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Abstract—This paper provides a framework to obtain the op- A;
timal bidding strategy of a price-taker producer. An appropriate
forecasting tool is used to estimate the probability density functions
of next-day hourly market-clearing prices. This probabilistic infor-
mation is used to formulate a self-scheduling profit maximization
problem that is solved taking advantage of its particular structure. Ay
The solution of this problem allows deriving a simple yet informed
bidding rule. Results from a realistic case study are discussed in Aprue
detail.
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Index Terms—Bidding strategy, forecasting, MILP, pool-based
electricity market, price-taker producer, self-scheduling. I
NOMENCLATURE
The notation used throughout the paper is stated below. 5

Constant used to obtain the upper bound of thée

a
confidence interval for hour. Exoan )
by Constant used to obtain the lower bound of the ™%
confidence interval for hour. Ex {}
B Random variable describing the total profit of "
the thermal generator (all hours) in $. Varg, {}
B*s Average value of the total profit of the thermal ‘
generator (all hours) in $.
By Random variable describing the profit of the
thermal generator at houiin $.
Bv® Average value of the profit of the thermal
generator at hourin $.
ct Operating cost function of the thermal

generator at hourin $/h. It is precisely
described in the Appendix.

c} Optimal value of the operating cost function o
the thermal generator at hotim $/h.

Random variable describing the
market-clearing price at hourin $/MWh.
Average value of random variablg in

$/MWh.

Estimate of the market-clearing price at hour
in $/Mwh.

True market-clearing price at hotin $/MWh.
Market-clearing price at hodrand scenarie

in $/MWh.

Feasible operating region of the thermal
generator. It is precisely described in the
Appendix.

Probability of scenaria.

Estimate of the standard deviation of random
variable); in $/MWh.

Expected value operator with respect to
random variableg, ..., Ar.

Expected value operator with respect to
random variable\;.

Variance operator with respect to random
variable B;.

Varg, ... B, {-} Variance operator with respect to random

variablesBy, ..., Br.

|. INTRODUCTION

HIS paper addresses the bidding problem faced by a
thermal price-taker producer in a pool-based electric

gnergy market.
It is assumed that price uncertainty is high and that an

appropriate forecasting tool is available to forecast next-day

n Number of scenarios. ; : . ; o
hourly prices and to estimate their associated probability
De Power produced by the thermal generator at . ;
. density functions.
hourt in MW. . . . . -
" . This paper provides a simple yet informed bidding rule
D} Optimal power produced by the thermal . . . -
. that allows a price-taker producer to obtain optimal bidding
generator at hourin MW. L
= ; decisions.
P Maximum power output of the thermal The analysis consists of three steps:
generator in MW. y _ _ p ' ] )
R Covariance matrix of random variables 1) An appropriate price-forecasting tool is used to esti-
Ao M. mate the probability density functions corresponding to
s Scenario index. next-day hourly energy prices.
¢ Hour index. 2) A self-scheduling problem is formulated using the prob-
T Time span in hours. abilistic price information derived in 1). This problem is
Yoot a-percentage point of th&y (0, 1) distribution. efficiently solved taking advantage of its singular struc-
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ture, which is described in Section Il1.

3) The solution of the problem formulated and solved in
2) allows deriving a simple yet informed bidding rule for
the price-taker.

The authors are with the E.T.S.I. Industriales, Universidad de Castilla— The framework for the analysis above is a pool-based elec-

La Mancha E-13071, Spain (e-mail: antonio.conejo@uclm.es; fcojavi

nogales@ uclm.es; josemanuel.arroyo@uclm.es).
Digital Object Identifier 10.1109/TPWRS.2002.804948

?F’lcity market [1]-[3]. It is assumed that the market is cleared
one day in advance on an hourly basis, and that producers and
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consumers submit hourly bidding curves consisting of blocksdding strategy problem. In [23], an ordinal optimization based
of energy and their corresponding prices. It is considered thhigding strategy is used for seeking good enough bids with high
in each hour, every generator must bid all its available powgrobabilities. An innovative model and a Lagrangian relaxation-
in one or several power blocks at increasing prices of its choibased method are presented in [24] to solve the bidding and
[1]. No particular assumption is made on the market structuself-scheduling problem. In [25], the optimal bidding problem
and its participants. The market-clearing price is used to pmymodeled as a stochastic optimization problem taking into ac-
any accepted production bid, and it is also the price paid by aogunt the effect of competitors through Monte Carlo simula-
accepted demand bid. tion. In [26], this problem is represented as a multiple stage

