro-
cess hits ȳ , it is returned to the origin, so the mass escapes from this point.
Equation (29) implies the second order ODE: f ′(y)(n2 − 2) = yf ′′(y). The
solution of this ODE for n �= 2 is f (y) = A1y

n/2−1 + A0 for two constants
A0�A1 to be determined using the boundary conditions 0 = A1(ȳ)

n/2−1 +A0

and 1 = A1
n/2(ȳ)

n/2 +A0ȳ . For n= 2, the solution is f (y)= −A1 log(y)+A0 sub-
ject to the analogous boundary conditions. Solving forA0�A1 gives the desired
expressions. Q.E.D.

PROOF OF PROPOSITION 10: The only result to be established is that the
distribution of the sum of the coordinates of a vector uniformly distributed in
the n-dimensional sphere has density given by equation (21). Using the result
on page 387 of Khokhlov (2006), let c : R → R be measurable and let L be the
Lebesgue measure in an n-dimensional sphere. Then∫

x∈Rn�‖x‖=1
c(x1 + · · · + xn)dL(x)

= 2π(n−1)/2

�

(
n− 1

2

) ∫ 1

−1
c(

√
nu)
(
1 − u2

)(n−3)/2
du

= 2πn/2

√
n�

(
1
2

)
�

(
n− 1

2

) ∫
√
n

−√
n

c(
√
nu)

(
1 −
(√

nu√
n

)2)(n−3)/2

d(
√
nu)�
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Consider a function c(x1 + · · · + xn) = 1 if α ≤ x1 + · · · + xn ≤ β. Dividing
by the surface area of the n-dimensional sphere, we obtain equation (21).

Q.E.D.

PROOF OF PROPOSITION 11: We use expression (3.1) in Theorem 3.1 of Yin
and Wang (2009) in equation (25) to obtain, for n≥ 2,

θn(δ� t)=
∞∑
m=0

∞∑
k=1

�m�k(δ�
√
ȳ� n)σ2e−(q2

m�k
/(2n))(nσ2/ȳ)t� where(30)

�m�k(δ�
√
ȳ� n)=

∫
‖p0‖2≤ȳ

[∫
‖p‖2=ȳ

(p1 +p2 + · · · +pn)
n

×�m�k(p�p0�
√
ȳ� n)dp

]
λ(p0� δ)dp0�

where �m�k are given by

�m�k(p�p0�
√
ȳ� n)=

(
�

(
n

2
− 1
)(
m+ n

2
− 1
)
Zn/2−1
m

(
cos(∠p0p0)

)
(31)

× qm�kJm+n/2−1

( ‖p‖
‖p0‖qm�k

))
/(

2πn/2‖p‖n/2+2‖p0‖n/2−1J ′
m+n/2−1(qm�k)

)
�

where Zν
m(x) denotes the Gegenbauer polynomials of degree m and ν,

∠p0p0 ≡ (p · p0)/(‖p‖‖p0‖) is the angle between p0 and p, qm�k is the
kth (ordered) zero of the Bessel function Jm+n/2−1(·), and J ′

m+n/2−1(·) is the
derivative of the Bessel function. The expression in Proposition 11 follows
by integrating the right hand side of equation (30) with respect to t; thus,
the coefficients em�k are given by em�k(δ�

√
ȳ� n) = �m�k(δ�

√
ȳ� n)ȳ2/q2

m�k. It
is immediate that the homogeneity of degree 1 of em�k(·� n) is equivalent
to the homogeneity of degree −1 of �m�k(·� n). To establish the homogene-
ity, we prove two properties: (i) Write λ(p0� δ�

√
ȳ) that includes ȳ as an

argument, since it is an argument of f ; see equation (19). Direct compu-
tation of equation (24) gives λ(p0� aδ�a

√
ȳ) = λ(p0/a�δ�

√
ȳ)/an for any

a > 0. (ii) Direct computation of �m�k reveals that the function satisfies:
�m�k(p�p0� a

