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Abstract—This paper provides a framework to obtain the op-
timal bidding strategy of a price-taker producer. An appropriate
forecasting tool is used to estimate the probability density functions
of next-day hourly market-clearing prices. This probabilistic infor-
mation is used to formulate a self-scheduling profit maximization
problem that is solved taking advantage of its particular structure.
The solution of this problem allows deriving a simple yet informed
bidding rule. Results from a realistic case study are discussed in
detail.

Index Terms—Bidding strategy, forecasting, MILP, pool-based
electricity market, price-taker producer, self-scheduling.

NOMENCLATURE

The notation used throughout the paper is stated below.
Constant used to obtain the upper bound of the
confidence interval for hour.
Constant used to obtain the lower bound of the
confidence interval for hour.
Random variable describing the total profit of
the thermal generator (all hours) in $.
Average value of the total profit of the thermal
generator (all hours) in $.
Random variable describing the profit of the
thermal generator at hourin $.
Average value of the profit of the thermal
generator at hour in $.
Operating cost function of the thermal
generator at hourin $/h. It is precisely
described in the Appendix.
Optimal value of the operating cost function of
the thermal generator at hourin $/h.
Number of scenarios.
Power produced by the thermal generator at
hour in MW.
Optimal power produced by the thermal
generator at hour in MW.
Maximum power output of the thermal
generator in MW.
Covariance matrix of random variables

.
Scenario index.
Hour index.
Time span in hours.

-percentage point of the distribution.
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Random variable describing the
market-clearing price at hourin $/MWh.
Average value of random variable in
$/MWh.
Estimate of the market-clearing price at hour
in $/MWh.
True market-clearing price at hourin $/MWh.
Market-clearing price at hourand scenario
in $/MWh.
Feasible operating region of the thermal
generator. It is precisely described in the
Appendix.
Probability of scenario.
Estimate of the standard deviation of random
variable in $/MWh.
Expected value operator with respect to
random variables .
Expected value operator with respect to
random variable .
Variance operator with respect to random
variable .
Variance operator with respect to random
variables .

I. INTRODUCTION

T HIS paper addresses the bidding problem faced by a
thermal price-taker producer in a pool-based electric

energy market.
It is assumed that price uncertainty is high and that an

appropriate forecasting tool is available to forecast next-day
hourly prices and to estimate their associated probability
density functions.

This paper provides a simple yet informed bidding rule
that allows a price-taker producer to obtain optimal bidding
decisions.

The analysis consists of three steps:

1) An appropriate price-forecasting tool is used to esti-
mate the probability density functions corresponding to
next-day hourly energy prices.

2) A self-scheduling problem is formulated using the prob-
abilistic price information derived in 1). This problem is
efficiently solved taking advantage of its singular struc-
ture, which is described in Section III.

3) The solution of the problem formulated and solved in
2) allows deriving a simple yet informed bidding rule for
the price-taker.

The framework for the analysis above is a pool-based elec-
tricity market [1]–[3]. It is assumed that the market is cleared
one day in advance on an hourly basis, and that producers and
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consumers submit hourly bidding curves consisting of blocks
of energy and their corresponding prices. It is considered that,
in each hour, every generator must bid all its available power
in one or several power blocks at increasing prices of its choice
[1]. No particular assumption is made on the market structure
and its participants. The market-clearing price is used to pay
any accepted production bid, and it is also the price paid by any
accepted demand bid.

The analysis in this paper is restricted to considering a
price-taker producer, i.e., a producer with no capability of
altering market-clearing prices. In such situation, the profit
maximization problem faced by the producer decomposes
into independent subproblems. Each of these subproblems
corresponds to the profit maximization of each generator owned
by the producer [4]. Therefore, for the sake of simplicity, a
single generator is considered henceforth. The problem faced
by a price-maker producer, i.e., a producer with capability
of altering market-clearing prices is outside the scope of this
paper.

This paper extends the model reported in [4], providing a
probabilistic framework for the treatment of uncertain market-
clearing prices, and deriving a simple yet informed bidding rule.