The analysis in this paper is restricted to considering mobabilistic decision-making problem and a Markov decision
price-taker producer, i.e., a producer with no capability gfrocess was applied to calculate bidding decisions.
altering market-clearing prices. In such situation, the profit The remainder of this paper is organized as follows. Section ||
maximization problem faced by the producer decompospsovides the proposed modeling framework to deal with price
into independent subproblems. Each of these subproblewmsertainty. In Section Ill, the price-taker self-scheduling
corresponds to the profit maximization of each generator ownptbblem under price uncertainty is formulated, analyzed and
by the producer [4]. Therefore, for the sake of simplicity, aolved. Section IV provides a probabilistic description of the
single generator is considered henceforth. The problem faqedfit achieved by the price-taker. Section V presents the simple
by a price-maker producer, i.e., a producer with capabiligget informed bidding rule derived from the solution of the
of altering market-clearing prices is outside the scope of ttgglf-scheduling problem. In Section VI, the results of a realistic
paper. case study are analyzed in detail. Section VIl presents some

This paper extends the model reported in [4], providing r&levant conclusions. Finally, in the Appendix, a mathematical
probabilistic framework for the treatment of uncertain markelinear description of the cost function and the feasible operating
clearing prices, and deriving a simple yet informed bidding ruleegion of a generator is provided.

Quite a few bidding methods addressing the strategic bid-
ding problem have been published so far [5]. Pioneering paper Il. PRICE UNCERTAINTY MODELING
[6] solves the optimal bidding problem for a single time pe-

lr'ct’.d usf|ngbdﬁrégmlcihprogr?mnlmtr;%. dl.n [7]’t a? anglyt;ﬁal ;‘ormu- rices is proposed in this section. This model provides a proba-
a Iolnb or dUI | lntg. 'te op 'Ti f' E m? sdraéteg\?/ Im € o(;me ilistic characterization of these prices that has a definitive im-
pooc] asc? ?hec ety m?r N ? ngfantl aest_'z/_vas evke act on the self-scheduling problem presented in Section Il
oped under the assumplion of a pertectly competiive: mar oreover, the model also provides a probabilistic characteri-
However, this assumption does not seem reasonable for mo

electricity markets. In [8], a bidding strategy was proposed fga;ti?ig no:\;he profit for the price-taker, which is described in

the situation of two buyers competing for a single block of en- The model is based on the probability density functions of

eray. H.useet.al.[g] proposgd a S|mp!e b|dQ|ng strategy basgd Rrecast prices. Several techniques to forecast electricity prices
heuristics without taking into consideration the effect of inter- n be found in the technical literature. For instance, jump diffu-

. . o . . C
temporal constraints. In [10], a simple bidding model is der'vesi)n/mean reversion models have been proposed in [27]. Neural
after estimating the probability of winning below and on th

margin. In [11], a bidding strategy is developed to maximize t%etworks are used to predict prices in the England & Wales

. h . LT . ool [28], in California [29], and in the Victorian market [30].
profit obtained by a supplier by adjusting its submitted oper chniques based on Fourier and Hartley transforms have been
tional parameters such as the declared minimum power outpé{

In 1121-11 h . lied to find iibri idied in [31]. Recently, in [32], two models based on time se-
n [12]-{15], game theory is applied to find an equilibrium;es o 41 sis have been proposed. These models, which produce
state (Nash equilibrium) of the bidding game, correspondi

N curate predictions, relate actual prices to demands and past
to the optimal bidding strategies achieved by the participar:jbsn-ceS P ' P P

Contrerazt al. [16] propose an iterative Cournot mode to fin All the aforementioned forecasting procedures assume that

the optimal bidding policy of a generating company. In [17 Ket-cleari ; t hotlit — 1 T i d
Nash equilibrium is applied under the framework of bilater e market-clearing price at houtt = L,...,T) Is a random