√
ȳ� n) = �m�k(p/a�p0/a�

√
ȳ� n)/an+1 for any a > 0. Using (i)

and (ii) in the expression for �m�k and using the change of variables p′
0 = p0/a

and p′ = p/a, and that the determinant of the Jacobian for the transfor-
mation. The determinant for the transformation of p0 gives an and the de-
terminant for p gives an−1 (the difference is because ‖p‖2 = ȳ , so it is
in n − 1 dimensions). This proves the homogeneity of degree −1 of �m�k.

Q.E.D.
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PROOF OF PROPOSITION 12: Let ỹ ≡ y/ȳ denote the values under the in-
variant distribution f in equation (19), and let ỹ(δ) denote the values of
the same price gaps right after the monetary shock but before adjustment.
Let p be a vector of price gaps that satisfies ỹ = ‖p‖2/ȳ so that, for this p,
ỹ(δ)= ‖p−δ1n‖2/ȳ . Taking y ∈ (0� ȳ), developing the square in the expression
for the corresponding value of ỹ(δ), multiplying and dividing the cross-product
term by

√
y , and using the definition of ỹ and Std(�pi)=√ȳ/n, we have

ỹ(δ)= ỹ − 2δ
√
y

ȳ

n∑
i=1

pi

√
y

1√
ȳ

+ n

ȳ
δ2

= ỹ − 2δ
√
ỹ

( n∑
i=1

pi

√
y

1√
n

)
1

Std(�pi)
+
(

δ

Std(�pi)

)2

�

Conditional on ỹ , we can regard ỹ(δ) as a random variable, whose realizations
correspond to each of the price gaps with ‖p‖2/ȳ = ỹ , and where the price gaps
p are uniformly distributed on the sphere with square radius y . Proposition 10
gives the density of the random variable

∑n
i=1 pi√
y

, and using Proposition 6, it
follows that for all n, its standard deviation is equal to 1 and its expected value
is equal to 0. Thus

∑n
i=1 pi√
y

1√
n

has an expected value equal to 0 and variance 1/n.
Hence limn→∞ ỹ(δ)= ỹ + ( δ

Std(�pi)
)2, where the convergence to a (degenerate)

random variable is in distribution. Combining this result for each ỹ ∈ [0�1] with
Proposition 9 for n→ ∞, we obtain that the distribution of ỹ(δ) converges to a
uniform distribution in the interval [( δ

Std(�pi)
)2�1+( δ

Std(�pi)
)2]. Immediately after

the monetary shock, any firm with y > ȳ or, equivalently, any firm with ỹ(δ) >
1, adjusts its prices. From here we see that the fraction of firms that adjust
immediately after the shock, denoted by Φn, converges to (δ/Std(�pi))2.

To characterize Pn for t ≥ 0, we establish three properties: (i) the expected
price change conditional on adjusting at time t = 0 is equal to δ, (ii) the
fraction of firms that adjust for the first time after the shock between 0 and
t < [δ−Θn(δ)]/[δNa] equals Nat, and (iii) the expected price change condi-
tional on adjusting at time 0 ≤ t < [δ−Θn(δ)]/[δNa] is equal to δ. To establish
(i), note that, as argued above, as n→ ∞, firms adjust their price if and only if
they have a price gap p before the monetary shock with square radius greater
than 1 − (δ/Std(�pi))2. Since, in the invariant distribution, price gaps are uni-
formly distributed on each of the spheres, the expected price change across
the firms with the same value of y equals δ. To establish (ii), note that, keep-
ing constant Na as n becomes large, the law of motion for ỹ in equation (12)
converges to a deterministic one, namely ỹt = ỹ0 +Nat. This, together with the
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uniform distribution for ỹ0, implies the desired result. Finally, (iii) follows from
combining (i) and (ii). Q.E.D.
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