Quite a few bidding methods addressing the strategic bid-
ding problem have been published so far [5]. Pioneering paper
[6] solves the optimal bidding problem for a single time pe-
riod using dynamic programming. In [7], an analytical formu-
lation for building the optimal bidding strategy in the former
pool-based electricity market of England & Wales was devel-
oped under the assumption of a perfectly competitive market.
However, this assumption does not seem reasonable for most
electricity markets. In [8], a bidding strategy was proposed for
the situation of two buyers competing for a single block of en-
ergy. Huseet al.[9] proposed a simple bidding strategy based on
heuristics without taking into consideration the effect of inter-
temporal constraints. In [10], a simple bidding model is derived
after estimating the probability of winning below and on the
margin. In [11], a bidding strategy is developed to maximize the
profit obtained by a supplier by adjusting its submitted opera-
tional parameters such as the declared minimum power output.

In [12]–[15], game theory is applied to find an equilibrium
state (Nash equilibrium) of the bidding game, corresponding
to the optimal bidding strategies achieved by the participants.
Contreraset al. [16] propose an iterative Cournot model to find
the optimal bidding policy of a generating company. In [17],
Nash equilibrium is applied under the framework of bilateral
based electricity markets. These methods are more suitable for
analyzing strategic behavior rather than for proposing a tool to
develop bidding strategies.

Under the framework of multi-round auctions, several
bidding strategies are proposed [18]–[20]. In [21], [22], evo-
lutionary and artificial intelligence techniques such as genetic
algorithms, genetic programming and finite state automata are
used to develop adaptive and evolutionary bidding strategies.
Unfortunately, iterative auctions are not implemented in most
electricity markets.

Other methods such as ordinal optimization [23], Lagrangian
relaxation [24], stochastic optimization [25], and Markov de-
cision process [26] have also been applied to solve the optimal

bidding strategy problem. In [23], an ordinal optimization based
bidding strategy is used for seeking good enough bids with high
probabilities. An innovative model and a Lagrangian relaxation-
based method are presented in [24] to solve the bidding and
self-scheduling problem. In [25], the optimal bidding problem
is modeled as a stochastic optimization problem taking into ac-
count the effect of competitors through Monte Carlo simula-
tion. In [26], this problem is represented as a multiple stage
probabilistic decision-making problem and a Markov decision
process was applied to calculate bidding decisions.

The remainder of this paper is organized as follows. Section II
provides the proposed modeling framework to deal with price
uncertainty. In Section III, the price-taker self-scheduling
problem under price uncertainty is formulated, analyzed and
solved. Section IV provides a probabilistic description of the
profit achieved by the price-taker. Section V presents the simple
yet informed bidding rule derived from the solution of the
self-scheduling problem. In Section VI, the results of a realistic
case study are analyzed in detail. Section VII presents some
relevant conclusions. Finally, in the Appendix, a mathematical
linear description of the cost function and the feasible operating
region of a generator is provided.

II. PRICE UNCERTAINTY MODELING

A model for the uncertainty in the hourly market-clearing
prices is proposed in this section. This model provides a proba-
bilistic characterization of these prices that has a definitive im-
pact on the self-scheduling problem presented in Section III.
Moreover, the model also provides a probabilistic characteri-
zation of the profit for the price-taker, which is described in
Section IV.

The model is based on the probability density functions of
forecast prices. Several techniques to forecast electricity prices
can be found in the technical literature. For instance, jump diffu-
sion/mean reversion models have been proposed in [27]. Neural
networks are used to predict prices in the England & Wales
pool [28], in California [29], and in the Victorian market [30].
Techniques based on Fourier and Hartley transforms have been
studied in [31]. Recently, in [32], two models based on time se-
ries analysis have been proposed. These models, which produce
accurate predictions, relate actual prices to demands and past
prices.

All the aforementioned forecasting procedures assume that
the market-clearing price at hour is a random
variable denominated , which has to be forecast. It should be
noted that random variables depend on the ac-
tual price values of the time series that is used for forecasting.
From a statistical point of view, they are random variables “con-
ditioned” to the actual price values of the time series used for
forecasting. This time series spans from an arbitrary origin up
to hour 24 of the day preceding the one whose prices have to be
forecast. Under the above assumption, and using a time series
forecasting procedure [33], the expected value of random vari-
able is the actual price prediction at hour, , that is

(1)

This is a key fact that is used in Section III.
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The estimate of the standard deviation of the random variable
is readily available from the forecasting procedure, and it is

denominated .Moreover, it canbe shown that the distribution
of random variable is approximately Lognormal [32], i.e.,

Lognormal (2)

Upper and lower bounds of the confidence interval are com-
puted respectively as

(3)

It should be noted that parametersand are obtained di-
rectly from the forecasting procedure and depend on the con-
sidered level of confidence to be guaranteed, e.g., 99% or 95%
[33].