- . riable denominated;, which has to be forecast. It should be
based electricity markets. These methods are more swtabler{%{ed that random variables(t = 1 T') depend on the ac-

analyzing_strgtegic beh‘?“"or rather than for proposing a too'ltt?al price values of the time series that is used for forecasting.
develop b|id|n? strateg|eks. ¢ " . From a statistical point of view, they are random variables “con-
_Ur_lder the ramework o multi-round auctions, sever itioned” to the actual price values of the time series used for
b|dd|ng strategies ellre.prop_osed [18]_[2,0]' In [21], [22], evorforecasting. This time series spans from an arbitrary origin up
lutionary and artificial intelligence techniques such as genefig,,,ur 24 of the day preceding the one whose prices have to be

algorithms, genetic programming and finite state automata 3fecast. Under the above assumption, and using a time series

used to develop adaptive and evolutionary bidding Strategi?&'ecasting procedure [33], the expected value of random vari-
Unfortunately, iterative auctions are not implemented in moaBle)\t is the actual price prediction at hoyr\et, that is
electricity markets. t

Other methods such as ordinal optimization [23], Lagrangian A = \PE = By (N} 1)
relaxation [24], stochastic optimization [25], and Markov de-
cision process [26] have also been applied to solve the optimalThis is a key fact that is used in Section Ill.

A model for the uncertainty in the hourly market-clearing
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The estimate of the standard deviation of the random variabidere) ", w, = 1.
¢ is readily available from the forecasting procedure, and it is Note, however, that this scenario formulation leads to an
denominated¢*st. Moreover, it can be shown that the distributionntractable problem. For instance, considering 24 hours and

of random variablé\; is approximately Lognormal [32],i.e., 3 price values per hour results if*3scenarios which is a
_— number higher than 2,810, and this number constitutes
At = Lognormal(/\ ) . (2)  an excessive number of scenarios. An alternative approach is

U d] bounds of th fid int | therefore needed, and it is developed in what follows.
i p()jper an tpwler ounds ot the confidence interval are com- Using basic probability theory [35], expectation and summa-
puted respeclively as tion operators can be swapped in (6), resulting in

)\?st +a a_?st

T T
A — byoft. 3 I
maximize » E,, {\ —
It should be noted that tersandb btained di X’!tlzz v th
should be noted that parametessandb; are obtained di- .

rectly from the forecasting procedure and depend on the C(.’sc‘ilr'-b]ect top, € I1. (®)
sidered level of confidence to be guaranteed, e.g., 99% or 95%

[33]. And using the expected valugs* defined in (1), problem (8)

They are computed so as to cover 99% or 95% of the totsicomes
area under the Lognormal distribution. Formulae to compute

parameters,; andb; are provided below [34]: T
maximize ~ (A5 p; — ct)

ex Jest + /\est + a”oUeSt) _ /\est pr t=1
4 = P ( (o7’ — Tan Tt ‘ (4) subject top, € 1. 9)
t
AP — exp (% (05 + A — Yoo m) This problem is mixed-integer and linear (see the Appendix)
by = osst () and its size is moderate [4]. It can be easily solved using a stan-
] ) dard branch and cut solver such as CPLEX under GAMS [36].
wherev,y, depends on the desired level of confidence. The solution of problem (9) provides the best possible pro-
For a level of confidence of 99%yq9y; is obtained from qyction decision under price uncertainty, t = 1,...,7.
Probability(V (0, 1) > v99%,) = 0.01/2, which results in Note that all information available on prices (probab|I|ty density
Yoo = 2.5758. Analogously;ygsy = 1.9600. functions) is used to reach the above optimal production deci-
sion. Note, also, that no additional information is available be-
lll. SELF-SCHEDULING fore the bidding procedure is carried out and the market cleared.
Under price uncertainty, the profit maximization problem of herefore, no additional information alters the optimal produc-
a price-taker generator can be formulated as tion decision.

The next step is to establish bidding rules to ensure that the

T generator gets allocated its optimal self-scheduled production,
maX|m|zeEA1 ..... Z Atpe ¢ — Z Ct i.e,pi,t=1,...,T. Thisis done in Section V.
= t=1
subject top; € II. (6) IV PROFIT

The objective function of the problem above is the expected The profit achieved by the generator at houB,, is also a
value of profit for selling energy, i.e., expected revenues minggndom variable. Using basic statistics theory [35], if the actual

incurred operating costs (as described in the Appendix). Ngiice is within the confidence interval, the average valu@pf
that 1 hour time intervals are considered. The only constraigtcomputed as

of this problem states that the generator must operate within
its feasible operating region (power output limits, ramp-rate B8 = \tp¥ — ¢ (10)
constraints, and minimum up and down time constraints). This
feasible operating region is also precisely described in thed its variance is estimated as
Appendix.