They are computed so as to cover 99% or 95% of the total
area under the Lognormal distribution. Formulae to compute
parameters and are provided below [34]:

(4)

(5)

where depends on the desired level of confidence.
For a level of confidence of 99%, is obtained from

Probability , which results in
. Analogously, .

III. SELF-SCHEDULING

Under price uncertainty, the profit maximization problem of
a price-taker generator can be formulated as

maximize

subject to (6)

The objective function of the problem above is the expected
value of profit for selling energy, i.e., expected revenues minus
incurred operating costs (as described in the Appendix). Note
that 1 hour time intervals are considered. The only constraint
of this problem states that the generator must operate within
its feasible operating region (power output limits, ramp-rate
constraints, and minimum up and down time constraints). This
feasible operating region is also precisely described in the
Appendix.

It should be noted that the random variable describing market-
clearing prices only affects the objective function, and particu-
larly, the term corresponding to revenues.

Formulation (6) suggests a reformulation to allow a scenario-
based solution approach, i.e.,

maximize

subject to (7)

where .
Note, however, that this scenario formulation leads to an

intractable problem. For instance, considering 24 hours and
3 price values per hour results in 3scenarios which is a
number higher than 2.8 10 , and this number constitutes
an excessive number of scenarios. An alternative approach is
therefore needed, and it is developed in what follows.

Using basic probability theory [35], expectation and summa-
tion operators can be swapped in (6), resulting in

maximize

subject to (8)

And using the expected value defined in (1), problem (8)
becomes

maximize

subject to (9)

This problem is mixed-integer and linear (see the Appendix)
and its size is moderate [4]. It can be easily solved using a stan-
dard branch and cut solver such as CPLEX under GAMS [36].

The solution of problem (9) provides the best possible pro-
duction decision under price uncertainty:, .
Note that all information available on prices (probability density
functions) is used to reach the above optimal production deci-
sion. Note, also, that no additional information is available be-
fore the bidding procedure is carried out and the market cleared.
Therefore, no additional information alters the optimal produc-
tion decision.

The next step is to establish bidding rules to ensure that the
generator gets allocated its optimal self-scheduled production,
i.e., , . This is done in Section V.

IV. PROFIT

The profit achieved by the generator at hour, , is also a
random variable. Using basic statistics theory [35], if the actual
price is within the confidence interval, the average value of
is computed as

(10)

and its variance is estimated as

(11)

The profit achieved by the generator during the 24 hours of
the day, , is also a random variable. Its average value is easily
computed as [35]

(12)
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The variance of can be estimated as follows

... (13)

The diagonal elements of the covariance matrix
are the estimates of the variances of the random variables,
i.e., , . The off-diagonal elements are the
covariances between each couple of random variables. That
is, element is the covariance of random variables
and . The computation of matrix is somehow involved but
it is precisely described in [37].

V. BIDDING STRATEGY

Using the results obtained in Section III, the proposed bid-
ding strategy is stated below. The generator should submit to
the market operator a bidding curve for each hour of the market
horizon. Each one of these hourly bidding curves consists of a
set of blocks of power and their corresponding increasing prices.
For example, a 42-MW unit in hour 21 may bid powers 10, 20
and 12 MW at prices 20, 25, and 30 $/MWh. It should be noted
that a convex bidding curve is required, i.e., prices have to be
associated with the power blocks bid.

The bidding rule formulated below to determine the hourly
bidding curve of the generator only requires up to two blocks
of power and their corresponding prices. If, as a result of the
market rules, each hourly bidding curve should have a number
of blocks larger than two, the rule below can be modified
straightforwardly.

In the rule below, recall that is the estimate of the stan-
dard deviation of the probability density function describing the
market-clearing price at hour. Additionally, it is assumed that
parameters and have been obtained for a level of confi-
dence of 99%.

The bidding curve for houris formulated as a function of the
optimal self-scheduled production in that hour,. Three cases
are possible and are analyzed below.

Case 1) If , the bidding curve consists of a single
block of power at price . See Fig. 1(a).