It s.hould_be noted thatthe random vgriable dgscribing market— Varg, (By) = (07™) 2 ()2 (11)
clearing prices only affects the objective function, and particu-
larly, the term corresponding to revenues.

Formulation (6) suggests a reformulation to allow a scenan%
based solution approach, i.e.,

n T T
maximizez (ws Z /\tspt) - Z ct
f” s=1 t=1 B8 = Z AStpr — . (12)
subject top; € 11 7

The profit achieved by the generator during the 24 hours of
e day,B, is also a random variable. Its average value is easily
computed as [35]
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The variance o3 can be estimated as follows

A + 2,00 A +aot®
T
Varp,, B (B) =Varp, . B, <Z Bt) M - bt
t=1
P1 B P 3
=[pi ... PRIR|  |. (13) @ ()
Py
The diagonal elements of tHE x 1" covariance matrixRk A -bop
are the estimates of the variances of the random variahles
ie., (o)’ t = 1,...,T. The off-diagonal elements are the —
covariances between each couple of random variahleShat ©) P

is, elementR; ;(i # j) is the covariance of random variables
and);. The computation of matri® is somehow involved but Fig. 1. Bid curves for the proposed bidding strategy.
it is precisely described in [37].

TABLE |
V. BIDDING STRATEGY VARIABLE COST
Using the results obtained in Section Ill, the proposed bid- Cost ($/MWh) | Power (MW)

ding strategy is stated below. The generator should submit to g:‘;g‘;; ;22‘; izg
the market operator a bidding curve for each hour of the market Block 3 27.83 166
horizon. Each one of these hourly bidding curves consists of a Block 4 29.00 184
set of blocks of power and their corresponding increasing prices. Block S 208 =
For example, a 42-MW unit in hour 21 may bid powers 10, 20 Block 7 33.14 238
and 12 MW at prices 20, 25, and 30 $/MWh. It should be noted Block 8 36.37 256

o ) ; . : Block 9 39.00 274
that a convex bidding curve is required, i.e., prices have to be Block 10 a1.27 294

associated with the power blocks bid.
The bidding rule formulated below to determine the hourly

bidding curve of the generator only requires up to two blocks case 3) Ifp; = P, the bidding curve consists of a single

of power and their corresponding prices. If, as a result of the block of powerP at pricesst —b,o¢5t. See Fig. 1(c).
market rules, each hourly bidding curve should have a number It should be noted that this bidding curve guarantees
of blocks larger than two, the rule below can be modified with a level of confidence of 99% that the power
straightforwardly. accepted in this situation 8, which is the optimal

In the rule below, recall that{** is the estimate of the stan- self-scheduled power for this case.

dard deviation of the probability density function describing the ¢ 4 required level of confidence has to be larger than 99%,

market-clearing g”ci at h%'ﬂr Addll;uonalg/,flt IS alssurlnefd tha; parameters, andb; should be computed accordingly. However,
parameters; andb, have been obtained for a level of confi-, o yhat 4 low profile bidding behavior is convenient in many

dence of 99%' , ) markets, and this requires bidding prices not far away from the
The bidding curve for houris formulated as a function of the actual market-clearing prices.

optimal self-scheduled production in that hopif, Three cases
are possible and are analyzed below.

Casel) Ifpy = 0, the bidding curve consists of a single
block of powerP at priceAs™ +a,0¢%t. See Fig. 1(a).  This section provides a comparison in terms of profit and
It should be noted that this bidding curve guararpower schedule obtained by a generator under price uncertainty
tees with a level of confidence of 99% that the poweand under perfect knowledge of true energy prices.
accepted in this situation is 0, which is the optimal Data for the considered power unit as well as price values are
self-scheduled power for this case. given below. The characteristics of the unit are based on the data
Case 2) Ifp; is such thath < p; < P, the bidding curve of [38]. The shut-down cost is considered constant and equal to
consists of two blocks of power and their corre$56 and the fixed cost is $700. The start-up cost is considered
sponding prices. These two blocks of powersggre constant and equal to $1038. Reference [4] provides a model to
and P — p;, and their prices aras** — b,0¢** and consider the exponential variation of the start-up cost that can
st + a0, respectively. See Fig. 1(b). be easily integrated in the framework provided in this paper.
Note that this bidding curve guarantees with a A ten-block nonconvex variable cost is considered and given
level of confidence of 99% that the power accepteith Table I. A honconvex cost has been selected to illustrate the
in this situation isp;, which is the optimal self- capability of the proposed formulation to handle this type of
scheduled power for this case. costs.