It should be noted that this bidding curve guaran-
tees with a level of confidence of 99% that the power
accepted in this situation is 0, which is the optimal
self-scheduled power for this case.

Case 2) If is such that , the bidding curve
consists of two blocks of power and their corre-
sponding prices. These two blocks of powers are,
and , and their prices are and

, respectively. See Fig. 1(b).
Note that this bidding curve guarantees with a

level of confidence of 99% that the power accepted
in this situation is , which is the optimal self-
scheduled power for this case.

Fig. 1. Bid curves for the proposed bidding strategy.

TABLE I
VARIABLE COST

Case 3) If , the bidding curve consists of a single
block of power at price . See Fig. 1(c).
It should be noted that this bidding curve guarantees
with a level of confidence of 99% that the power
accepted in this situation is, which is the optimal
self-scheduled power for this case.

If the required level of confidence has to be larger than 99%,
parameters and should be computed accordingly. However,
note that a low profile bidding behavior is convenient in many
markets, and this requires bidding prices not far away from the
actual market-clearing prices.

VI. CASE STUDY

This section provides a comparison in terms of profit and
power schedule obtained by a generator under price uncertainty
and under perfect knowledge of true energy prices.

Data for the considered power unit as well as price values are
given below. The characteristics of the unit are based on the data
of [38]. The shut-down cost is considered constant and equal to
$56 and the fixed cost is $700. The start-up cost is considered
constant and equal to $1038. Reference [4] provides a model to
consider the exponential variation of the start-up cost that can
be easily integrated in the framework provided in this paper.

A ten-block nonconvex variable cost is considered and given
in Table I. A nonconvex cost has been selected to illustrate the
capability of the proposed formulation to handle this type of
costs.
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TABLE II
FEASIBLE OPERATING REGION

TABLE III
ENERGY PRICE DATA ($/MWh)

Table II shows the limits that constrain the feasible operating
region, , of the generator: minimum power output, maximum
capacity, start-up ramp rate limit, shut-down ramp rate limit,
ramp-up rate limit, ramp-down rate limit, minimum up time, and
minimum down time.

Finally, in the hour before the market horizon the unit has
been running for 11 hours and producing 170 MW.

It is assumed that the power output of the thermal unit is con-
stant throughout each hour. However, a linear variation of the
power output during each hour can be modeled as stated in [39].
For clarity, this model is not considered in this paper.

Price data are provided in Table III. The second column cor-
responds to the actual prices obtained in the electricity market
of mainland Spain on Wednesday August 29th, 2001 [1]. The
third column shows the estimates of the energy prices using the
forecasting method proposed in [32] with a level of confidence
equal to 99%. Lower and upper bounds of the estimate of each
price, as well as an estimate of its standard deviation are also
shown in this table. Fig. 2 depicts the actual energy prices, the
forecast energy prices and their bounds.

Firstly, the self-scheduling problem is solved with the fore-
cast prices. The hourly power output can be found in Table IV.
For this production schedule, the profit that the generator would
have obtained can be computed using the true prices (settle-
ment procedure). In this case, the actual settlement profit, com-
puted using optimal self-scheduled powers and true prices is

Fig. 2. Price forecast versus actual prices.

U.S. $27 207.70. Note that the optimal self-scheduled powers
have been obtained with forecast prices.

In order to assess the actual loss in profit due to price uncer-
tainty, it is assumed that the generator is a perfect fortune-teller,
i.e., it has perfect knowledge of the true prices in advance. Note,
however, that this information is not available in the real world.
If the self-scheduling problem is solved with the true price pro-
file, the settlement profit is equal to U.S. $27 268.95, which
represents the maximum profit the generator can make. Note
that there is only a 0.22% difference between the maximum at-
tainable profit and the actual profit obtained with the forecast
schedule. This slight difference shows that both, the forecasting
technique and the bidding strategy, are efficient. Power output
in each hour is shown in Table IV for the two price profiles. As
it can be noted, both schedules meet the technical constraints
presented in Table II. Moreover, the production schedules ob-
tained with both price profiles are different (hours 14, 15, 17,
20, 23, and 24) implying that several blocks of energy are bid at
different prices in one case versus the other; however, the com-
mitment status is identical for both cases.