VI. CASE StuDY
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TABLE I 60 T T T T
FEASIBLE OPERATING REGION

P 7 SU SD RU RD |UT| DT
[MW] | [MW] [[MW/h]| [MW/h] | [MW/h] | [MW/h] | [h] | [h]
12 | 294 | 170 160 60 50 | 4| 4 ol
éao-
TABLE III 8
ENERGY PRICE DATA ($/MWh) £
2k
t Jlrue jest Lower | Upper est Actual pric;cs
t t bound | bound Ot e - Forecast prices
1 2852 | 3330 | 2722 | 40.75 | 2.6l ) Bounds
2 2523 | 26.52 | 21.63 | 32.51 | 2.10
3 2345 | 22.15 | 18.04 | 2720 | 1.76
4 2293 | 23.10 | 18.81 | 2836 | 1.84 0 . . ‘ .
5 2279 | 2259 | 1840 | 27.74 | 1.80 0 s . 1 » »
6 22.93 | 23.15 | 18.85 | 2843 | 1.84 Time (h)
7 2329 | 24.64 | 20.07 | 3026 | 1.96
8 2546 | 2475 | 20.15 | 3039 197 Fig. 2. Price forecast versus actual prices.
9 2293 | 2550 | 20.76 | 3131 | 2.03
10 | 2828 | 27.58 | 22.46 | 33.86 | 2.20
11_| 31.08 | 3159 | 2573 | 3879 | 2.52 .
12| 39.93 | 35.59 | 28.99 | 43.70 | 2.84 U.S. $27207.70. Note that the optimal self-scheduled powers
13 | 4024 | 4105 | 3343 | 5040 | 3.27 have been obtained with forecast prices.
14| 4055 | 41.60 | 33.88 | 51.08 | 332 In order t th wal | . it due o ori
5 13903 | 38908 | 3174 | 4786 | .11 In order to assess the actual loss in profit due to price uncer-
16 | 3993 | 3973 | 3236 | 48.79 | 3.17 tainty, it is assumed that the generator is a perfect fortune-teller,
17_1 4075 | 4202 | 3422 | 51.59 | 335 i.e., it has perfect knowledge of the true prices in advance. Note,
18 | 4156 | 42.09 | 34.28 | 51.68 | 3.36 o S i .
19 1 4075 1 4074 | 33.18 | 50.02 | 325 however, that this information is not available in the real world.
20 | 39.74 | 38.80 | 31.60 | 47.64 | 3.09 If the self-scheduling problem is solved with the true price pro-
B e B file, the settlement profit is equal to U.S. $27 268.95, which
23 | 40.55 | 39.03 | 31.79 | 47.93 | 3.11 represents the maximum profit the generator can make. Note
24 | 29.23 | 33.67 | 2742 | 41.35 | 2.68 that there is only a 0.22% difference between the maximum at-

tainable profit and the actual profit obtained with the forecast
schedule. This slight difference shows that both, the forecasting
Table Il shows the limits that constrain the feasible Operatiﬂgchnique and the b|dd|ng Strategy7 are efficient. Power Output
region, 11, of the generator: minimum power output, maximunih each hour is shown in Table IV for the two price profiles. As
capacity, start-up ramp rate limit, shut-down ramp rate limig can be noted, both schedules meet the technical constraints
ramp-up rate limit, ramp-down rate limit, minimum up time, an@resented in Table 1. Moreover, the production schedules ob-

minimum down time. _ ~ tained with both price profiles are different (hours 14, 15, 17,
Finally, in the hour before the market horizon the unit hago, 23, and 24) implying that several blocks of energy are bid at
been running for 11 hours and producing 170 MW. different prices in one case versus the other; however, the com-

Itis assumed that the power output of the thermal unit is comitment status is identical for both cases.