Finally, Table V presents the structure of the hourly bids that
the generator should submit to the market operator. For the sake
of simplicity, it is assumed that the generator bids one or two
blocks in every hour, as proposed in Section V. In hours of
scheduled power between 0 and maximum power output (hours
1, 11–13, 15, 16, 19–21, 23, and 24), the actual scheduled en-
ergy is bid at a price smaller than the true one (the lower bound
of the confidence interval) and the remaining power at a price
greater than the true one (the upper bound of the confidence in-
terval). In those hours of scheduled power equal to maximum
power output (hours 14, 17, 18, and 22) price bids are smaller
than the corresponding true prices. On the other hand, in those
hours where the scheduled power is equal to 0 (hours 2–10) the
corresponding price bid is greater than the true price. Note that
with the above bidding strategy the desired schedule does be-
come the actual one.

The model has been implemented on a SGI R12000, 400 MHz
based processor with 500 MB of RAM using CPLEX 7.5 under
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TABLE IV
SELF-SCHEDULE IN MW

TABLE V
BIDDING STRATEGY

GAMS [36]. The optimal solutions to both cases (with forecast
and with actual energy prices) were achieved in 2.0 seconds of
computing time.

VII. CONCLUSIONS

This paper provides a bidding rule that allows a price-taker
producer to achieve, under price uncertainty, its optimal
self-schedule. An appropriate probability description of hourly
market-clearing prices is provided. It is used to formulate and
solve an expected maximum profit self-scheduling problem.
The solution of this problem allows determining a simple yet in-
formed bidding rule to achieve the actual optimal self-schedule.

The analysis of multiple case studies allows concluding that
the rule developed is effective in achieving the optimal (and
feasible) schedule of the price-taker producer.

APPENDIX

The operating cost and the set of operating constraints,, are
presented in this Appendix.

The nonlinear and nonconvex operating cost,, can be for-
mulated as

(A1)

where is the shut-down cost [$/h], is a 0/1 variable which
is equal to 1 if the unit is shut-down at the beginning of hour,

is the fixed cost [$/h], is a 0/1 variable which is equal
to 1 if the unit is on-line at hour, expresses the variable
production cost at hour [$/h], which is a nonlinear function
of the power output at that hour. Finally, is a 0/1 variable
which is equal to 1 if the unit is started-up at the beginning of
hour , and is the start-up cost [$/h].

A mixed-integer linear formulation of the nonconvex and
nondifferentiable variable production cost is provided in this
Appendix and can also be found in [4]

(A2)

(A3)

(A4)

(A5)

(A6)

(A7)

where is the piecewise linear variable cost at hour[$/h]
which replaces the nonlinear variable cost, , in (A1), is
the slope of block of the variable cost [$/MWh], NL is the
number of blocks of the variable cost, is the power pro-
duced in the block at hour [MW], is a 0/1 variable which
is equal to 1 if block determines the power at hour, and is
the upper limit of block [MW].

Finally, the following set of linear constraints formulates the
feasible operating region,, comprising power limits, ramp rate
limits and minimum up and down time constraints [4]

(A8)

(A9)

(A10)
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(A11)

(A12)

(A13)

(A14)

(A15)

(A16)

(A17)

(A18)

(A19)

(A20)

where
;

In the above formulation, is the minimum power output
[MW], SD is the shut-down ramp rate limit [MW/h], RU is
the ramp-up rate limit [MW/h], SU is the start-up ramp rate
limit [MW/h], RD is the ramp-down rate limit [MW/h], is
the number of intervals the unit must be initially on-line due to
the minimum up time constraint [h], UT is the minimum up time
[h], is the number of intervals the unit must be initially off-line
due to the minimum down time constraint [h], DT is the min-
imum down time [h], is the number of periods the unit has
been off-line at the beginning of the market horizon (end of hour
0) [h], and is the number of periods the unit has been on-line
at the beginning of the market horizon (end of hour 0) [h].

Constraints (A8) and (A9) set the limits on the power
output. Ramp rate limits (ramp-up, start-up, ramp-down and
shut-down) are imposed by constraints (A10) and (A11). Con-
straints (A12)–(A14) and (A15)–(A17) enforce the minimum
up and down time constraints respectively. Constraints (A18)
and (A19) preserve the logic of the variables representing
running, start-up, and shut-down status changes [40]. Finally,
variables are stated as binary in constraints (A20).
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