stant throughout each hour. However, a linear variation of theFinally, Table V presents the structure of the hourly bids that
power output during each hour can be modeled as stated in [38k generator should submit to the market operator. For the sake
For clarity, this model is not considered in this paper. of simplicity, it is assumed that the generator bids one or two
Price data are provided in Table Ill. The second column cdstocks in every hour, as proposed in Section V. In hours of
responds to the actual prices obtained in the electricity markgheduled power between 0 and maximum power output (hours
of mainland Spain on Wednesday August 29th, 2001 [1]. THe 11-13, 15, 16, 19-21, 23, and 24), the actual scheduled en-
third column shows the estimates of the energy prices using #ey is bid at a price smaller than the true one (the lower bound
forecasting method proposed in [32] with a level of confidenasf the confidence interval) and the remaining power at a price
equal to 99%. Lower and upper bounds of the estimate of eagpfeater than the true one (the upper bound of the confidence in-
price, as well as an estimate of its standard deviation are ateeval). In those hours of scheduled power equal to maximum
shown in this table. Fig. 2 depicts the actual energy prices, thewer output (hours 14, 17, 18, and 22) price bids are smaller
forecast energy prices and their bounds. than the corresponding true prices. On the other hand, in those
Firstly, the self-scheduling problem is solved with the foréhours where the scheduled power is equal to 0 (hours 2—-10) the
cast prices. The hourly power output can be found in Table I¥orresponding price bid is greater than the true price. Note that
For this production schedule, the profit that the generator wouldth the above bidding strategy the desired schedule does be-
have obtained can be computed using the true prices (settdeme the actual one.
ment procedure). In this case, the actual settlement profit, com-The model has been implemented on a SGI R12000, 400 MHz
puted using optimal self-scheduled powers and true pricesbased processor with 500 MB of RAM using CPLEX 7.5 under
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TABLE IV

SELF-SCHEDULE IN MW

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 17, NO. 4, NOVEMBER 2002

The analysis of multiple case studies allows concluding that
the rule developed is effective in achieving the optimal (and
feasible) schedule of the price-taker producer.

t With forecast prices With true prices
1 160.0 160.0
2 0.0 0.0 APPENDIX
3 0.0 0.0
‘; g~g g~g The operating cost and the set of operating constrdihtare
3 0.0 0.0 presented in this Appendix.
7 0.0 0.0 The nonlinear and nonconvex operating cegtcan be for-
8 0.0 0.0
5 00 00 mulated as
10 0.0 0.0
11 170.0 170.0 ¢t = Cz(t)+ Av(t) + d(pe) + Sy(t) Vi=1,...,T (Al)
12 2300 230.0
13 274.0 2159 whereC is the shut-down cost [$/h}(t) is a 0/1 variable which
14 294.0 274.0 . ; L N
15 256.0 274.0 is equal to 1 if the unit is shut-down at the beginning of hgur
16 274.0 274.0 A is the fixed cost [$/h]p(¢) is a 0/1 variable which is equal
b Del 22e2 to 1 if the unit is on-line at hout, d(p,) expresses the variable
19 2740 274.0 production cost at hour [$/h], which is a nonlinear function
20 256.0 274.0 of the power output at that hour. Finally(t) is a 0/1 variable
21 274.0 274.0 o : L L
> 3940 2945 which is equal to 1 if the unit is started-up at the beginning of
23 256.0 252.0 hourt, andsS is the start-up cost [$/h].
4 2060 202.0 A mixed-integer linear formulation of the nonconvex and
nondifferentiable variable production cost is provided in this
TABLE V Appendix and can also be found in [4]
BIDDING STRATEGY
~ NL -1
+ | Powerbid (MW) | Price bid (/MWH) | e d(t) =" | Febe(t) + te(t) D Fon (Ton — Trn—1)
Block 1 | Block2 | Block 1 | Block 2 t (=1 m=1
1 160 134 | 2722 | 4075 | 2852 Vi=1 T (A2)
2 294 - 32.51 25.23 T
3 294 5 27.20 - 23.45 NL
4 294 - 28.36 - 22.93 Pt = Z [6e(t) +te(t)Te—1] VE=1,....,7 (A3)
5 294 - 27.74 - 22.79 =t
6 294 - 28.43 - 22.93 AL
7 294 - 30.26 - 23.29
8 | 29 - 3039 |- 2546 dt(t)=1 Vt=1,...,T (A4)
9 294 - 3131 - 22.93 p
10 | 29 - 33.86 28.28
11_|_170 124__| 2573 | 3879 | 31.08 6e(t) < (T — Ty—1) te(t)
12 230 64 28.99 43.70 39.93 V=1 NL Vt=1 T (A5)
13| 274 20 3343 | 5040 | 40.24 A T
14 | 294 - 33.88 - 40.55 be(t)>0 V¢=1,....NL, Vt=1,...,T (A6)
15 | 256 38 3174 | 47.86 | 39.93
16 | 274 20 3236 | 48.79 | 39.93 te(t) €{0,1}
17 | 2% - 34.22 - 40.75 _ _
m N - 3428 - 4156 vi=1,...,NL, Vt=1,...,T (A7)
19 | 274 20 33.18 | 50.02 | 40.75 L _ o _
20 | 256 38 31.60 | 47.64 | 39.74 whered(t) is the piecewise linear variable cost at hou$/h]
2| 274 20 | 3227 | 4866 | 3954 which replaces the nonlinear variable ca&t,), in (A1), F; is
22 | 29 - 37.58 - 42.77 . )
23 256 38 3179 | 4793 | 40.55 the slope of block of the variable cost [$/MWh], NL is the
24 | 206 88 2742 | 4135 | 29.23 number of blocks of the variable co$y(¢) is the power pro-

GAMS [36]. The optimal solutions to both cases (with foreca
and with actual energy prices) were achieved in 2.0 seconds

computing time.

VII. CONCLUSIONS

This paper provides a bidding rule that allows a price-taker
producer to achieve, under price uncertainty, its optimal

duced in the blocK at hourt [MW], ¢,(¢) is a 0/1 variable which
is equal to 1 if block determines the power at hoyrandT} is

?Jg?:upper limit of block! [MW].

inally, the following set of linear constraints formulates the
feasible operating regiofl, comprising power limits, ramp rate
limits and minimum up and down time constraints [4]

self-schedule. An appropriate probability description of hourly
market-clearing prices is provided. It is used to formulate and
solve an expected maximum profit self-scheduling problem.
The solution of this problem allows determining a simple yetin-

formed bidding rule to achieve the actual optimal self-schedule.

pr >Pu(t) VYi=1,...,T (A8)
pe <Pu(t) — 2(t +1)]

+2(t+1)SD
Vi=l,...,T (A9)

pr <pi—1 + RUv(t — 1) + SUy(¢)
(A10)
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pi—1 — pr <RDw(t) + SDz(t) 2]
G
> = w(t)] =0 (Al2) [
t=1
t+UT—1 [5]
> w(j) 2UTy(t)
=t 5
Vi=G+1,....T-UT+1 (A3) ©
T [7]
> (i) = y(®)] >0
= [8]
Vt=T—-UT+2,....T (A14)
[9]
> w(t) =0 (A15)
t=1 [10]
t+DT—1
> [1-v(j)] =DTa(t) [11]
j=t
Vi=F+1,...,7T-DT+1 (Al6) [12]
T
Z [1 - U(/) - Z(t)] 20 [13]
j=t
Vt=T-DT+2,....T (A17) 2
y(t) = 2(t) =v(t) —v(t = 1)
Vi=1,...,T (A18) 5
y(t)+2(¢) <1 Vt=1,...,T (A19)
z(t) €{0,1} Vt=1,...,T (A20)  [16]
where (17
F  Min{T,[DT — s(0)][1 — »(0)]};
G Min [T, (UT - U°)v(0)] . 28]
18

In the above formulationP is the minimum power output
[MW], SD is the shut-down ramp rate limit [MW/h], RU is
the ramp-up rate limit [MW/h], SU is the start-up ramp rate[19]
limit [MW/h], RD is the ramp-down rate limit [MW/h]G is
the number of intervals the unit must be initially on-line due to|,q;
the minimum up time constraint [h], UT is the minimum up time
[h], Fisthe number of intervals the unit must be initially off-line
due to the minimum down time constraint [h], DT is the min-
imum down time [h],s(0) is the number of periods the unit has
been off-line at the beginning of the market horizon (end of houf??]
0) [h], andU? is the number of periods the unit has been on-line
at the beginning of the market horizon (end of hour 0) [h]. [23]

Constraints (A8) and (A9) set the limits on the power
output. Ramp rate limits (ramp-up, start-up, ramp-down anghy;
shut-down) are imposed by constraints (A10) and (A11). Con-
straints (A12)—(A14) and (A15)-(A17) enforce the minimum 25
up and down time constraints respectively. Constraints (A185
and (A19) preserve the logic of the variables representing
running, start-up, and shut-down status changes [40]. Finally2®!
variablesz(t) are stated as binary in constraints (A20).

(21]

[27]
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